

Copyright ©2005- 2010 EPCglobal®, All Rights Reserved. Page 1 of 210

 1

EPC Tag Data Standard 2

Version 1.5 3

Ratified on August 18th, 2010 4
 5
Disclaimer 6
EPCglobal Inc™ is providing this document as a service to interested industries. 7
This document was developed through a consensus process of interested 8
parties. 9
Although efforts have been to assure that the document is correct, reliable, and 10
technically accurate, EPCglobal Inc makes NO WARRANTY, EXPRESS OR 11
IMPLIED, THAT THIS DOCUMENT IS CORRECT, WILL NOT REQUIRE 12
MODIFICATION AS EXPERIENCE AND TECHNOLOGICAL ADVANCES 13
DICTATE, OR WILL BE SUITABLE FOR ANY 14
PURPOSE OR WORKABLE IN ANY APPLICATION, OR OTHERWISE. Use of 15
this document is with the understanding that EPCglobal Inc has no liability for 16
any claim to the contrary, or for any damage or loss of any kind or 17
nature. 18
 19

Copyright notice 20

© 2006, 2007, 2008, 2009, 2010 EPCglobal Inc. 21

 All rights reserved. Unauthorized reproduction, modification, and/or use of this document is not 22
permitted. Requests for permission to reproduce should be addressed to 23
epcglobal@epcglobalinc.org. 24
 25
EPCglobal Inc.TM is providing this document as a service to interested industries. This 26
document was developed through a consensus process of interested parties. Although efforts 27
have been to assure that the document is correct, reliable, and technically accurate, EPCglobal 28
Inc. makes NO WARRANTY, EXPRESS OR IMPLIED, THAT THIS DOCUMENT IS 29
CORRECT, WILL NOT REQUIRE MODIFICATION AS EXPERIENCE AND TECHNOLOGICAL 30
ADVANCES DICTATE, OR WILL BE SUITABLE FOR ANY PURPOSE OR WORKABLE IN 31
ANY APPLICATION, OR OTHERWISE. Use of this Document is with the understanding that 32
EPCglobal Inc. has no liability for any claim to the contrary, or for any damage or loss of any 33
kind or nature 34

http://www.autoidcenter.org/�
mailto:epcglobal@epcglobalinc.org�

Copyright ©2005- 2010 EPCglobal®, All Rights Reserved. Page 2 of 210

Abstract 35

The EPC Tag Data Standard defines the Electronic Product Code™, and also specifies 36
the memory contents of Gen 2 RFID Tags. In more detail, the Tag Data Standard covers 37
two broad areas: 38

• The specification of the Electronic Product Code, including its representation at 39
various levels of the EPCglobal Architecture and it correspondence to GS1 keys and 40
other existing codes. 41

• The specification of data that is carried on Gen 2 RFID tags, including the EPC, “user 42
memory” data, control information, and tag manufacture information. 43

The Electronic Product Code is a universal identifier for any physical object. It is used in 44
information systems that need to track or otherwise refer to physical objects. A very 45
large subset of applications that use the Electronic Product Code also rely upon RFID 46
Tags as a data carrier. For this reason, a large part of the Tag Data Standard is concerned 47
with the encoding of Electronic Product Codes onto RFID tags, along with defining the 48
standards for other data apart from the EPC that may be stored on a Gen 2 RFID tag. 49

Therefore, the two broad areas covered by the Tag Data Standard (the EPC and RFID) 50
overlap in the parts where the encoding of the EPC onto RFID tags is discussed. 51
Nevertheless, it should always be remembered that the EPC and RFID are not at all 52
synonymous: EPC is an identifier, and RFID is a data carrier. RFID tags contain other 53
data besides EPC identifiers (and in some applications may not carry an EPC identifier at 54
all), and the EPC identifier exists in non-RFID contexts (those non-RFID contexts 55
including the URI form used within information systems, printed human-readable EPC 56
URIs, and EPC identifiers derived from bar code data following the procedures in this 57
standard). 58

Audience for this document 59

The target audience for this specification includes: 60

• EPC Middleware vendors 61

• RFID Tag users and encoders 62

• Reader vendors 63

• Application developers 64

• System integrators 65

Differences From EPC Tag Data Standard Version 1.4 66

The EPC Tag Data Standard Version 1.5 is fully backward-compatible with EPC Tag 67
Data Standard Version 1.4, with the exception of the definition of filter values as noted 68
below. 69

http://www.autoidcenter.org/�

Copyright ©2005- 2010 EPCglobal®, All Rights Reserved. Page 3 of 210

The EPC Tag Data Standard Version 1.5 includes these new or enhanced features: 70

• The correspondence between certain special cases of GTIN and the SGTIN EPC have 71
been clarified. This includes: 72

• GTIN-12 and GTIN-13 (Section 7.1.1) 73

• GTIN-8 and RCN-8 (Section 7.1.2) 74

• Company Internal Numbering Trade Identification (GS1 Prefixes 04 and 0001 – 75
0007) (Section 7.1.3) 76

• Restricted Circulation Trade Identification (GS1 Prefixes 02 and 20 – 29) 77
(Section 7.1.4) 78

• Coupon Code Identification for Restricted Distribution (GS1 Prefixes 05, 99, 981, 79
and 982) (Section 7.1.5) 80

• Refund Receipt (GS1 Prefix 980) (Section 7.1.6) 81

• ISBN, ISMN, and ISSN (GS1 Prefixes 977, 978, or 979) (Section 7.1.7) 82

• The treatment of the ‘0’ padding character in the GS1 Element String for the GRAI 83
has been clarified (Section 7.4) 84

• Earlier versions of the Tag Data Standard incorrectly stated the upper limit on 85
Location Extension in the SGLN-96 encoding procedure; this is now corrected. 86

• “Attribute Bits” have been introduced in the EPC Memory Bank of a Gen 2 RFID 87
Tag. The Attribute Bits includes data that guides the handling of the object to which 88
the tag is affixed, for example a bit that indicates the presence of hazardous material. 89
(Section 11) 90

• The definitions of “Filter Values” for SGTIN and SSCC have been updated. In some 91
instances, these changes are not backward-compatible with EPC Tag Data Standard 92
Version 1.4. (Section 10) 93

• The EPC Tag URI and EPC Raw URI have been enhanced to include Attribute Bits, 94
along with other control information introduced by the EPCglobal UHF Class 1 95
Gen 2 Air Interface SpecificationVersion 1.2.0. The latter includes the user memory 96
indicator and the extended protocol control (XPC) bits. (Section 12) 97

• The contents of the TID Memory Bank of a Gen 2 RFID Tag are specified 98
(Section 16) 99

• The framework for encoding of data elements into the User Memory Bank of a Gen 2 100
RFID Tag are specified. This framework is based on a new access method for 101
ISO/IEC 15962 [ISO15962] called “Packed Objects,” and will be included in the 102
forthcoming 2nd edition of that specification. (Section 17) 103

In addition to the above new and enhanced features, the structure of the EPC Tag Data 104
Standard has been completely revised. These revisions are intended to make the 105
document clearer and more accessible to readers, as well as to better explain the 106

http://www.autoidcenter.org/�

Copyright ©2005- 2010 EPCglobal®, All Rights Reserved. Page 4 of 210

conceptual underpinnings of the Tag Data Standard. Specifically, the revisions to the 107
structure include the following: 108

• An up-front “roadmap” is included that shows how all the pieces of the Tag Data 109
Standard fit together. (Section 3) 110

• The specification greatly expands on the topic of what is an Electronic Product Code, 111
how is it used, how does it relate to the other EPC standards, and how does it relate to 112
the GS1 keys defined in the GS1 General Specifications. (Section 4) 113

• Much more emphasis is laid on the Pure Identity EPC URI (Section 6), in the 114
following ways: 115

• The Pure Identity EPC URI is the basis for explaining of how the EPC is used. 116

• The correspondence between GS1 Element Strings (as used in bar codes) and 117
EPCs is described at the Pure Identity EPC URI level, not at the binary level. 118
This allows this correspondence to be understood without reference to RFID 119
Tags. (Section 7) 120

• The specification is clearly divided into those parts that are RFID-specific and those 121
parts that are independent of RFID. In particular, it is emphasized that the EPC and 122
RFID are not synonymous (an EPC may exist and be used in the absence of RFID, 123
and an RFID tag may contain data other than an EPC). 124

• The description of the memory contents of a Gen 2 RFID Tag distinguishes between 125
“control information” as distinct from “business data” and “tag manufacture 126
information” (TID), and this concept is used throughout to help clarify how pieces fit 127
together. In particular, this helps to describe role of Filter Values as data that is both 128
distinct from the EPC and specific to the process of reading RFID Tags. 129

• The input to (output from) the encoding (decoding) procedures for the EPC Binary 130
Encoding as used on RFID Tags is now expressed as an EPC Tag URI, rather than as 131
a GS1 Element String. 132

• The encoding and decoding procedures for the EPC Binary Encoding are now more 133
modular and table-driven, and less repetitive. 134

The changes above imply that the procedure to convert between a GS1 Element String 135
and the EPC Binary Encoding as used on an RFID Tag is now described quite differently 136
than in previous versions of the EPC Tag Data Standard. The net effect, however, is 137
identical to the EPC Tag Data Standard Version 1.4 – no changes have been made to the 138
encodings themselves, only their method of description. 139

Status of this document 140

This section describes the status of this document at the time of its publication. Other 141
documents may supersede this document. The latest status of this document series is 142
maintained at EPCglobal. See http://www.epcglobalinc.org/standards/ 143
for more information. 144

http://www.autoidcenter.org/�
http://www.epcglobalinc.org/standards/�

Copyright ©2005- 2010 EPCglobal®, All Rights Reserved. Page 5 of 210

This version of the Tag Data Standard is the fully Ratified version as Ratified by the 145
EPCglobal Board ballot that was completed on August 18, 2010. Previously, this 146
document had gone through all governance reviews and approvals of the previous 147
version. 148

Comments on this document should be sent to the EPCglobal Software Action Group and 149
addressed to GS1help@gs1.org.150

http://www.autoidcenter.org/�
mailto:GS1help@gs1.org�

Copyright ©2005- 2010 EPCglobal®, All Rights Reserved. Page 6 of 210

Table of Contents 151

1 Introduction .. 15 152
2 Terminology and Typographical Conventions ... 15 153

3 Overview of Tag Data Standards ... 16 154
4 The Electronic Product Code: A Universal Identifier for Physical Objects 20 155

4.1 The Need for a Universal Identifier: an Example ... 20 156
4.2 Use of Identifiers in a Business Data Context ... 22 157

4.3 Relationship Between EPCs and GS1 Keys .. 23 158
4.4 Use of the EPC in EPCglobal Architecture Framework..................................... 26 159

5 Common Grammar Elements .. 27 160
6 EPC URI ... 28 161

6.1 Use of the EPC URI ... 29 162
6.2 Assignment of EPCs to Physical Objects .. 29 163

6.3 EPC URI Syntax... 30 164
6.3.1 Serialized Global Trade Item Number (SGTIN) ... 31 165

6.3.2 Serial Shipping Container Code (SSCC)... 32 166
6.3.3 Serialized Global Location Number (SGLN) .. 32 167

6.3.4 Global Returnable Asset Identifier (GRAI) .. 33 168
6.3.5 Global Individual Asset Identifier (GIAI) ... 34 169

6.3.6 Global Service Relation Number (GSRN) .. 35 170
6.3.7 Global Document Type Identifier (GDTI) .. 35 171

6.3.8 General Identifier (GID) ... 36 172
6.3.9 US Department of Defense Identifier (DOD) .. 36 173

7 Correspondence Between EPCs and GS1 Keys ... 37 174
7.1 Serialized Global Trade Item Number (SGTIN) .. 38 175

7.1.1 GTIN-12 and GTIN-13 .. 39 176
7.1.2 GTIN-8 and RCN-8 ... 40 177

7.1.3 Company Internal Numbering (GS1 Prefixes 04 and 0001 – 0007) 40 178
7.1.4 Restricted Circulation (GS1 Prefixes 02 and 20 – 29) 41 179

7.1.5 Coupon Code Identification for Restricted Distribution (GS1 Prefixes 05, 99, 180
981, and 982) .. 41 181

7.1.6 Refund Receipt (GS1 Prefix 980) ... 41 182

http://www.autoidcenter.org/�

Copyright ©2005- 2010 EPCglobal®, All Rights Reserved. Page 7 of 210

7.1.7 ISBN, ISMN, and ISSN (GS1 Prefixes 977, 978, or 979) 41 183
7.2 Serial Shipping Container Code (SSCC) ... 42 184

7.3 Serialized Global Location Number (SGLN) .. 43 185
7.4 Global Returnable Asset Identifier (GRAI) ... 45 186

7.5 Global Individual Asset Identifier (GIAI) ... 47 187
7.6 Global Service Relation Number (GSRN)... 48 188

7.7 Global Document Type Identifier (GDTI)... 50 189
8 URIs for EPC Pure Identity Patterns ... 51 190

8.1 Syntax .. 51 191
8.2 Semantics ... 53 192

9 Memory Organization of Gen 2 RFID Tags .. 53 193
9.1 Types of Tag Data .. 53 194

9.2 Gen 2 Tag Memory Map .. 55 195
10 Filter Value .. 60 196

10.1 Use of “Reserved” and “All Others” Filter Values ... 61 197
10.2 Filter Values for SGTIN EPC Tags.. 61 198

10.3 Filter Values for SSCC EPC Tags ... 61 199
10.4 Filter Values for SGLN EPC Tags ... 62 200

10.5 Filter Values for GRAI EPC Tags ... 62 201
10.6 Filter Values for GIAI EPC Tags ... 63 202

10.7 Filter Values for GSRN EPC Tags ... 63 203
10.8 Filter Values for GDTI EPC Tags .. 63 204

10.9 Filter Values for GID EPC Tags .. 64 205
10.10 Filter Values for DOD EPC Tags... 64 206

11 Attribute Bits ... 64 207
12 EPC Tag URI and EPC Raw URI .. 65 208

12.1 Structure of the EPC Tag URI and EPC Raw URI ... 65 209
12.2 Control Information ... 67 210

12.2.1 Filter Values ... 67 211
12.2.2 Other Control Information Fields .. 67 212

12.3 EPC Tag URI and EPC Pure Identity URI ... 69 213
12.3.1 EPC Binary Coding Schemes .. 69 214

12.3.2 EPC Pure Identity URI to EPC Tag URI ... 72 215

http://www.autoidcenter.org/�

Copyright ©2005- 2010 EPCglobal®, All Rights Reserved. Page 8 of 210

12.3.3 EPC Tag URI to EPC Pure Identity URI ... 73 216
12.4 Grammar ... 73 217

13 URIs for EPC Patterns ... 75 218
13.1 Syntax ... 76 219

13.2 Semantics .. 77 220
14 EPC Binary Encoding .. 78 221

14.1 Overview of Binary Encoding ... 78 222
14.2 EPC Binary Headers .. 79 223

14.3 Encoding Procedure .. 81 224
14.3.1 “Integer” Encoding Method .. 82 225

14.3.2 “String” Encoding Method .. 82 226
14.3.3 “Partition Table” Encoding Method .. 83 227

14.3.4 “Unpadded Partition Table” Encoding Method 84 228
14.3.5 “String Partition Table” Encoding Method .. 85 229

14.3.6 “Numeric String” Encoding Method ... 86 230
14.4 Decoding Procedure .. 87 231

14.4.1 “Integer” Decoding Method .. 88 232
14.4.2 “String” Decoding Method .. 88 233

14.4.3 “Partition Table” Decoding Method .. 89 234
14.4.4 “Unpadded Partition Table” Decoding Method 89 235

14.4.5 “String Partition Table” Decoding Method .. 90 236
14.4.6 “Numeric String” Decoding Method ... 91 237

14.5 EPC Binary Coding Tables .. 92 238
14.5.1 Serialized Global Trade Identification Number (SGTIN) 92 239

14.5.1.1 SGTIN-96 Coding Table .. 93 240
14.5.1.2 SGTIN-198 Coding Table .. 94 241

14.5.2 Serial Shipping Container Code (SSCC) ... 94 242
14.5.2.1 SSCC-96 Coding Table.. 96 243

14.5.3 Serialized Global Location Number (SGLN) ... 96 244
14.5.3.1 SGLN-96 Coding Table ... 97 245

14.5.3.2 SGLN-195 Coding Table ... 98 246
14.5.4 Global Returnable Asset Identifier (GRAI) ... 98 247

14.5.4.1 GRAI-96 Coding Table.. 99 248

http://www.autoidcenter.org/�

Copyright ©2005- 2010 EPCglobal®, All Rights Reserved. Page 9 of 210

14.5.4.2 GRAI-170 Coding Table .. 100 249
14.5.5 Global Individual Asset Identifier (GIAI) .. 100 250

14.5.5.1 GIAI-96 Partition Table and Coding Table .. 100 251
14.5.5.2 GIAI-202 Partition Table and Coding Table 102 252

14.5.6 Global Service Relation Number (GSRN) ... 103 253
14.5.6.1 GSRN-96 Coding Table ... 104 254

14.5.7 Global Document Type Identifier (GDTI) ... 104 255
14.5.7.1 GDTI-96 Coding Table .. 106 256

14.5.7.2 GDTI-113 Coding Table .. 107 257
14.5.8 General Identifier (GID) ... 107 258

14.5.8.1 GID-96 Coding Table .. 108 259
14.5.9 DoD Identifier .. 108 260

15 EPC Memory Bank Contents ... 108 261
15.1 Encoding Procedures ... 108 262

15.1.1 EPC Tag URI into Gen 2 EPC Memory Bank 108 263
15.1.2 EPC Raw URI into Gen 2 EPC Memory Bank 110 264

15.2 Decoding Procedures ... 111 265
15.2.1 Gen 2 EPC Memory Bank into EPC Raw URI 111 266

15.2.2 Gen 2 EPC Memory Bank into EPC Tag URI 112 267
15.2.3 Gen 2 EPC Memory Bank into Pure Identity EPC URI 112 268

15.2.4 Decoding of Control Information .. 113 269
16 Tag Identification (TID) Memory Bank Contents... 113 270

16.1 Short Tag Identification ... 114 271
16.2 Extended Tag Identification (XTID) .. 115 272

16.2.1 XTID Header .. 116 273
16.2.2 XTID Serialization .. 117 274

16.2.3 Optional Command Support Segment ... 118 275
16.2.4 BlockWrite and BlockErase Segment .. 119 276

16.2.5 User Memory and BlockPermaLock Segment 122 277
16.3 Serialized Tag Identification (STID) .. 123 278

16.3.1 STID URI Grammar ... 123 279
16.3.2 Decoding Procedure: TID Bank Contents to STID URI......................... 123 280

17 User Memory Bank Contents ... 124 281

http://www.autoidcenter.org/�

Copyright ©2005- 2010 EPCglobal®, All Rights Reserved. Page 10 of 210

Appendix A Character Set for Alphanumeric Serial Numbers 125 282
Appendix B Glossary (non-normative) ... 128 283

Appendix C References .. 133 284
Appendix D Extensible Bit Vectors ... 134 285

Appendix E (non-normative) Examples: EPC Encoding and Decoding 134 286
E.1 Encoding a Serialized Global Trade Item Number (SGTIN) to SGTIN-96 135 287

E.2 Decoding an SGTIN-96 to a Serialized Global Trade Item Number (SGTIN) 137 288
Appendix F Packed Objects ID Table for Data Format 9 .. 139 289

F.1 Tabular Format (non-normative) ... 139 290
F.2 Comma-Separated-Value (CSV) Format ... 148 291

Appendix G (Intentionally Omitted) .. 151 292
Appendix H (Intentionally Omitted) .. 151 293

Appendix I Packed Objects Structure .. 152 294
I.1 Overview .. 152 295

I.2 Overview of Packed Objects Documentation .. 152 296
I.3 High-Level Packed Objects Format Design .. 152 297

I.3.1 Overview ... 152 298
I.3.2 Descriptions of each section of a Packed Object’s structure 154 299

I.4 Format Flags section ... 155 300
I.4.1 Data Terminating Flag Pattern .. 156 301

I.4.2 Format Flag section starting bit patterns ... 156 302
I.4.3 IDLPO Format Flags .. 157 303

I.4.4 Patterns for use between Packed Objects .. 157 304
I.5 Object Info Information ... 158 305

I.5.1 Object Info formats .. 159 306
I.5.1.1 IDLPO default Object Info format ... 159 307

I.5.1.2 IDLPO non-default Object Info format .. 159 308
I.5.1.3 IDMPO Object Info format .. 160 309

I.5.2 Length Information .. 160 310
I.5.3 General description of ID values .. 161 311

I.5.3.1 Application Indicator subsection .. 162 312
I.5.3.2 Full/Restricted Use bits .. 163 313

I.5.4 ID Values representation in an ID Value-list Packed Object 164 314

http://www.autoidcenter.org/�

Copyright ©2005- 2010 EPCglobal®, All Rights Reserved. Page 11 of 210

I.5.5 ID Values representation in an ID Map Packed Object 164 315
I.5.6 Optional Addendum subsection of the Object Info section 164 316

I.5.6.1 Addendum “EditingOP” list (only in ID List Packed Objects) 165 317
I.5.6.2 Packed Objects containing an Addendum subsection 166 318

I.6 Secondary ID Bits section ... 166 319
I.7 Aux Format section .. 167 320

I.7.1 Support for No-Directory compaction methods .. 167 321
I.7.2 Support for the Packed-Object compaction method 168 322

I.8 Data section .. 169 323
I.8.1 Known-length-Numerics subsection of the Data Section 170 324

I.8.2 Alphanumeric subsection of the Data section ... 170 325
I.8.2.1 A/N Header Bits .. 170 326

I.8.2.2 Dual-base Character-map encoding .. 171 327
I.8.2.3 Prefix and Suffix Run-Length encoding ... 171 328

I.8.2.4 Encoding into Binary Segments ... 172 329
I.8.2.5 Padding the last Byte ... 173 330

I.9 ID Map and Directory encoding options ... 173 331
I.9.1 ID Map Section structure ... 173 332

I.9.1.1 ID Map and ID Map bit field ... 175 333
I.9.1.2 Data/Directory and AuxMap indicator bits ... 175 334

I.9.1.3 Closing Flags bit(s) .. 176 335
I.9.2 Directory Packed Objects ... 176 336

I.9.2.1 ID Maps in a Directory IDMPO ... 176 337
I.9.2.2 Optional AuxMap Section (Directory IDMPOs only)......................... 176 338

I.9.2.3 Usage as a Presence/Absence Directory ... 178 339
I.9.2.4 Usage as an Indexed Directory ... 179 340

Appendix J Packed Objects ID Tables ... 180 341
J.1 Packed Objects Data Format registration file structure 180 342

J.1.1 File Header section... 181 343
J.1.2 Table Header section .. 182 344

J.1.3 ID Table section ... 183 345
J.2 Mandatory and Optional ID Table columns .. 183 346

J.2.1 IDvalue column (Mandatory) ... 183 347

http://www.autoidcenter.org/�

Copyright ©2005- 2010 EPCglobal®, All Rights Reserved. Page 12 of 210

J.2.2 OIDs and IDstring columns (Optional) ... 183 348
J.2.3 FormatString column (Optional) .. 185 349

J.2.4 Interp column (Optional) .. 186 350
J.3 Syntax of OIDs, IDstring, and FormatString Columns 186 351

J.3.1 Formal Grammar for OIDs, IDString, and FormatString Columns 188 352
J.4 OID input/output representation.. 189 353

J.4.1 “ID Value OID” output representation.. 190 354
Appendix K Packed Objects Encoding tables ... 191 355

Appendix L Encoding Packed Objects (non-normative).. 196 356
Appendix M Decoding Packed Objects (non-normative) .. 200 357

M.1 Overview... 200 358
M.2 Decoding Alphanumeric data .. 202 359

Appendix N Acknowledgement of Contributors and Companies Opted-in during the 360
Creation of this Standard (Informative) ... 205 361

List of Figures 362

Figure 1. Organization of the EPC Tag Data Standard ... 18 363
Figure 2. Example Visibility Data Stream ... 21 364

Figure 3. Illustration of GRAI Identifier Namespace ... 22 365
Figure 4. Illustration of EPC Identifier Namespace ... 23 366

Figure 5. Illustration of Relationship of GS1 Key and EPC Identifier Namespaces 24 367
Figure 6. EPCglobal Architecture Framework and EPC Forms Used at Each Level ... 27 368

Figure 7. Correspondence between SGTIN EPC URI and GS1 Element String 38 369
Figure 8. Correspondence between SSCC EPC URI and GS1 Element String 43 370

Figure 9. Correspondence between SGLN EPC URI without extension and GS1 371
Element String... 44 372

Figure 10. Correspondence between SGLN EPC URI with extension and GS1 373
Element String... 44 374

Figure 11. Correspondence between GRAI EPC URI and GS1 Element String 46 375
Figure 12. Correspondence between GIAI EPC URI and GS1 Element String 47 376

Figure 13. Correspondence between GSRN EPC URI and GS1 Element String 49 377
Figure 14. Correspondence between GDTI EPC URI and GS1 Element String 50 378

Figure 15. Gen 2 Tag Memory Map ... 56 379

http://www.autoidcenter.org/�

Copyright ©2005- 2010 EPCglobal®, All Rights Reserved. Page 13 of 210

Figure 16. Gen 2 Protocol Control (PC) Bits Memory Map 59 380
Figure 17. Illustration of EPC Tag URI and EPC Raw URI...................................... 66 381

Figure 18. Illustration of Filter Value Within EPC Tag URI..................................... 67 382
 383

List of Tables 384

Table 1. EPC Schemes and Corresponding GS1 Keys .. 25 385
Table 2. EPC Schemes and Where the Pure Identity Form is Defined 31 386

Table 3. Kinds of Data on a Gen 2 RFID Tag .. 55 387
Table 4. Gen 2 Memory Map ... 58 388

Table 5. Gen 2 Protocol Control (PC) Bits Memory Map ... 60 389
Table 6. SGTIN Filter Values .. 61 390

Table 7. Attribute Bit Assignments .. 65 391
Table 8. Control Information Fields ... 68 392

Table 9. EPC Binary Header Values .. 81 393
Table 10. SGTIN Partition Table ... 93 394

Table 11. SGTIN-96 Coding Table .. 93 395
Table 12. SGTIN-198 Coding Table .. 94 396

Table 13. SSCC Partition Table ... 95 397
Table 14. SSCC-96 Coding Table .. 96 398

Table 15. SGLN Partition Table .. 97 399
Table 16. SGLN-96 Coding Table ... 97 400

Table 17. SGLN-195 Coding Table ... 98 401
Table 18. GRAI Partition Table ... 99 402

Table 19. GRAI-96 Coding Table .. 99 403
Table 20. GRAI-170 Coding Table .. 100 404

Table 21. GIAI-96 Partition Table ... 101 405
Table 22. GIAI-96 Coding Table ... 101 406

Table 23. GIAI-202 Partition Table ... 102 407
Table 24. GIAI-202 Coding Table ... 103 408

Table 25. GSRN Partition Table .. 104 409
Table 26. GSRN-96 Coding Table ... 104 410

http://www.autoidcenter.org/�

Copyright ©2005- 2010 EPCglobal®, All Rights Reserved. Page 14 of 210

Table 27. GDTI Partition Table ... 105 411
Table 28. GDTI-96 Coding Table .. 106 412

Table 29. GDTI-113 Coding Table .. 107 413
Table 30. GID-96 Coding Table .. 108 414

Table 31. Recipe to Fill In Gen 2 EPC Memory Bank from EPC Tag URI 109 415
Table 32. Recipe to Fill In Gen 2 EPC Memory Bank from EPC Raw URI 111 416

Table 33. Short TID format.. 115 417
Table 34. The Extended Tag Identification (XTID) format for the TID memory bank. 418
Note that the table above is fully filled in and that the actual amount of memory used, 419
presence of a field, and address location of a field depends on the XTID Header. 116 420

Table 35. The XTID header ... 117 421
Table 36. Optional Command Support XTID Word ... 119 422

Table 37. XTID Block Write and Block Erase Information 122 423
Table 38. XTID Block PermaLock and User Memory Information 122 424

 425

426

http://www.autoidcenter.org/�

Copyright ©2005- 2010 EPCglobal®, All Rights Reserved. Page 15 of 210

1 Introduction 427
The EPC Tag Data Standard defines the Electronic Product Code™, and also specifies 428
the memory contents of Gen 2 RFID Tags. In more detail, the Tag Data Standard covers 429
two broad areas: 430

• The specification of the Electronic Product Code, including its representation at 431
various levels of the EPCglobal Architecture and it correspondence to GS1 keys and 432
other existing codes. 433

• The specification of data that is carried on Gen 2 RFID tags, including the EPC, “user 434
memory” data, control information, and tag manufacture information. 435

The Electronic Product Code is a universal identifier for any physical object. It is used in 436
information systems that need to track or otherwise refer to physical objects. A very 437
large subset of applications that use the Electronic Product Code also rely upon RFID 438
Tags as a data carrier. For this reason, a large part of the Tag Data Standard is concerned 439
with the encoding of Electronic Product Codes onto RFID tags, along with defining the 440
standards for other data apart from the EPC that may be stored on a Gen 2 RFID tag. 441
Therefore, the two broad areas covered by the Tag Data Standard (the EPC and RFID) 442
overlap in the parts where the encoding of the EPC onto RFID tags is discussed. 443
Nevertheless, it should always be remembered that the EPC and RFID are not at all 444
synonymous: EPC is an identifier, and RFID is a data carrier. RFID tags contain other 445
data besides EPC identifiers (and in some applications may not carry an EPC identifier at 446
all), and the EPC identifier exists in non-RFID contexts (those non-RFID contexts 447
including the URI form used within information systems, printed human-readable EPC 448
URIs, and EPC identifiers derived from bar code data following the procedures in this 449
standard). 450

2 Terminology and Typographical Conventions 451
Within this specification, the terms SHALL, SHALL NOT, SHOULD, SHOULD NOT, 452
MAY, NEED NOT, CAN, and CANNOT are to be interpreted as specified in Annex G of 453
the ISO/IEC Directives, Part 2, 2001, 4th edition [ISODir2]. When used in this way, 454
these terms will always be shown in ALL CAPS; when these words appear in ordinary 455
typeface they are intended to have their ordinary English meaning. 456
All sections of this document, with the exception of Section 1, are normative, except 457
where explicitly noted as non-normative. 458
The following typographical conventions are used throughout the document: 459

• ALL CAPS type is used for the special terms from [ISODir2] enumerated above. 460

• Monospace type is used for illustrations of identifiers and other character strings 461
that exist within information systems. 462

 Placeholders for changes that need to be made to this document prior to its reaching 463
the final stage of approved EPCglobal specification are prefixed by a rightward-464
facing arrowhead, as this paragraph is. 465

http://www.autoidcenter.org/�

Copyright ©2005- 2010 EPCglobal®, All Rights Reserved. Page 16 of 210

The term “Gen 2 RFID Tag” (or just “Gen 2 Tag”) as used in this specification refers to 466
any RFID tag that conforms to the EPCglobal UHF Class 1 Generation 2 Air Interface, 467
Version 1.2.0 or later [UHFC1G2], as well as any RFID tag that conforms to another air 468
interface standard that shares the same memory map. The latter includes specifications 469
currently under development within EPCglobal such as the HF Class 1 Generation 2 Air 470
Interface. 471

Bitwise addresses within Gen 2 Tag memory banks are indicated using hexadecimal 472
numerals ending with a superscript “h”; for example, 20h denotes bit address 473
20 hexadecimal (32 decimal). 474

3 Overview of Tag Data Standards 475
This section provides an overview of the Tag Data Standard and how the parts fit 476
together. 477

The Tag Data Standard covers two broad areas: 478

• The specification of the Electronic Product Code, including its representation at 479
various levels of the EPCglobal Architecture and it correspondence to GS1 keys and 480
other existing codes. 481

• The specification of data that is carried on Gen 2 RFID tags, including the EPC, “user 482
memory” data, control information, and tag manufacture information. 483

The Electronic Product Code is a universal identifier for any physical object. It is used in 484
information systems that need to track or otherwise refer to physical objects. Within 485
computer systems, including electronic documents, databases, and electronic messages, 486
the EPC takes the form of an Internet Uniform Resource Identifier (URI). This is true 487
regardless of whether the EPC was originally read from an RFID tag or some other kind 488
of data carrier. This URI is called the “Pure Identity EPC URI.” The following is an 489
example of a Pure Identity EPC URI: 490
urn:epc:id:sgtin:0614141.112345.400 491

A very large subset of applications that use the Electronic Product Code also rely upon 492
RFID Tags as a data carrier. RFID is often a very appropriate data carrier technology to 493
use for applications involving visibility of physical objects, because RFID permits data to 494
be physically attached to an object such that reading the data is minimally invasive to 495
material handling processes. For this reason, a large part of the Tag Data Standard is 496
concerned with the encoding of Electronic Product Codes onto RFID tags, along with 497
defining the standards for other data apart from the EPC that may be stored on a Gen 2 498
RFID tag. Owing to memory limitations of RFID tags, the EPC is not stored in URI form 499
on the tag, but is instead encoded into a compact binary representation. This is called the 500
“EPC Binary Encoding.” 501

Therefore, the two broad areas covered by the Tag Data Standard (the EPC and RFID) 502
overlap in the parts where the encoding of the EPC onto RFID tags is discussed. 503
Nevertheless, it should always be remembered that the EPC and RFID are not at all 504
synonymous: EPC is an identifier, and RFID is a data carrier. RFID tags contain other 505
data besides EPC identifiers (and in some applications may not carry an EPC identifier at 506

http://www.autoidcenter.org/�

Copyright ©2005- 2010 EPCglobal®, All Rights Reserved. Page 17 of 210

all), and the EPC identifier exists in non-RFID contexts (those non-RFID contexts 507
currently including the URI form used within information systems, printed human-508
readable EPC URIs, and EPC identifiers derived from bar code data following the 509
procedures in this standard). 510

The term “Electronic Product Code” (or “EPC”) is used when referring to the EPC 511
regardless of the concrete form used to represent it. The term “Pure Identity EPC URI” is 512
used to refer specifically to the text form the EPC takes within computer systems, 513
including electronic documents, databases, and electronic messages. The term “EPC 514
Binary Encoding” is used specifically to refer to the form the EPC takes within the 515
memory of RFID tags. 516

The following diagram illustrates the parts of the Tag Data Standard and how they fit 517
together. (The colors in the diagram refer to the types of data that may be stored on 518
RFID tags, explained further in Section 9.1.) 519

http://www.autoidcenter.org/�

Copyright ©2005- 2010 EPCglobal®, All Rights Reserved. Page 18 of 210

 520
Figure 1. Organization of the EPC Tag Data Standard 521

The first few sections define those aspects of the Electronic Product Code that are 522
independent from RFID. 523
Section 4 provides an overview of the Electronic Product Code (EPC) and how it relates 524
to other EPCglobal standards and the GS1 General Specifications. 525
Section 6 specifies the Pure Identity EPC URI form of the EPC. This is a textual form of 526
the EPC, and is recommended for use in business applications and business documents as 527

EPC “pure identity”
URI (Section 6)

EPC “tag URI”
(Section 12)

EPC Bank
contents

(Section 15)

Gen 2 RFID Tag (specified in [UHFC1G2])

TID Bank
contents

(Section 16)

User Memory
Bank contents
(Section 17)

GS1 keys
(specified in

[GS1GS10.0]
)

Reserved Bank
contents

(specified in
[UHFC1G2])

Filter Values
(Section 10)

Attribute Bits
(Section 11)

EPC binary encoding
(Section 14)

Correspondence
specified in
Section 7

Independent of RFID

RFID-Specific

= Business Data

= Control Info

= Tag Manufacture Info

Key

GS1 AIs
(specified in

[GS1GS10.0]
)

+ Other Data

= Biz Data + Control

http://www.autoidcenter.org/�

Copyright ©2005- 2010 EPCglobal®, All Rights Reserved. Page 19 of 210

a universal identifier for any physical object for which visibility information is kept. In 528
particular, this form is what is used as the “what” dimension of visibility data in the EPC 529
Information Services (EPCIS) specification, and is also available as an output from the 530
Application Level Events (ALE) interface. 531

Section 7 specifies the correspondence between Pure Identity EPC URIs as defined in 532
Section 6 and bar code element strings as defined in the GS1 General Specifications. 533

Section 8 specifies the Pure Identity Pattern URI, which is a syntax for representing sets 534
of related EPCs, such as all EPCs for a given trade item regardless of serial number. 535

The remaining sections address topics that are specific to RFID, including RFID-specific 536
forms of the EPC as well as other data apart from the EPC that may be stored on Gen 2 537
RFID tags. 538
Section 9 provides general information about the memory structure of Gen 2 RFID Tags. 539

Sections 10 and 11 specify “control” information that is stored in the EPC memory bank 540
of Gen 2 tags along with a binary-encoded form of the EPC (EPC Binary Encoding). 541
Control information is used by RFID data capture applications to guide the data capture 542
process by providing hints about what kind of object the tag is affixed to. Control 543
information is not part of the EPC, and does comprise any part of the unique identity of a 544
tagged object. There are two kinds of control information specified: the “filter value” 545
(Section 10) that makes it easier to read desired tags in an environment where there may 546
be other tags present, such as reading a pallet tag in the presence of a large number of 547
item-level tags, and “attribute bits” (Section 11) that provide additional special attribute 548
information such as alerting to the presence of hazardous material. The same “attribute 549
bits” are available regardless of what kind of EPC is used, whereas the available “filter 550
values” are different depending on the type of EPC (and with certain types of EPCs, no 551
filter value is available at all). 552
Section 12 specifies the “tag” Uniform Resource Identifiers, which is a compact string 553
representation for the entire data content of the EPC memory bank of Gen 2 RFID Tags. 554
This data content includes the EPC together with “control” information as defined in 555
Sections 10 and 11. In the “tag” URI, the EPC content of the EPC memory bank is 556
represented in a form similar to the Pure Identity EPC URI. Unlike the Pure Identity 557
EPC URI, however, the “tag” URI also includes the control information content of the 558
EPC memory bank. The “tag” URI form is recommended for use in capture applications 559
that need to read control information in order to capture data correctly, or that need to 560
write the full contents of the EPC memory bank. “Tag” URIs are used in the Application 561
Level Events (ALE) interface, both as an input (when writing tags) and as an output 562
(when reading tags). 563

Section 13 specifies the EPC Tag Pattern URI, which is a syntax for representing sets of 564
related RFID tags based on their EPC content, such as all tags containing EPCs for a 565
given range of serial numbers for a given trade item. 566
Sections 14 and 15 specify the contents of the EPC memory bank of a Gen 2 RFID tag at 567
the bit level. Section 14 specifies how to translate between the the “tag” URI and the 568
EPC Binary Encoding. The binary encoding is a bit-level representation of what is 569
actually stored on the tag, and is also what is carried via the Low Level Reader Protocol 570

http://www.autoidcenter.org/�

Copyright ©2005- 2010 EPCglobal®, All Rights Reserved. Page 20 of 210

(LLRP) interface. Section 15 specifies how this binary encoding is combined with 571
attribute bits and other control information in the EPC memory bank. 572

Section 16 specifies the binary encoding of the TID memory bank of Gen 2 RFID Tags. 573
Section 17 specifies the binary encoding of the User memory bank of Gen 2 RFID Tags. 574

4 The Electronic Product Code: A Universal Identifier 575
for Physical Objects 576

The Electronic Product Code is designed to facilitiate business processes and applications 577
that need to manipulate visibility data – data about observations of physical objects. The 578
EPC is a universal identifier that provides a unique identity for any physical object. The 579
EPC is designed to be unique across all physical objects in the world, over all time, and 580
across all categories of physical objects. It is expressly intended for use by business 581
applications that need to track all categories of physical objects, whatever they may be. 582

By contrast, seven GS1 identification keys defined in the GS1 General Specifications 583
[GS1GS10.0] can identify categories of objects (GTIN), unique objects (SSCC, GLN, 584
GIAI, GSRN), or a hybrid (GRAI, GDTI) that may identify either categories or unique 585
objects depending on the absence or presence of a serial number. (Two other keys, GINC 586
and GSIN, identify logical groupings, not physical objects.) The GTIN, as the only 587
category identification key, requires a separate serial number to uniquely identify an 588
object but that serial number is not considered part of the identification key. 589
There is a well-defined correspondence between EPCs and GS1 keys. This allows any 590
physical object that is already identified by a GS1 key (or GS1 key + serial number 591
combination) to be used in an EPC context where any category of physical object may be 592
observed. Likewise, it allows EPC data captured in a broad visibility context to be 593
correlated with other business data that is specific to the category of object involved and 594
which uses GS1 keys. 595
The remainder of this section elaborates on these points. 596

4.1 The Need for a Universal Identifier: an Example 597
The following example illustrates how visibility data arises, and the role the EPC plays as 598
a unique identifier for any physical object. In this example, there is a storage room in a 599
hospital that holds radioactive samples, among other things. The hospital safety officer 600
needs to track what things have been in the storage room and for how long, in order to 601
ensure that exposure is kept within acceptable limits. Each physical object that might 602
enter the storage room is given a unique Electronic Product Code, which is encoded onto 603
an RFID Tag affixed to the object. An RFID reader positioned at the storage room door 604
generates visibility data as objects enter and exit the room, as illustrated below. 605

http://www.autoidcenter.org/�

Copyright ©2005- 2010 EPCglobal®, All Rights Reserved. Page 21 of 210

 606
Figure 2. Example Visibility Data Stream 607

As the illustration shows, the data stream of interest to the safety officer is a series of 608
events, each identifying a specific physical object and when it entered or exited the room. 609
The unique EPC for each object is an identifier that may be used to drive the business 610
process. In this example, the EPC (in Pure Identity EPC URI form) would be a primary 611
key of a database that tracks the accumulated exposure for each physical object; each 612
entry/exit event pair for a given object would be used to update the accumulated exposure 613
database. 614

This example illustrates how the EPC is a single, universal identifier for any physical 615
object. The items being tracked here include all kinds of things: trade items, reusable 616
transports, fixed assets, service relations, documents, among others that might occur. By 617
using the EPC, the application can use a single identifier to refer to any physical object, 618
and it is not necessary to make a special case for each category of thing. 619

Visibility Data Stream at Storage Room Entrance
Time In /

Out
EPC Comment

8:23am In urn:epc:id:sgtin:0614141.012345.62852 10cc Syringe
#62852 (trade item)

8:52am In urn:epc:id:grai:0614141.54321.2528 Pharma Tote #2528
(reusable transport)

8:59am In urn:epc:id:sgtin:0614141.012345.1542 10cc Syringe #1542
(trade item)

9:02am Out urn:epc:id:giai:0614141.17320508 Infusion Pump #52
(fixed asset)

9:32am In urn:epc:id:gsrn:0614141.0000010253 Nurse Jones
(service relation)

9:42am Out urn:epc:id:gsrn:0614141.0000010253 Nurse Jones
(service relation)

9:52am In urn:epc:id:gdti:0614141.00001.1618034 Patient Smith’s
chart (document)

RFID Reader

Hospital

Storage Room

http://www.autoidcenter.org/�

Copyright ©2005- 2010 EPCglobal®, All Rights Reserved. Page 22 of 210

4.2 Use of Identifiers in a Business Data Context 620
Generally speaking, an identifier is a member of set (or “namespace”) of strings (names), 621
such that each identifier is associated with a specific thing or concept in the real world. 622
Identifiers are used within information systems to refer to the real world thing or concept 623
in question. An identifier may occur in an electronic record or file, in a database, in an 624
electronic message, or any other data context. In any given context, the producer and 625
consumer must agree on which namespace of identifiers is to be used; within that context, 626
any identifier belonging to that namespace may be used. 627
The keys defined in the GS1 General Specifications [GS1GS10.0] are each a namespace 628
of identifiers for a particular category of real-world entity. For example, the Global 629
Returnable Asset Identifier (GRAI) is a key that is used to identify returnable assets, such 630
as plastic totes and pallet skids. The set of GRAI codes can be thought of as identifiers 631
for the members of the set “all returnable assets.” A GRAI code may be used in a context 632
where only returnable assets are expected; e.g., in a rental agreement from a moving 633
services company that rents returnable plastic crates to customers to pack during a move. 634
This is illustrated below. 635

 636
Figure 3. Illustration of GRAI Identifier Namespace 637

The upper part of the figure illustrates the GRAI identifier namespace. The lower part of 638
the figure shows how a GRAI might be used in the context of a rental agreement, where 639
only a GRAI is expected. 640

GRAI = 0614141000234AB23 (100 liter tote #AB23)

GRAI = 0614141000517XY67 (500 liter tote #XY67)

GRAI = 0614141000234AB24 (100 liter tote #AB24)

GRAIs: All
returnable assets

<RentalRecord>
 <Items>
 <grai>0614141000234AB23</grai>
 <grai>0614141000517XY67</grai>
 …

Establishes the context as returnable assets

Therefore, any GRAI could go here
(and nothing else)

http://www.autoidcenter.org/�

Copyright ©2005- 2010 EPCglobal®, All Rights Reserved. Page 23 of 210

 641
Figure 4. Illustration of EPC Identifier Namespace 642

In contrast, the EPC namespace is a space of identifiers for any physical object. The set 643
of EPCs can be thought of as identifiers for the members of the set “all physical objects.” 644
EPCs are used in contexts where any type of physical object may appear, such as in the 645
set of observations arising in the hospital storage room example above. Note that the 646
EPC URI as illustrated in Figure 4 includes strings such as sgtin, grai, and so on as 647
part of the EPC URI identifier. This is in contrast to GS1 Keys, where no such indication 648
is part of the key itself (instead, this is indicated outside of the key, such as in the XML 649
element name <grai> in the example in Figure 3, or in the Application Identifier (AI) 650
that accompanies a GS1 Key in a GS1 Element String). 651

4.3 Relationship Between EPCs and GS1 Keys 652
There is a well-defined relationship between EPCs and GS1 keys. For each GS1 key that 653
denotes an individual physical object (as opposed to a class), there is a corresponding 654
EPC. This correspondence is formally defined by conversion rules specified in Section 7, 655
which define how to map a GS1 key to the corresponding EPC value and vice versa. The 656
well-defined correspondence between GS1 keys and EPCs allows for seamless migration 657
of data between GS1 key and EPC contexts as necessary. 658

EPCs:
All physical objects

EPC = urn:epc:id:sgtin:0614141.012345.62852
(10cc Syringe #62852 – trade item)

EPC = urn:epc:id:grai:0614141.54321.2528
(Pharma Tote #2528 – reusable asset)

<EPCISDocument>
 <ObjectEvent>
 <epcList>

 <epc>urn:epc:id:sgtin:0614141.012345.62852</epc>
 <epc>urn:epc:id:grai:0614141.54321.2528</epc>
 …

Establishes the context as all physical objects

Therefore, any EPC could go here

http://www.autoidcenter.org/�

Copyright ©2005- 2010 EPCglobal®, All Rights Reserved. Page 24 of 210

 659
Figure 5. Illustration of Relationship of GS1 Key and EPC Identifier Namespaces 660

Not every GS1 key corresponds to an EPC, nor vice versa. Specifically: 661

• A Global Trade Identification Number (GTIN) by itself does not correspond to an 662
EPC, because a GTIN identifies a class of trade items, not an individual trade item. 663

GIAIs: All fixed assets

SSCCs: All logistics loads

EPCs: all physical
objects

GTINs: All trade item
classes (not individuals)

+ all serial numbers

GRAIs: All
reusable asset

classes and
individuals

+ all serial numbers

(Not shown: SGLN, GDTI, GSRN,
GID, and USDoD identifiers)

http://www.autoidcenter.org/�

Copyright ©2005- 2010 EPCglobal®, All Rights Reserved. Page 25 of 210

The combination of a GTIN and a unique serial number, however, does correspond to 664
an EPC. This combination is called a Serialized Global Trade Identification Number, 665
or SGTIN. The GS1 General Specifications do not define the SGTIN as a GS1 key. 666

• In the GS1 General Specifications, the Global Returnable Asset Identifier (GRAI) can 667
be used to identify either a class of returnable assets, or an individual returnable asset, 668
depending on whether the optional serial number is included. Only the form that 669
includes a serial number, and thus identifies an individual, has a corresponding EPC. 670
The same is true for the Global Document Type Identifier (GDTI). 671

• There is an EPC corresponding to each Global Location Number (GLN), and there is 672
also an EPC corresponding to each combination of a GLN with an extension 673
component. Collectively, these EPCs are referred to as Serialized Global Location 674
Numbers (SGLNs).1 675

• EPCs include identifiers for which there is no corresponding GS1 key. These include 676
the General Identifier and the US Department of Defense identifier. 677

The following table summarizes the EPC schemes defined in this specification and their 678
correspondence to GS1 Keys. 679

EPC Scheme Tag Encodings Corresponding GS1 Key Typical Use
sgtin sgtin-96

sgtin-198
GTIN key (plus added serial
number)

Trade item

sscc sscc-96 SSCC Pallet load or other
logistics unit load

sgln sgln-96
sgln-195

GLN key (with or without
additional extension)

Location

grai grai-96
grai-170

GRAI (serial number
mandatory)

Returnable/reusable
asset

giai giai-96
giai-202

GIAI Fixed asset

gdti gdti-96
gdti-113

GDTI (serial number
mandatory)

Document

gsrn gsrn-96 GSRN Service relation
(e.g., loyalty card)

gid gid-96 [none] Unspecified
dod dod-96 [none] US Dept of Defense

supply chain

Table 1. EPC Schemes and Corresponding GS1 Keys 680

1 The word “serialized” in this context is somewhat of a misnomer since a GLN without an extension also
identifies a unique location, as opposed to a class of locations. The SGLN is intended to extend the
capacity of the GLN. See [GS1GS10.0], Section 2.4.4, for limitations on use.

http://www.autoidcenter.org/�

Copyright ©2005- 2010 EPCglobal®, All Rights Reserved. Page 26 of 210

4.4 Use of the EPC in EPCglobal Architecture Framework 681
The EPCglobal Architecture Framework [EPCAF] is a collection of hardware, software, 682
and data standards, together with shared network services that can be operated by 683
EPCglobal, its delegates or third party providers in the marketplace, all in service of a 684
common goal of enhancing business flows and computer applications through the use of 685
Electronic Product Codes (EPCs). The EPCglobal Architecture Framework includes 686
software standards at various levels of abstraction, from low-level interfaces to RFID 687
reader devices all the way up to the business application level. 688
The EPC and related structures specified herein are intended for use at different levels 689
within the EPCglobal architecture framework. Specifically: 690

• Pure Identity EPC URI The primary representation of an Electronic Product Code is 691
as an Internet Uniform Resource Identifier (URI) called the Pure Identity EPC URI. 692
The Pure Identity EPC URI is the preferred way to denote a specific physical object 693
within business applications. The pure identity URI may also be used at the data 694
capture level when the EPC is to be read from an RFID tag or other data carrier, in a 695
situation where the additional “control” information present on an RFID tag is not 696
needed. 697

• EPC Tag URI The EPC memory bank of a Gen 2 RFID Tag contains the EPC plus 698
additional “control information” that is used to guide the process of data capture from 699
RFID tags. The EPC Tag URI is a URI string that denotes a specific EPC together 700
with specific settings for the control information found in the EPC memory bank. In 701
other words, the EPC Tag URI is a text equivalent of the entire EPC memory bank 702
contents. The EPC Tag URI is typically used at the data capture level when reading 703
from an RFID tag in a situation where the control information is of interest to the 704
capturing application. It is also used when writing the EPC memory bank of an RFID 705
tag, in order to fully specify the contents to be written. 706

• Binary Encoding The EPC memory bank of a Gen 2 RFID Tag actually contains a 707
compressed encoding of the EPC and additional “control information” in a compact 708
binary form. There is a 1-to-1 translation between EPC Tag URIs and the binary 709
contents of a Gen 2 RFID Tag. Normally, the binary encoding is only encountered at 710
a very low level of software or hardware, and is translated to the EPC Tag URI or 711
Pure Identity EPC URI form before being presented to application logic. 712

Note that the Pure Identity EPC URI is independent of RFID, while the EPC Tag URI 713
and the Binary Encoding are specific to Gen 2 RFID Tags because they include RFID-714
specific “control information” in addition to the unique EPC identifier. 715
The figure below illustrates where these structures normally occur in relation to the layers 716
of the EPCglobal Architecture Framework. 717

http://www.autoidcenter.org/�

Copyright ©2005- 2010 EPCglobal®, All Rights Reserved. Page 27 of 210

 718
Figure 6. EPCglobal Architecture Framework and EPC Structures Used at Each Level 719

5 Common Grammar Elements 720
The syntax of various URI forms defined herein is specified via BNF grammars. The 721
following grammar elements are used throughout this specification. 722
NumericComponent ::= ZeroComponent | NonZeroComponent 723
ZeroComponent ::= “0” 724
NonZeroComponent ::= NonZeroDigit Digit* 725
PaddedNumericComponent ::= Digit+ 726
PaddedNumericComponentOrEmpty ::= Digit* 727
Digit ::= “0” | NonZeroDigit 728

RFID
Reader

Business
Application

Data Capture
(RFID-

specific)

Business
Application

(RFID-
independent)

Filtering &
Collection

Capturing
Application

ALE

EPCIS

Reader Protocol
(LLRP)

Gen 2
RFID Tag

Pure Identity EPC URI
urn:epc:id:sgtin:0614141.112345.400

Pure Identity EPC URI (read only)
urn:epc:id:sgtin:0614141.112345.400

or

EPC Tag URI (read / write)
urn:epc:tag:sgtin-96:3.0614141.112345.400

Binary Encoding
00110000011101000…

Gen 2 Air Interface

Filtering &
Collection

RFID
Reader

“Smart reader”

Binary Encoding
00110000011101000…

Binary Encoding
00110000011101000…

http://www.autoidcenter.org/�

Copyright ©2005- 2010 EPCglobal®, All Rights Reserved. Page 28 of 210

NonZeroDigit ::= “1” | “2” | “3” | “4” 729
 | “5” | “6” | “7” | “8” | “9” 730
UpperAlpha ::= “A” | “B” | “C” | “D” | “E” | “F” | “G” 731
 | “H” | “I” | “J” | “K” | “L” | “M” | “N” 732
 | “O” | “P” | “Q” | “R” | “S” | “T” | “U” 733
 | “V” | “W” | “X” | “Y” | “Z” 734
LowerAlpha ::= “a” | “b” | “c” | “d” | “e” | “f” | “g” 735
 | “h” | “i” | “j” | “k” | “l” | “m” | “n” 736
 | “o” | “p” | “q” | “r” | “s” | “t” | “u” 737
 | “v” | “w” | “x” | “y” | “z” 738
OtherChar ::= “!” | “’” | “(“ | “)“ | “*” | “+” | “,” | “-“ 739
 | “.” | “:” | “;” | “=” | “_” 740
UpperHexChar ::= Digit | “A” | “B” | “C” | “D” | “E” | “F” 741
HexComponent ::= UpperHexChar+ 742
Escape ::= “%” HexChar HexChar 743
HexChar ::= UpperHexChar | “a” | “b” | “c” | “d” | “e” | 744
“f” 745
GS3A3Char ::= Digit | UpperAlpha | LowerAlpha | OtherChar 746
 | Escape 747
GS3A3Component ::= GS3A3Char+ 748

The syntactic construct GS3A3Component is used to represent fields of GS1 codes that 749
permit alphanumeric and other characters as specified in Figure 3A3-1 of the GS1 750
General Specifications (see Appendix F). Owing to restrictions on URN syntax as 751
defined by [RFC2141], not all characters permitted in the GS1 General Specifications 752
may be represented directly in a URN. Specifically, the characters “ (double quote), % 753
(percent), & (ampersand), / (forward slash), < (less than), > (greater than), and ? 754
(question mark) are permitted in the GS1 General Specifications but may not be included 755
directly in a URN. To represent one of these characters in a URN, escape notation must 756
be used in which the character is represented by a percent sign, followed by two 757
hexadecimal digits that give the ASCII character code for the character. 758

6 EPC URI 759
This section specifies the “pure identity URI” form of the EPC, or simply the “EPC 760
URI.” The EPC URI is the preferred way within an information system to denote a 761
specific physical object. 762
The EPC URI is a string having the following form: 763
urn:epc:id:scheme:component1.component2.… 764

where scheme names an EPC scheme, and component1, component2, and 765
following parts are the remainder of the EPC whose precise form depends on which EPC 766

http://www.autoidcenter.org/�

Copyright ©2005- 2010 EPCglobal®, All Rights Reserved. Page 29 of 210

scheme is used. The available EPC schemes are specified below in Table 2 in 767
Section 6.3. 768

An example of a specific EPC URI is the following, where the scheme is sgtin: 769
urn:epc:id:sgtin:0614141.112345.400 770

Each EPC scheme provides a namespace of identifiers that can be used to identify 771
physical objects of a particular type. Collectively, the EPC URIs from all schemes are 772
unique identifiers for any type of physical object. 773

6.1 Use of the EPC URI 774
The EPC URI is the preferred way within an information system to denote a specific 775
physical object. 776
The structure of the EPC URI guarantees worldwide uniqueness of the EPC across all 777
types of physical objects and applications. In order to preserve worldwide uniqueness, 778
each EPC URI must be used in its entirety when a unique identifier is called for, and not 779
broken into constituent parts nor the urn:epc:id: prefix abbreviated or dropped. 780

When asking the question “do these two data structures refer to the same physical 781
object?”, where each data structure uses an EPC URI to refer to a physical object, the 782
question may be answered simply by comparing the full EPC URI strings as specified in 783
[RFC3986], Section 6.2. In most cases, the “simple string comparison” method sufficies, 784
though if a URI contains percent-encoding triplets the hexadecimal digits may require 785
case normalization as described in [RFC3986], Section 6.2.2.1. The construction of the 786
EPC URI guarantees uniqueness across all categories of objects, provided that the URI is 787
used in its entirety. 788

In other situations, applications may wish to exploit the internal structure of an EPC URI 789
for purposes of filtering, selection, or distribution. For example, an application may wish 790
to query a database for all records pertaining to instances of a specific product identified 791
by a GTIN. This amounts to querying for all EPCs whose GS1 Company Prefix and item 792
reference components match a given value, disregarding the serial number component. 793
Another example is found in the Object Name Service (ONS) [ONS1.0.1], which uses the 794
first component of an EPC to delegate a query to a “local ONS” operated by an individual 795
company. This allows the ONS system to scale in a way that would be quite difficult if 796
all ONS records were stored in a flat database maintained by a single organization. 797

While the internal structure of the EPC may be exploited for filtering, selection, and 798
distribution as illustrated above, it is essential that the EPC URI be used in its entirety 799
when used as a unique identifier. 800

6.2 Assignment of EPCs to Physical Objects 801
The act of allocating a new EPC and associating it with a specific physical object is 802
called “commissioning.” It is the responsibility of applications and business processes 803
that commission EPCs to ensure that the same EPC is never assigned to two different 804
physical objects; that is, to ensure that commissioned EPCs are unique. Typically, 805
commissioning applications will make use of databases that record which EPCs have 806

http://www.autoidcenter.org/�

Copyright ©2005- 2010 EPCglobal®, All Rights Reserved. Page 30 of 210

already been commissioned and which are still available. For example, in an application 807
that commissions SGTINs by assigning serial numbers sequentially, such a database 808
might record the last serial number used for each base GTIN. 809
Because visibility data and other business data that refers to EPCs may continue to exist 810
long after a physical object ceases to exist, an EPC is ideally never reused to refer to a 811
different physical object, even if the reuse takes place after the original object ceases to 812
exist. There are certain situations, however, in which this is not possible; some of these 813
are noted below. Therefore, applications that process historical data using EPCs should 814
be prepared for the possibility that an EPC may be reused over time to refer to different 815
physical objects, unless the application is known to operate in an environment where such 816
reuse is prevented. 817
Seven of the EPC schemes specified herein correspond to GS1 keys, and so EPCs from 818
those schemes are used to identify physical objects that have a corresponding GS1 key. 819
When assigning these types of EPCs to physical objects, all relevant GS1 rules must be 820
followed in addition to the rules specified herein. This includes the GS1 General 821
Specifications [GS1GS10.0], the GTIN Allocation Rules, and so on. In particular, an 822
EPC of this kind may only be commissioned by the licensee of the GS1 Company Prefix 823
that is part of the EPC, or has been delegated the authority to do so by the GS1 Company 824
Prefix licensee. 825

6.3 EPC URI Syntax 826
This section specifies the syntax of an EPC URI. 827
The formal grammar for the EPC URI is as follows: 828
EPC-URI ::= SGTIN-URI | SSCC-URI | SGLN-URI 829
 | GRAI-URI | GIAI-URI | GSRN-URI | GDTI-URI 830
 | GID-URI | EPCGID-URI | DOD-URI 831

where the various alternatives on the right hand side are specified in the sections that 832
follow. 833

Each EPC URI scheme is specified in one of the following subsections, as follows: 834

EPC Scheme Specified In Corresponding GS1 Key Typical Use
sgtin Section 6.3.1 GTIN (with added serial

number)
Trade item

sscc Section 6.3.2 SSCC Logistics unit

sgln Section 6.3.3 GLN (with or without
additional extension)

Location2

2 While GLNs may be used to identify both locations and parties, the SGLN corresponds only to AI 414,
which [GS1GS10.0] specifies is to be used to identify locations, and not parties.

http://www.autoidcenter.org/�

Copyright ©2005- 2010 EPCglobal®, All Rights Reserved. Page 31 of 210

EPC Scheme Specified In Corresponding GS1 Key Typical Use
grai Section 6.3.4 GRAI (serial number

mandatory)
Returnable asset

giai Section 6.3.5 GIAI Fixed asset

gdti Section 6.3.6 GDTI (serial number
mandatory)

Document

gsrn Section 6.3.7 GSRN Service relation
(e.g., loyalty card)

gid Section 6.3.8 [none] Unspecified
usdod Section 6.3.9 [none] US Dept of Defense

supply chain

Table 2. EPC Schemes and Where the Pure Identity Form is Defined 835

6.3.1 Serialized Global Trade Item Number (SGTIN) 836
The Serialized Global Trade Item Number EPC scheme is used to assign a unique 837
identity to an instance of a trade item, such as a specific instance of a product or SKU. 838

General syntax: 839
urn:epc:id:sgtin:CompanyPrefix.ItemReference.SerialNumber 840

Example: 841
urn:epc:id:sgtin:0614141.112345.400 842

Grammar: 843
SGTIN-URI ::= “urn:epc:id:sgtin:” SGTINURIBody 844
SGTINURIBody ::= 2*(PaddedNumericComponent “.”) 845
GS3A3Component 846

The number of characters in the two PaddedNumericComponent fields must total 13 847
(not including any of the dot characters). 848

The Serial Number field of the SGTIN-URI is expressed as a GS3A3Component, 849
which permits the representation of all characters permitted in the Application Identifier 850
21 Serial Number according to the GS1 General Specifications.3 SGTIN-URIs that are 851
derived from 96-bit tag encodings, however, will have Serial Numbers that consist only 852
of digits and which have no leading zeros (unless the entire serial number consists of a 853
single zero digit). These limitations are described in the encoding procedures, and in 854
Section 12.3.1. 855

3 As specified in Section 7.1, the serial number in the SGTIN is currently defined to be equivalent to AI 21
in the GS1 General Specifications. This equivalence is currently under discussion within GS1, and may be
revised in future versions of the EPC Tag Data Standard.

http://www.autoidcenter.org/�

Copyright ©2005- 2010 EPCglobal®, All Rights Reserved. Page 32 of 210

The SGTIN consists of the following elements: 856

• The GS1 Company Prefix, assigned by GS1 to a managing entity or its delegates. 857
This is the same as the GS1 Company Prefix digits within a GS1 GTIN key. See 858
Section 7.1.2 for the case of a GTIN-8. 859

• The Item Reference, assigned by the managing entity to a particular object class. The 860
Item Reference as it appears in the EPC URI is derived from the GTIN by 861
concatenating the Indicator Digit of the GTIN (or a zero pad character, if the EPC 862
URI is derived from a GTIN-8, GTIN-12, or GTIN-13) and the Item Reference digits, 863
and treating the result as a single numeric string. See Section 7.1.2 for the case of a 864
GTIN-8. 865

• The Serial Number, assigned by the managing entity to an individual object. The 866
serial number is not part of the GTIN, but is formally a part of the SGTIN. 867

6.3.2 Serial Shipping Container Code (SSCC) 868
The Serial Shipping Container Code EPC scheme is used to assign a unique identity to a 869
logistics handling unit, such as a the aggregate contents of a shipping container or a pallet 870
load. 871

General syntax: 872
urn:epc:id:sscc:CompanyPrefix.SerialReference 873

Example: 874
urn:epc:id:sscc:0614141.1234567890 875

Grammar: 876
SSCC-URI ::= “urn:epc:id:sscc:” SSCCURIBody 877
SSCCURIBody ::= PaddedNumericComponent “.” 878
PaddedNumericComponent 879

The number of characters in the two PaddedNumericComponent fields must total 17 880
(not including any of the dot characters). 881

The SSCC consists of the following elements: 882

• The GS1 Company Prefix, assigned by GS1 to a managing entity. This is the same as 883
the GS1 Company Prefix digits within a GS1 SSCC key. 884

• The Serial Reference, assigned by the managing entity to a particular logistics 885
handling unit. The Serial Reference as it appears in the EPC URI is derived from the 886
SSCC by concatenating the Extension Digit of the SSCC and the Serial Reference 887
digits, and treating the result as a single numeric string. 888

6.3.3 Serialized Global Location Number (SGLN) 889
The Serialized Global Location Number EPC scheme is used to assign a unique identity 890
to a physical location, such as a specific building or a specific unit of shelving within a 891
warehouse. 892

http://www.autoidcenter.org/�

Copyright ©2005- 2010 EPCglobal®, All Rights Reserved. Page 33 of 210

General syntax: 893
urn:epc:id:sgln:CompanyPrefix.LocationReference.Extension 894

Example: 895
urn:epc:id:sgln:0614141.12345.400 896

Grammar: 897
SGLN-URI ::= “urn:epc:id:sgln:” SGLNURIBody 898
SGLNURIBody ::= PaddedNumericComponent “.” 899
PaddedNumericComponentOrEmpty “.” GS3A3Component 900

The number of characters in the two PaddedNumericComponent fields must total 12 901
(not including any of the dot characters). 902

The Extension field of the SGLN-URI is expressed as a GS3A3Component, which 903
permits the representation of all characters permitted in the Application Identifier 254 904
Extension according to the GS1 General Specifications. SGLN-URIs that are derived 905
from 96-bit tag encodings, however, will have Extensions that consist only of digits and 906
which have no leading zeros (unless the entire extension consists of a single zero digit). 907
These limitations are described in the encoding procedures, and in Section 12.3.1. 908
The SGLN consists of the following elements: 909

• The GS1 Company Prefix, assigned by GS1 to a managing entity. This is the same as 910
the GS1 Company Prefix digits within a GS1 GLN key. 911

• The Location Reference, assigned uniquely by the managing entity to a specific 912
physical location. 913

• The GLN Extension, assigned by the managing entity to an individual unique 914
location. If the entire GLN Extension is just a single zero digit, it indicates that the 915
SGLN stands for a GLN, without an extension. 916

6.3.4 Global Returnable Asset Identifier (GRAI) 917
The Global Returnable Asset Identifier EPC scheme is used to assign a unique identity to 918
a specific returnable asset, such as a reusable shipping container or a pallet skid. 919
General syntax: 920
urn:epc:id:grai:CompanyPrefix.AssetType.SerialNumber 921

Example: 922
urn:epc:id:grai:0614141.12345.400 923

Grammar: 924
GRAI-URI ::= “urn:epc:id:grai:” GRAIURIBody 925
GRAIURIBody ::= PaddedNumericComponent “.” 926
PaddedNumericComponentOrEmpty “.” GS3A3Component 927

http://www.autoidcenter.org/�

Copyright ©2005- 2010 EPCglobal®, All Rights Reserved. Page 34 of 210

The number of characters in the two PaddedNumericComponent fields must total 12 928
(not including any of the dot characters). 929

The Serial Number field of the GRAI-URI is expressed as a GS3A3Component, which 930
permits the representation of all characters permitted in the Serial Number according to 931
the GS1 General Specifications. GRAI-URIs that are derived from 96-bit tag encodings, 932
however, will have Serial Numbers that consist only of digits and which have no leading 933
zeros (unless the entire serial number consists of a single zero digit). These limitations 934
are described in the encoding procedures, and in Section 12.3.1. 935
The GRAI consists of the following elements: 936

• The GS1 Company Prefix, assigned by GS1 to a managing entity. This is the same as 937
the GS1 Company Prefix digits within a GS1 GRAI key. 938

• The Asset Type, assigned by the managing entity to a particular class of asset. 939

• The Serial Number, assigned by the managing entity to an individual object. Because 940
an EPC always refers to a specific physical object rather than an asset class, the serial 941
number is mandatory in the GRAI-EPC. 942

6.3.5 Global Individual Asset Identifier (GIAI) 943
The Global Individual Asset Identifier EPC scheme is used to assign a unique identity to 944
a specific asset, such as a forklift or a computer. 945
General syntax: 946
urn:epc:id:giai:CompanyPrefix.IndividulAssetReference 947

Example: 948
urn:epc:id:giai:0614141.12345400 949

Grammar: 950
GIAI-URI ::= “urn:epc:id:giai:” GIAIURIBody 951
GIAIURIBody ::= PaddedNumericComponent “.” GS3A3Component 952

The Individual Asset Reference field of the GIAI-URI is expressed as a 953
GS3A3Component, which permits the representation of all characters permitted in the 954
Serial Number according to the GS1 General Specifications. GIAI-URIs that are derived 955
from 96-bit tag encodings, however, will have Serial Numbers that consist only of digits 956
and which have no leading zeros (unless the entire serial number consists of a single zero 957
digit). These limitations are described in the encoding procedures, and in Section 12.3.1. 958
The GIAI consists of the following elements: 959

• The GS1 Company Prefix, assigned by GS1 to a managing entity. The Company 960
Prefix is the same as the GS1 Company Prefix digits within a GS1 GIAI key. 961

• The Individual Asset Reference, assigned uniquely by the managing entity to a 962
specific asset. 963

http://www.autoidcenter.org/�

Copyright ©2005- 2010 EPCglobal®, All Rights Reserved. Page 35 of 210

6.3.6 Global Service Relation Number (GSRN) 964
The Global Service Relation Number EPC scheme is used to assign a unique identity to a 965
service relation. 966

General syntax: 967
urn:epc:id:gsrn:CompanyPrefix.ServiceReference 968

Example: 969
urn:epc:id:gsrn:0614141.1234567890 970

Grammar: 971
GSRN-URI ::= “urn:epc:id:gsrn:” GSRNURIBody 972
GSRNURIBody ::= PaddedNumericComponent “.” 973
PaddedNumericComponent 974

The number of characters in the two PaddedNumericComponent fields must total 17 975
(not including any of the dot characters). 976
The GSRN consists of the following elements: 977

• The GS1 Company Prefix, assigned by GS1 to a managing entity. This is the same as 978
the GS1 Company Prefix digits within a GS1 GSRN key. 979

• The Service Reference, assigned by the managing entity to a particular service 980
relation. 981

6.3.7 Global Document Type Identifier (GDTI) 982
The Global Document Type Identifier EPC scheme is used to assign a unique identity to 983
a specific document, such as land registration papers, an insurance policy, and others. 984

General syntax: 985
urn:epc:id:gdti:CompanyPrefix.DocumentType.SerialNumber 986

Example: 987
urn:epc:id:gdti:0614141.12345.400 988

Grammar: 989
GDTI-URI ::= “urn:epc:id:gdti:” GDTIURIBody 990
GDTIURIBody ::= PaddedNumericComponent “.” 991
PaddedNumericComponentOrEmpty “.” PaddedNumericComponent 992

The number of characters in the two PaddedNumericComponent fields must total 12 993
(not including any of the dot characters). 994

The Serial Number field of the GDTI-URI is expressed as a NumericComponent, 995
which permits the representation of all characters permitted in the Serial Number 996
according to the GS1 General Specifications. GDTI-URIs that are derived from 96-bit 997
tag encodings, however, will have Serial Numbers that have no leading zeros (unless the 998

http://www.autoidcenter.org/�

Copyright ©2005- 2010 EPCglobal®, All Rights Reserved. Page 36 of 210

entire serial number consists of a single zero digit). These limitations are described in the 999
encoding procedures, and in Section 12.3.1. 1000

The GDTI consists of the following elements: 1001

• The GS1 Company Prefix, assigned by GS1 to a managing entity. This is the same as 1002
the GS1 Company Prefix digits within a GS1 GDTI key. 1003

• The Document Type, assigned by the managing entity to a particular class of 1004
document. 1005

• The Serial Number, assigned by the managing entity to an individual document. 1006
Because an EPC always refers to a specific document rather than a document class, 1007
the serial number is mandatory in the GDTI-EPC. 1008

6.3.8 General Identifier (GID) 1009
The General Identifier EPC scheme is independent of any specifications or identity 1010
scheme outside the EPCglobal Tag Data Standard. 1011
General syntax: 1012
urn:epc:id:gid:ManagerNumber.ObjectClass.SerialNumber 1013

Example: 1014
urn:epc:id:gid:95100000.12345.400 1015

Grammar: 1016
GID-URI ::= “urn:epc:id:gid:” GIDURIBody 1017
GIDURIBody ::= 2*(NumericComponent “.”) NumericComponent 1018

The GID consists of the following elements: 1019

• The General Manager Number identifies an organizational entity (essentially a 1020
company, manager or other organization) that is responsible for maintaining the 1021
numbers in subsequent fields – Object Class and Serial Number. EPCglobal assigns 1022
the General Manager Number to an entity, and ensures that each General Manager 1023
Number is unique. Note that a General Manager Number is not a GS1 Company 1024
Prefix. A General Manager Number may only be used in GID EPCs. 1025

• The Object Class is used by an EPC managing entity to identify a class or “type” of 1026
thing. These object class numbers, of course, must be unique within each General 1027
Manager Number domain. 1028

• Finally, the Serial Number code, or serial number, is unique within each object class. 1029
In other words, the managing entity is responsible for assigning unique, non-repeating 1030
serial numbers for every instance within each object class. 1031

6.3.9 US Department of Defense Identifier (DOD) 1032
The US Department of Defense identifier is defined by the United States Department of 1033
Defense. This tag data construct may be used to encode 96-bit Class 1 tags for shipping 1034

http://www.autoidcenter.org/�

Copyright ©2005- 2010 EPCglobal®, All Rights Reserved. Page 37 of 210

goods to the United States Department of Defense by a supplier who has already been 1035
assigned a CAGE (Commercial and Government Entity) code. 1036

At the time of this writing, the details of what information to encode into these fields is 1037
explained in a document titled "United States Department of Defense Supplier's Passive 1038
RFID Information Guide" that can be obtained at the United States Department of 1039
Defense's web site (http://www.dodrfid.org/supplierguide.htm). 1040

Note that the DoD Guide explicitly recognizes the value of cross-branch, globally 1041
applicable standards, advising that “suppliers that are EPCglobal subscribers and possess 1042
a unique [GS1] Company Prefix may use any of the identity types and encoding 1043
instructions described in the EPC™ Tag Data Standards document to encode tags.” 1044

General syntax: 1045
urn:epc:id:usdod:CAGEOrDODAAC.SerialNumber 1046

Example: 1047
urn:epc:id:usdod:2S194.12345678901 1048

Grammar: 1049
DOD-URI ::= “urn:epc:id:usdod:” DODURIBody 1050
DODURIBody ::= CAGECodeOrDODAAC “.” DoDSerialNumber 1051
CAGECodeOrDODAAC ::= CAGECode | DODAAC 1052
CAGECode ::= CAGECodeOrDODAACChar*5 1053
DODAAC ::= CAGECodeOrDODAACChar*6 1054
DoDSerialNumber ::= NumericComponent 1055
CAGECodeOrDODAACChar ::= Digit | “A” | “B” | “C” | “D” | 1056
“E” | “F” | “G” | “H” | “J” | “K” | “L” | “M” | “N” | “P” | 1057
“Q” | “R” | “S” | “T” | “U” | “V” | “W” | “X” | “Y” | “Z” 1058

7 Correspondence Between EPCs and GS1 Keys 1059
As discussed in Section 4.3, there is a well-defined releationship between Electronic 1060
Product Codes (EPCs) and seven keys defined in the GS1 General Specifications 1061
[GS1GS10.0]. This section specifies the correspondence between EPCs and GS1 keys. 1062
The correspondence between EPCs and GS1 keys relies on identifying the portion of a 1063
GS1 key that is the GS1 Company Prefix. The GS1 Company Prefix is a 6- to 11-digit 1064
number assigned by a GS1 Member Organization to a managing entity, and the managing 1065
entity is free to create GS1 keys using that GS1 Company Prefix. 1066
In some instances, a GS1 Member Organization assigns a “one off” GS1 key, such as a 1067
complete GTIN, GLN, or other key, to a subscribing organization. In such cases, the 1068
GS1 Member Organization holds the GS1 Company Prefix, and therefore is responsible 1069
for identifying the number of digits that are to occupy the GS1 Company Prefix position 1070
within the EPC. The organization receiving the one-off key should consult with its GS1 1071
Member Organization to determine the appropriate number of digits to ascribe to the 1072

http://www.autoidcenter.org/�
http://www.dodrfid.org/supplierguide.htm�

Copyright ©2005- 2010 EPCglobal®, All Rights Reserved. Page 38 of 210

Company Prefix portion when constructing a corresponding EPC. In particular, a 1073
subscribing organization must not assume that the entire one-off key will occupy the 1074
Company Prefix digits of the EPC, unless specifically instructed by the GS1 Member 1075
Organization issuing the key. Moreover, a subscribing organization must not use the 1076
digits comprising a particular one-off key to construct any other kind of GS1 Key. For 1077
example, if a subscribing organization is issued a one-off GLN, it must not create SSCCs 1078
using the 12 digits of the one-off GLN as though it were a 12-digit GS1 Company Prefix. 1079
When derived from GS1 Keys, the “first component of an EPC” is usually, but not 1080
always (e.g., GTIN-8, One-Off Key), a GS1 Company prefix. The GTIN-8 requires 1081
special treatment; see Section 7.1.2 for how an EPC is constructed from a GTIN-8. As 1082
stated above, the One-Off Key may or may not be used in its entirety as the first 1083
component of an EPC. 1084

7.1 Serialized Global Trade Item Number (SGTIN) 1085
The SGTIN EPC (Section 6.3.1) does not correspond directly to any GS1 key, but instead 1086
corresponds to a combination of a GTIN key plus a serial number. The serial number in 1087
the SGTIN is defined to be equivalent to AI 21 in the GS1 General Specifications. 1088
The correspondence between the SGTIN EPC URI and a GS1 element string consisting 1089
of a GTIN key (AI 01) and a serial number (AI 21) is depicted graphically below: 1090

 1091
Figure 7. Correspondence between SGTIN EPC URI and GS1 Element String 1092

(Note that in the case of a GTIN-12 or GTIN-13, a zero pad character takes the place of 1093
the Indicator Digit in the figure above.) 1094

Formally, the correspondence is defined as follows. Let the EPC URI and the GS1 1095
element string be written as follows: 1096

EPC URI: urn:epc:id:sgtin:d2d3…d(L+1).d1d(L+2)d(L+3)…d13.s1s2…sK 1097

GS1 Element String: (01)d1d2…d14 (21)s1s2…sK 1098

where 1 ≤ K ≤ 20. 1099

EPC
URI

GS1
Element
String

urn:epc:id:sgtin:
Company

Prefix
Item
Ref

Indi-
cator

Serial
Number

Company
Prefix

Indi-
cator

Item
Ref

Check
Digit

Serial
Number (21) (01)

Σ

http://www.autoidcenter.org/�

Copyright ©2005- 2010 EPCglobal®, All Rights Reserved. Page 39 of 210

To find the GS1 element string corresponding to an SGTIN EPC URI: 1100
1. Number the digits of the first two components of the EPC as shown above. Note that 1101

there will always be a total of 13 digits. 1102
2. Number the characters of the serial number (third) component of the EPC as shown 1103

above. Each si corresponds to either a single character or to a percent-escape triplet 1104
consisting of a % character followed by two hexadecimal digit characters. 1105

3. Calculate the check digit d14 = (10 – ((3(d1 + d3 + d5 + d7 + d9 + d11 + d13) + (d2 + d4 + 1106
d6 + d8 + d10 + d12)) mod 10)) mod 10. 1107

4. Arrange the resulting digits and characters as shown for the GS1 Element String. If 1108
any si in the EPC URI is a percent-escape triplet %xx, in the GS1 Element String 1109
replace the triplet with the corresponding character according to Table 46 (Appendix 1110
A). (For a given percent-escape triplet %xx, find the row of Table 46 that contains 1111
xx in the “Hex Value” column; the “Graphic Symbol” column then gives the 1112
corresponding character to use in the GS1 Element String.) 1113

To find the EPC URI corresponding to a GS1 element string that includes both a GTIN 1114
(AI 01) and a serial number (AI 21): 1115

1. Number the digits and characters of the GS1 element string as shown above. 1116
2. Except for a GTIN-8, determine the number of digits L in the GS1 Company Prefix. 1117

This may be done, for example, by reference to an external table of company 1118
prefixes. See Section 7.1.2 for the case of a GTIN-8. 1119

3. Arrange the digits as shown for the EPC URI. Note that the GTIN check digit d14 is 1120
not included in the EPC URI. For each serial number character si, replace it with the 1121
corresponding value in the “URI Form” column of Table 46 (Appendix A) – either 1122
the character itself or a percent-escape triplet if si is not a legal URI character. 1123

Example: 1124

EPC URI: urn:epc:id:sgtin:0614141.712345.32a%2Fb 1125

GS1 element string: (01) 7 0614141 12345 1 (21) 32a/b 1126

Spaces have been added to the GS1 element string for clarity, but they are not normally 1127
present. In this example, the slash (/) character in the serial number must be represented 1128
as an escape triplet in the EPC URI. 1129

7.1.1 GTIN-12 and GTIN-13 1130
To find the EPC URI corresponding to the combination of a GTIN-12 or GTIN-13 and a 1131
serial number, first convert the GTIN-12 or GTIN-13 to a 14-digit number by adding two 1132
or one leading zero characters, respectively, as shown in [GS1GS10.0] Section 3.3.2. 1133

Example: 1134
GTIN-12: 614141 12345 2 1135

Corresponding 14-digit number: 0 0614141 12345 2 1136

http://www.autoidcenter.org/�

Copyright ©2005- 2010 EPCglobal®, All Rights Reserved. Page 40 of 210

Corresponding SGTIN-EPC: urn:epc:id:sgtin:0614141.012345.Serial 1137

Example: 1138
GTIN-13: 0614141 12345 2 1139

Corresponding 14-digit number: 0 0614141 12345 2 1140

Corresponding SGTIN-EPC: urn:epc:id:sgtin:0614141.012345.Serial 1141

In these examples, spaces have been added to the GTIN strings for clarity, but are never 1142
encoded. 1143

7.1.2 GTIN-8 and RCN-8 1144
A GTIN-8 is a special case of the GTIN that is used to identify small trade items. 1145

The GTIN-8 code consists of eight digits N1, N2…N8, where the first digits N1 to NLare 1146
the GS1-8 Prefix (where L = 1, 2, or 3), the next digits NL+1 to N7 are the Item Reference, 1147
and the last digit N8 is the check digit. The GS1-8 Prefix is a one-, two-, or three-digit 1148
index number, administered by the GS1 Global Office. It does not identify the origin of 1149
the item. The Item Reference is assigned by the GS1 Member Organisation. The GS1 1150
Member Organisations provide procedures for obtaining GTIN-8s. 1151

To find the EPC URI corresponding to the combination of a GTIN-8 and a serial number, 1152
the following procedure SHALL be used. For the purpose of the procedure defined 1153
above in Section 7.1, the GS1 Company Prefix portion of the EPC shall be constructed by 1154
prepending five zeros to the first three digits of the GTIN-8; that is, the GS1 Company 1155
Prefix portion of the EPC is eight digits and shall be 00000N1N2N3. The Item Reference 1156
for the procedure shall be the remaining GTIN-8 digits apart from the check digit, that is, 1157
N4 to N7. The Indicator Digit for the procedure shall be zero. 1158
Example: 1159

GTIN-8: 95010939 1160

Corresponding SGTIN-EPC: urn:epc:id:sgtin:00000950.01093.Serial 1161

An RCN-8 is an 8-digit code beginning with GS1-8 Prefixes 0 or 2, as defined in 1162
[GS1GS10.0] Section 2.1.6.1. These are reserved for company internal numbering, and 1163
are not GTIN-8s. Such codes SHALL NOT be used to construct SGTIN EPCs, and the 1164
above procedure does not apply. 1165

7.1.3 Company Internal Numbering (GS1 Prefixes 04 and 0001 – 1166
0007) 1167

The GS1 General Specifications reserve codes beginning with either 04 or 0001 through 1168
0007 for company internal numbering. (See [GS1GS10.0], Sections 2.1.6.2 and 2.1.6.3.) 1169

These numbers SHALL NOT be used to construct SGTIN EPCs. A future version of the 1170
EPCglobal Tag Data Standard may specify normative rules for using Company Internal 1171
Numbering codes in EPCs. 1172

http://www.autoidcenter.org/�

Copyright ©2005- 2010 EPCglobal®, All Rights Reserved. Page 41 of 210

7.1.4 Restricted Circulation (GS1 Prefixes 02 and 20 – 29) 1173
The GS1 General Specifications reserve codes beginning with either 02 or 20 through 29 1174
for restricted circulation for geopolitical areas defined by GS1 member organizations and 1175
for variable measure trade items. (See [GS1GS10.0], Sections 2.1.6.4 and 2.1.7.) 1176
These numbers SHALL NOT be used to construct SGTIN EPCs. A future version of the 1177
EPCglobal Tag Data Standard may specify normative rules for using Restricted 1178
Circulation codes in EPCs. 1179

7.1.5 Coupon Code Identification for Restricted Distribution 1180
(GS1 Prefixes 05, 99, 981, and 982) 1181

Coupons may be identified by constructing codes according to Sections 2.6.3, 2.6.4, and 1182
2.6.5 of the GS1 General Specifications. The resulting numbers begin with GS1 Prefixes 1183
05, 99, 981, or 982. Strictly speaking, however, a coupon is not a trade item, and these 1184
coupon codes are not actually trade item identification numbers. 1185
Therefore, coupon codes SHALL NOT be used to construct SGTIN EPCs. 1186

7.1.6 Refund Receipt (GS1 Prefix 980) 1187
Section 2.6.8 of the GS1 General Specification specifies the construction of codes to 1188
represent refund receipts, such as those created by bottle recycling machines for 1189
redemption at point-of-sale. The resulting number begins with GS1 Prefix 980. Strictly 1190
speaking, however, a refund receipt is not a trade item, and these refund receipt codes are 1191
not actually trade item identification numbers. 1192

Therefore, refund receipt codes SHALL NOT be used to construct SGTIN EPCs. 1193

7.1.7 ISBN, ISMN, and ISSN (GS1 Prefixes 977, 978, or 979) 1194
The GS1 General Specifications provide for the use of a 13-digit identifier to represent 1195
International Standard Book Number, International Standard Music Number, and 1196
International Standard Serial Number codes. The resulting code looks like a GTIN 1197
whose GS1 Prefix is 977, 978, or 979. 1198

A study group has been established by GS1 with the book industry. That group will 1199
determine end user requirements for the usage of ISBN, ISMN and ISSN in EPCs. 1200
Therefore, such numbers SHALL NOT be used to construct SGTIN EPCs at this time. A 1201
future version of the EPCglobal Tag Data Standard will specify normative rules for using 1202
ISBN, ISMN and ISSN codes in SGTIN EPCs. 1203
Explanation (non-normative): ISBN, ISMN, and ISSN codes are used for books, printed 1204
music, and periodical publications, respectively. The codes are defined by ISO and 1205
administered by the International ISBN Agency and affiliated national registration 1206
agencies. ISSN is a separate organization (http://www.issn.org/) and ISMN also 1207
(http://www.ismn-international.org/). While ISBN and ISMN codes are assigned outside 1208
the GS1 System, they may be represented as GTINs by prefixing the ISBN or ISMN code 1209
with 978 or 979. Because they are assigned outside the GS1 System it is not clear how to 1210
apply the SGTIN EPC encoding rules. 1211

http://www.autoidcenter.org/�
http://www.issn.org/�
http://www.ismn-international.org/�

Copyright ©2005- 2010 EPCglobal®, All Rights Reserved. Page 42 of 210

While these codes are not assigned by GS1, they have a very similar internal structure 1212
that readily lends itself to similar treatment when creating EPCs. An ISBN code consists 1213
of the following parts, shown below with the corresponding concept from the GS1 system: 1214
 Registrant Group Element = GS1 Prefix (978 or 979 plus more digits) 1215

 Registrant Element = Remainder of GS1 Company Prefix 1216
 Publication Element = Item Reference 1217

 Check Digit = Check Digit 1218
The Registrant Group Elements are assigned to ISBN registration agencies, who in turn 1219
assign Registrant Elements to publishers, who in turn assign Publication Elements to 1220
individual publication editions. This exactly parallels the construction of GTIN codes. 1221
As in GTIN, the various components are of variable length, and as in GTIN, each 1222
publisher knows the combined length of the Registrant Group Element and Registrant 1223
Element, as the combination is assigned to the publisher. Happily, the total length of the 1224
“978” or “979” prefix, the Registrant Group Element, and the Registrant Element is in 1225
the range of 6 to 12 digits, which is exactly the range of company prefix lengths permitted 1226
in the SGTIN EPC. This suggests a natural way of handing ISBN codes. In The 1227
Netherlands there is now a pilot were they use partition value ‘0’ to handle this. There 1228
are also some other rules for handling ISBN’s. For example an ISBN stays with the 1229
combination Author Title, even when the Author changes Publisher. 1230
A study group has been established by GS1 with the book industry. That group will 1231
determine end user requirements for the usage of ISBN, ISMN and ISSN in tags. The 1232
result may be to adopt a scheme as suggested by the above considerations. 1233

7.2 Serial Shipping Container Code (SSCC) 1234
The SSCC EPC (Section 6.3.2) corresponds directly to the SSCC key defined in 1235
Sections 2.2.1 and 3.3.1 of the GS1 General Specifications [GS1GS10.0]. 1236
The correspondence between the SSCC EPC URI and a GS1 element string consisting of 1237
an SSCC key (AI 00) is depicted graphically below: 1238

 1239

EPC
URI

GS1
Element
String

urn:epc:id:sscc:
Company

Prefix
Serial
Ref

Exten-
sion

Company
Prefix

Exten-
sion

Serial
Ref

Check
Digit (00)

Σ

http://www.autoidcenter.org/�

Copyright ©2005- 2010 EPCglobal®, All Rights Reserved. Page 43 of 210

Figure 8. Correspondence between SSCC EPC URI and GS1 Element String 1240
Formally, the correspondence is defined as follows. Let the EPC URI and the GS1 1241
element string be written as follows: 1242

EPC URI: urn:epc:id:sscc:d2d3…d(L+1).d1d(L+2)d(L+3)…d17 1243

GS1 Element String: (00)d1d2…d18 1244

To find the GS1 element string corresponding to an SSCC EPC URI: 1245

1. Number the digits of the two components of the EPC as shown above. Note that 1246
there will always be a total of 17 digits. 1247

2. Calculate the check digit d18 = (10 – ((3(d1 + d3 + d5 + d7 + d9 + d11 + d13
 + d15 + d17) 1248

+ (d2 + d4 + d6 + d8 + d10 + d12 + d14 + d16)) mod 10)) mod 10. 1249

3. Arrange the resulting digits and characters as shown for the GS1 Element String. 1250
To find the EPC URI corresponding to a GS1 element string that includes an SSCC 1251
(AI 00): 1252
1. Number the digits and characters of the GS1 element string as shown above. 1253

2. Determine the number of digits L in the GS1 Company Prefix. This may be done, for 1254
example, by reference to an external table of company prefixes. 1255

3. Arrange the digits as shown for the EPC URI. Note that the SSCC check digit d18 is 1256
not included in the EPC URI. 1257

Example: 1258

EPC URI: urn:epc:id:sscc:0614141.1234567890 1259

GS1 element string: (00) 1 0614141 234567890 8 1260

Spaces have been added to the GS1 element string for clarity, but they are never encoded. 1261

7.3 Serialized Global Location Number (SGLN) 1262
The SGLN EPC (Section 6.3.3) corresponds either directly to a Global Location Number 1263
key (GLN) as specified in Sections 2.4.4 and 3.7.9 of the GS1 General Specifications 1264
[GS1GS10.0], or to the combination of a GLN key plus an extension number as specified 1265
in Section 3.5.10 of [GS1GS10.0]. An extension number of zero is reserved to indicate 1266
that an SGLN EPC denotes an unextended GLN, rather than a GLN plus extension. 1267

The correspondence between the SGLN EPC URI and a GS1 element string consisting of 1268
a GLN key (AI 414) without an extension is depicted graphically below: 1269

http://www.autoidcenter.org/�

Copyright ©2005- 2010 EPCglobal®, All Rights Reserved. Page 44 of 210

 1270
Figure 9. Correspondence between SGLN EPC URI without extension and GS1 Element String 1271

The correspondence between the SGLN EPC URI and a GS1 element string consisting of 1272
a GLN key (AI 414) together with an extension (AI 254) is depicted graphically below: 1273

 1274
Figure 10. Correspondence between SGLN EPC URI with extension and GS1 Element String 1275

Formally, the correspondence is defined as follows. Let the EPC URI and the GS1 1276
element string be written as follows: 1277

EPC URI: urn:epc:id:sgln:d1d2…dL.d(L+1)d(L+2)…d12.s1s2…sK 1278

GS1 Element String: (414)d1d2…d13 (254)s1s2…sK 1279

To find the GS1 element string corresponding to an SGLN EPC URI: 1280
1. Number the digits of the first two components of the EPC as shown above. Note that 1281

there will always be a total of 12 digits. 1282
2. Number the characters of the serial number (third) component of the EPC as shown 1283

above. Each si corresponds to either a single character or to a percent-escape triplet 1284
consisting of a % character followed by two hexadecimal digit characters. 1285

EPC
URI

GS1
Element
String

urn:epc:id:sgln:
Company

Prefix
Location

Ref

Company
Prefix

Location
Ref

Check
Digit (414)

Σ

0

EPC
URI

GS1
Element
String

urn:epc:id:sgln:
Company

Prefix
Location

Ref
Extension

Company
Prefix

Location
Ref

Check
Digit

Extension
(254) (414)

Σ

http://www.autoidcenter.org/�

Copyright ©2005- 2010 EPCglobal®, All Rights Reserved. Page 45 of 210

3. Calculate the check digit d13 = (10 – ((3(d2 + d4 + d6 + d8 + d10 + d12) + (d1+ d3 + d5 + 1286
d7 + d9 + d11)) mod 10)) mod 10. 1287

4. Arrange the resulting digits and characters as shown for the GS1 Element String. If 1288
any si in the EPC URI is a percent-escape triplet %xx, in the GS1 Element String 1289
replace the triplet with the corresponding character according to Table 46 (Appendix 1290
A). (For a given percent-escape triplet %xx, find the row of Table 46 that contains 1291
xx in the “Hex Value” column; the “Graphic Symbol” column then gives the 1292
corresponding character to use in the GS1 Element String.). If the serial number 1293
consists of a single character s1 and that character is the digit zero (‘0’), omit the 1294
extension from the GS1 Element String. 1295

To find the EPC URI corresponding to a GS1 element string that includes a GLN (AI 1296
414), with or without an accompanying extension (AI 254): 1297

1. Number the digits and characters of the GS1 element string as shown above. 1298
2. Determine the number of digits L in the GS1 Company Prefix. This may be done, for 1299

example, by reference to an external table of company prefixes. 1300
3. Arrange the digits as shown for the EPC URI. Note that the GLN check digit d13 is 1301

not included in the EPC URI. For each serial number character si, replace it with the 1302
corresponding value in the “URI Form” column of Table 46 (Appendix A) – either 1303
the character itself or a percent-escape triplet if si is not a legal URI character. If the 1304
input GS1 element string did not include an extension (AI 254), use a single zero digit 1305
(‘0’) as the entire serial number s1s2…sK in the EPC URI. 1306

Example (without extension): 1307

EPC URI: urn:epc:id:sgln:0614141.12345.0 1308

GS1 element string: (414) 0614141 12345 2 1309

Example (with extension): 1310

EPC URI: urn:epc:id:sgln:0614141.12345.32a%2Fb 1311

GS1 element string: (414) 7 0614141 12345 2 (254) 32a/b 1312

Spaces have been added to the GS1 element string for clarity, but they are never encoded. 1313
In this example, the slash (/) character in the serial number must be represented as an 1314
escape triplet in the EPC URI. 1315

7.4 Global Returnable Asset Identifier (GRAI) 1316
The GRAI EPC (Section 6.3.4) corresponds directly to a serialized GRAI key defined in 1317
Sections 2.3.1 and 3.9.3 of the GS1 General Specifications [GS1GS10.0]. Because an 1318
EPC always identifies a specific physical object, only GRAI keys that include the 1319
optional serial number have a corresponding GRAI EPC. GRAI keys that lack a serial 1320
number refer to asset classes rather than specific assets, and therefore do not have a 1321
corresponding EPC (just as a GTIN key without a serial number does not have a 1322
corresponding EPC). 1323

http://www.autoidcenter.org/�

Copyright ©2005- 2010 EPCglobal®, All Rights Reserved. Page 46 of 210

 1324
Figure 11. Correspondence between GRAI EPC URI and GS1 Element String 1325

Note that the GS1 Element String includes an extra zero (‘0’) digit following the 1326
Application Identifier (8003). This zero digit is extra padding in the element string, 1327
and is not part of the GRAI key itself. 1328

Formally, the correspondence is defined as follows. Let the EPC URI and the GS1 1329
element string be written as follows: 1330

EPC URI: urn:epc:id:grai:d1d2…dL.d(L+1)d(L+2)…d12.s1s2…sK 1331

GS1 Element String: (8003)0d1d2…d13s1s2…sK 1332

To find the GS1 element string corresponding to a GRAI EPC URI: 1333
1. Number the digits of the first two components of the EPC as shown above. Note that 1334

there will always be a total of 12 digits. 1335
2. Number the characters of the serial number (third) component of the EPC as shown 1336

above. Each si corresponds to either a single character or to a percent-escape triplet 1337
consisting of a % character followed by two hexadecimal digit characters. 1338

3. Calculate the check digit d13 = (10 – ((3(d2 + d4 + d6 + d8 + d10 + d12) + (d1+ d3 + d5 + 1339
d7 + d9 + d11)) mod 10)) mod 10. 1340

4. Arrange the resulting digits and characters as shown for the GS1 Element String. If 1341
any si in the EPC URI is a percent-escape triplet %xx, in the GS1 Element String 1342
replace the triplet with the corresponding character according to Table 46 (Appendix 1343
A). (For a given percent-escape triplet %xx, find the row of Table 46 that contains 1344
xx in the “Hex Value” column; the “Graphic Symbol” column then gives the 1345
corresponding character to use in the GS1 Element String.). 1346

To find the EPC URI corresponding to a GS1 element string that includes a GRAI 1347
(AI 8003): 1348

1. If the number of characters following the (8003) application identifier is less than 1349
or equal to 14, stop: this element string does not have a corresponding EPC because 1350
it does not include the optional serial number. 1351

EPC
URI

GS1
Element
String

urn:epc:id:grai:
Company

Prefix
Asset
Type

Serial

Company
Prefix

Asset
Type

Check
Digit

Serial
(8003) 0

Σ

http://www.autoidcenter.org/�

Copyright ©2005- 2010 EPCglobal®, All Rights Reserved. Page 47 of 210

2. Number the digits and characters of the GS1 element string as shown above. 1352
3. Determine the number of digits L in the GS1 Company Prefix. This may be done, for 1353

example, by reference to an external table of company prefixes. 1354
4. Arrange the digits as shown for the EPC URI. Note that the GRAI check digit d13 is 1355

not included in the EPC URI. For each serial number character si, replace it with the 1356
corresponding value in the “URI Form” column of Table 46 (Appendix A) – either 1357
the character itself or a percent-escape triplet if si is not a legal URI character. 1358

Example: 1359

EPC URI: urn:epc:id:grai:0614141.12345.32a%2Fb 1360

GS1 element string: (8003) 0 0614141 12345 2 32a/b 1361

Spaces have been added to the GS1 element string for clarity, but they are never encoded. 1362
In this example, the slash (/) character in the serial number must be represented as an 1363
escape triplet in the EPC URI. 1364

7.5 Global Individual Asset Identifier (GIAI) 1365
The GIAI EPC (Section 6.3.5) corresponds directly to the GIAI key defined in Sections 1366
2.3.2 and 3.9.4 of the GS1 General Specifications [GS1GS10.0]. 1367
The correspondence between the GIAI EPC URI and a GS1 element string consisting of a 1368
GIAI key (AI 8004) is depicted graphically below: 1369

 1370
Figure 12. Correspondence between GIAI EPC URI and GS1 Element String 1371

Formally, the correspondence is defined as follows. Let the EPC URI and the GS1 1372
element string be written as follows: 1373

EPC URI: urn:epc:id:giai:d1d2…dL.s1s2…SK 1374

GS1 Element String: (8004)d1d2…dLs1s2…SK 1375

To find the GS1 element string corresponding to a GIAI EPC URI: 1376

EPC
URI

GS1
Element
String

urn:epc:id:gsrn:
Company

Prefix
Asset

Reference

Company
Prefix (8004)

Asset
Reference

http://www.autoidcenter.org/�

Copyright ©2005- 2010 EPCglobal®, All Rights Reserved. Page 48 of 210

1. Number the characters of the two components of the EPC as shown above. Each si 1377
corresponds to either a single character or to a percent-escape triplet consisting of a % 1378
character followed by two hexadecimal digit characters. 1379

2. Arrange the resulting digits and characters as shown for the GS1 Element String. If 1380
any si in the EPC URI is a percent-escape triplet %xx, in the GS1 Element String 1381
replace the triplet with the corresponding character according to Table 46 (Appendix 1382
A). (For a given percent-escape triplet %xx, find the row of Table 46 that contains 1383
xx in the “Hex Value” column; the “Graphic Symbol” column then gives the 1384
corresponding character to use in the GS1 Element String.) 1385

To find the EPC URI corresponding to a GS1 element string that includes a GIAI 1386
(AI 8004): 1387
1. Number the digits and characters of the GS1 element string as shown above. 1388

2. Determine the number of digits L in the GS1 Company Prefix. This may be done, for 1389
example, by reference to an external table of company prefixes. 1390

3. Arrange the digits as shown for the EPC URI. For each serial number character si, 1391
replace it with the corresponding value in the “URI Form” column of Table 46 1392
(Appendix A) – either the character itself or a percent-escape triplet if si is not a 1393
legal URI character. 1394

EPC URI: urn:epc:id:giai:0614141.32a%2Fb 1395

GS1 element string: (8004) 0614141 32a/b 1396

Spaces have been added to the GS1 element string for clarity, but they are never encoded. 1397
In this example, the slash (/) character in the serial number must be represented as an 1398
escape triplet in the EPC URI. 1399

7.6 Global Service Relation Number (GSRN) 1400
The GSRN EPC (Section 6.3.6) corresponds directly to the GSRN key defined in 1401
Sections 2.5 and 3.9.9 of the GS1 General Specifications [GS1GS10.0]. 1402

The correspondence between the GSRN EPC URI and a GS1 element string consisting of 1403
a GSRN key (AI 8018) is depicted graphically below: 1404

http://www.autoidcenter.org/�

Copyright ©2005- 2010 EPCglobal®, All Rights Reserved. Page 49 of 210

 1405
Figure 13. Correspondence between GSRN EPC URI and GS1 Element String 1406

Formally, the correspondence is defined as follows. Let the EPC URI and the GS1 1407
element string be written as follows: 1408

EPC URI: urn:epc:id:gsrn:d1d2…dL.d(L+2)d(L+3)…d17 1409

GS1 Element String: (8018)d1d2…d18 1410

To find the GS1 element string corresponding to a GSRN EPC URI: 1411

1. Number the digits of the two components of the EPC as shown above. Note that 1412
there will always be a total of 17 digits. 1413

2. Calculate the check digit d18 = (10 – ((3(d1 + d3 + d5 + d7 + d9 + d11 + d13
 + d15 + d17) 1414

+ (d2 + d4 + d6 + d8 + d10 + d12 + d14 + d16)) mod 10)) mod 10. 1415

3. Arrange the resulting digits and characters as shown for the GS1 Element String. 1416
To find the EPC URI corresponding to a GS1 element string that includes a GSRN 1417
(AI 8018): 1418
1. Number the digits and characters of the GS1 element string as shown above. 1419

2. Determine the number of digits L in the GS1 Company Prefix. This may be done, for 1420
example, by reference to an external table of company prefixes. 1421

3. Arrange the digits as shown for the EPC URI. Note that the GSRN check digit d18 is 1422
not included in the EPC URI. 1423

Example: 1424

EPC URI: urn:epc:id:gsrn:0614141.1234567890 1425

GS1 element string: (8018) 0614141 1234567890 2 1426

Spaces have been added to the GS1 element string for clarity, but they are never encoded. 1427

EPC
URI

GS1
Element
String

urn:epc:id:gsrn:
Company

Prefix
Service

Reference

Company
Prefix

Check
Digit (8018)

Σ

Service
Reference

http://www.autoidcenter.org/�

Copyright ©2005- 2010 EPCglobal®, All Rights Reserved. Page 50 of 210

7.7 Global Document Type Identifier (GDTI) 1428
The GDTI EPC (Section 6.3.7) corresponds directly to a serialized GDTI key defined in 1429
Sections 2.6.13 and 3.5.9 of the GS1 General Specifications [GS1GS10.0]. Because an 1430
EPC always identifies a specific physical object, only GDTI keys that include the 1431
optional serial number have a corresponding GDTI EPC. GDTI keys that lack a serial 1432
number refer to document classes rather than specific documents, and therefore do not 1433
have a corresponding EPC (just as a GTIN key without a serial number does not have a 1434
corresponding EPC). 1435

 1436
Figure 14. Correspondence between GDTI EPC URI and GS1 Element String 1437

Formally, the correspondence is defined as follows. Let the EPC URI and the GS1 1438
element string be written as follows: 1439

EPC URI: urn:epc:id:gdti:d1d2…dL.d(L+1)d(L+2)…d12.s1s2…sK 1440

GS1 Element String: (253)d1d2…d13s1s2…sK 1441

To find the GS1 element string corresponding to a GRAI EPC URI: 1442

1. Number the digits of the first two components of the EPC as shown above. Note that 1443
there will always be a total of 12 digits. 1444

2. Number the characters of the serial number (third) component of the EPC as shown 1445
above. Each si is a digit character. 1446

3. Calculate the check digit d13 = (10 – ((3(d2 + d4 + d6 + d8 + d10 + d12) + (d1+ d3 + d5 + 1447
d7 + d9 + d11)) mod 10)) mod 10. 1448

4. Arrange the resulting digits as shown for the GS1 Element String. 1449
To find the EPC URI corresponding to a GS1 element string that includes a GDTI 1450
(AI 253): 1451

1. If the number of characters following the (253) application identifier is less than or 1452
equal to 13, stop: this element string does not have a corresponding EPC because it 1453
does not include the optional serial number. 1454

EPC
URI

GS1
Element
String

urn:epc:id:gdti:
Company

Prefix
Doc

 Type
Serial

Company
Prefix

Doc
 Type

Check
Digit

Serial
(253)

Σ

http://www.autoidcenter.org/�

Copyright ©2005- 2010 EPCglobal®, All Rights Reserved. Page 51 of 210

2. Number the digits and characters of the GS1 element string as shown above. 1455
3. Determine the number of digits L in the GS1 Company Prefix. This may be done, for 1456

example, by reference to an external table of company prefixes. 1457
4. Arrange the digits as shown for the EPC URI. Note that the GDTI check digit d13 is 1458

not included in the EPC URI. 1459
Example: 1460

EPC URI: urn:epc:id:gdti:0614141.12345.006847 1461

GS1 element string: (253) 0 0614141 12345 2 006847 1462

Spaces have been added to the GS1 element string for clarity, but they are never encoded. 1463

8 URIs for EPC Pure Identity Patterns 1464
Certain software applications need to specify rules for filtering lists of EPC pure 1465
identities according to various criteria. This specification provides a Pure Identity Pattern 1466
URI form for this purpose. A Pure Identity Pattern URI does not represent a single EPC, 1467
but rather refers to a set of EPCs. A typical Pure Identity Pattern URI looks like this: 1468
urn:epc:idpat:sgtin:0652642.*.* 1469

This pattern refers to any EPC SGTIN, whose GS1 Company Prefix is 0652642, and 1470
whose Item Reference and Serial Number may be anything at all. The tag length and 1471
filter bits are not considered at all in matching the pattern to EPCs. 1472
In general, there is a Pure Identity Pattern URI scheme corresponding to each Pure 1473
Identity EPC URI scheme (Section 6.3), whose syntax is essentially identical except that 1474
any number of fields starting at the right may be a star (*). This is more restrictive than 1475
EPC Tag Pattern URIs (Section 13), in that the star characters must occupy adjacent 1476
rightmost fields and the range syntax is not allowed at all. 1477

The pure identity pattern URI for the DoD Construct is as follows: 1478
urn:epc:idpat:usdod:CAGECodeOrDODAACPat.serialNumberPat 1479

with similar restrictions on the use of star (*). 1480

8.1 Syntax 1481
The grammar for Pure Identity Pattern URIs is given below. 1482
IDPatURI ::= “urn:epc:idpat:” IDPatBody 1483
IDPatBody ::= GIDIDPatURIBody | SGTINIDPatURIBody | 1484
SGLNIDPatURIBody | GIAIIDPatURIBody | SSCCIDPatURIBody | 1485
GRAIIDPatURIBody | GSRNIDPatURIBody | GDTIIDPatURIBody | 1486
DODIDPatURI 1487
GIDIDPatURIBody ::= “gid:” GIDIDPatURIMain 1488
GIDIDPatURIMain ::= 1489
 2*(NumericComponent “.”) NumericComponent 1490

http://www.autoidcenter.org/�

Copyright ©2005- 2010 EPCglobal®, All Rights Reserved. Page 52 of 210

 | 2*(NumericComponent “.”) “*” 1491
 | NumericComponent “.*.*” 1492
 | “*.*.*” 1493
SGTINIDPatURIBody ::= “sgtin:” SGTINPatURIMain 1494
SGTINPatURIMain ::= 1495
 2*(PaddedNumericComponent “.”) GS3A3Component 1496
 | 2*(PaddedNumericComponent “.”) “*” 1497
 | PaddedNumericComponent “.*.*” 1498
 | “*.*.*” 1499
GRAIIDPatURIBody ::= “grai:” SGLNGRAIIDPatURIMain 1500
SGLNIDPatURIBody ::= “sgln:” SGLNGRAIIDPatURIMain 1501
SGLNGRAIIDPatURIMain ::= 1502
 PaddedNumericComponent “.” 1503
PaddedNumericComponentOrEmpty “.” GS3A3Component 1504
 | PaddedNumericComponent “.” 1505
PaddedNumericComponentOrEmpty “.*” 1506
 | PaddedNumericComponent “.*.*” 1507
 | “*.*.*” 1508
SCCIDPatURIBody ::= “sscc:” SSCCIDPatURIMain 1509
SSCCIDPatURIMain ::= 1510
 PaddedNumericComponent “.” PaddedNumericComponent 1511
 | PaddedNumericComponent “.*” 1512
 | “*.*” 1513
GIAIIDPatURIBody ::= “giai:” GIAIIDPatURIMain 1514
GIAIIDPatURIMain ::= 1515
 PaddedNumericComponent “.” GS3A3Component 1516
 | PaddedNumericComponent “.*” 1517
 | “*.*” 1518
GSRNIDPatURIBody ::= “gsrn:” GSRNIDPatURIMain 1519
GSRNIDPatURIMain ::= 1520
 PaddedNumericComponent “.” PaddedNumericComponent 1521
 | PaddedNumericComponent “.*” 1522
 | “*.*” 1523
GDTIIDPatURIBody ::= “gdti:” GDTIIDPatURIMain 1524
GDTIIDPatURIMain ::= 1525
 PaddedNumericComponent “.” 1526
PaddedNumericComponentOrEmpty “.” PaddedNumericComponent 1527
 | PaddedNumericComponent “.” 1528
PaddedNumericComponentOrEmpty “.*” 1529
 | PaddedNumericComponent “.*.*” 1530
 | “*.*.*” 1531

http://www.autoidcenter.org/�

Copyright ©2005- 2010 EPCglobal®, All Rights Reserved. Page 53 of 210

DODIDPatURI ::= “urn:epc:idpat:usdod:” DODIDPatMain 1532
DODIDPatMain ::= 1533
 CAGECodeOrDODAAC “.” DoDSerialNumber 1534
 | CAGECodeOrDODAAC “.*” 1535
 | “*.*” 1536

8.2 Semantics 1537
The meaning of a Pure Identity Pattern URI (urn:epc:idpat:) is formally defined as 1538
denoting a set of a set of pure identity EPCs, respectively. 1539

The set of EPCs denoted by a specific Pure Identity Pattern URI is defined by the 1540
following decision procedure, which says whether a given Pure Identity EPC URI 1541
belongs to the set denoted by the Pure Identity Pattern URI. 1542

Let urn:epc:idpat:Scheme:P1.P2...Pn be a Pure Identity Pattern URI. Let 1543
urn:epc:id:Scheme:C1.C2...Cn be a Pure Identity EPC URI, where the 1544
Scheme field of both URIs is the same. The number of components (n) depends on the 1545
value of Scheme. 1546

First, any Pure Identity EPC URI component Ci is said to match the corresponding Pure 1547
Identity Pattern URI component Pi if: 1548

• Pi is a NumericComponent, and Ci is equal to Pi; or 1549

• Pi is a PaddedNumericComponent, and Ci is equal to Pi both in numeric value 1550
as well as in length; or 1551

• Pi is a GS3A3Component, and Ci is equal to Pi, character for character; or 1552

• Pi is a CAGECodeOrDODAAC, and Ci is equal to Pi; or 1553

• Pi is a StarComponent (and Ci is anything at all) 1554

Then the Pure Identity EPC URI is a member of the set denoted by the Pure Identity 1555
Pattern URI if and only if Ci matches Pi for all 1 ≤ i ≤ n. 1556

9 Memory Organization of Gen 2 RFID Tags 1557

9.1 Types of Tag Data 1558
RFID Tags, particularly Gen 2 RFID Tags, may carry data of three different kinds: 1559

• Business Data Information that describes the physical object to which the tag is 1560
affixed. This information includes the Electronic Product Code (EPC) that uniquely 1561
identifies the physical object, and may also include other data elements carried on the 1562
tag. This information is what business applications act upon, and so this data is 1563
commonly transferred between the data capture level and the business application 1564
level in a typical implementation architecture. Most standardized business data on an 1565
RFID tag is equivalent to business data that may be found in other data carriers, such 1566
as bar codes. 1567

http://www.autoidcenter.org/�

Copyright ©2005- 2010 EPCglobal®, All Rights Reserved. Page 54 of 210

• Control Information Information that is used by data capture applications to help 1568
control the process of interacting with tags. Control Information includes data that 1569
helps a capturing application filter out tags from large populations to increase read 1570
efficiency, special handling information that affects the behavior of capturing 1571
application, information that controls tag security features, and so on. Control 1572
Information is typically not passed directly to business applications, though Control 1573
Information may influence how a capturing application presents business data to the 1574
business application level. Unlike Business Data, Control Information has no 1575
equivalent in bar codes or other data carriers. 1576

• Tag Manufacture Information Information that describes the Tag itself, as opposed 1577
to the physical object to which the tag is affixed. Tag Manufacture information 1578
includes a manufacturer ID and a code that indicates the tag model. It may also 1579
include information that describes tag capabilities, as well as a unique serial number 1580
assigned at manufacture time. Usually, Tag Manufacture Information is like Control 1581
Information in that it is used by capture applications but not directly passed to 1582
business applications. In some applications, the unique serial number that may be a 1583
part of Tag Manufacture Information is used in addition to the EPC, and so acts like 1584
Business Data. Like Control Information, Tag Manufacture Information has no 1585
equivalent in bar codes or other data carrriers. 1586

It should be noted that these categories are slightly subjective, and the lines may be 1587
blurred in certain applications. However, they are useful for understanding how the Tag 1588
Data Standards are structured, and are a good guide for their effective and correct use. 1589
The following table summarizes the information above. 1590

Information
Type

Description Where on Gen 2
Tag

Where Typically
Used

Bar Code
Equivalent

Business
Data

Describes the
physical
object to
which the tag
is affixed.

EPC Bank
(excluding PC and
XPC bits, and
filter value within
EPC)
User Memory
Bank

Data Capture layer
and Business
Application layer

Yes: GS1
keys,
Application
Identifiers
(AIs)

Control
Information

Facilitates
efficient tag
interaction

Reserved Bank

EPC Bank: PC and
XPC bits, and
filter value within
EPC

Data Capture layer No

http://www.autoidcenter.org/�

Copyright ©2005- 2010 EPCglobal®, All Rights Reserved. Page 55 of 210

Information
Type

Description Where on Gen 2
Tag

Where Typically
Used

Bar Code
Equivalent

Tag
Manufacture
Information

Describes the
tag itself, as
opposed to
the physical
object to
which the tag
is affixed

TID Bank Data Capture layer

Unique tag
manufacture serial
number may reach
Business
Application layer

No

Table 3. Kinds of Data on a Gen 2 RFID Tag 1591

9.2 Gen 2 Tag Memory Map 1592
Binary data structures defined in the Tag Data Standard are intended for use in RFID 1593
Tags, particularly in UHF Class 1 Gen 2 Tags (also known as ISO 18000-6C Tags). The 1594
air interface standard [UHFC1G2] specifies the structure of memory on Gen 2 tags. 1595
Specifically, it specifies that memory in these tags consists of four separately addressable 1596
banks, numbered 00, 01, 10, and 11. It also specifies the intended use of each bank, and 1597
constraints upon the content of each bank dictated by the behavior of the air interface. 1598
For example, the layout and meaning of the Reserved bank (bank 00), which contains 1599
passwords that govern certain air interface commands, is fully specified in [UHFC1G2]. 1600
For those memory banks and memory locations that have no special meaning to the air 1601
interface (i.e., are “just data” as far as the air interface is concerned), the Tag Data 1602
Standard specifies the content and meaning of these memory locations. 1603

Following the convention established in [UHFC1G2], memory addresses are described 1604
using hexadecimal bit addresses, where each bank begins with bit 00h and extends 1605
upward to as many bits as each bank contains, the capacity of each bank being 1606
constrained in some respects by [UHFC1G2] but ultimately may vary with each tag make 1607
and model. Bit 00h is considered the most significant bit of each bank, and when binary 1608
fields are laid out into tag memory the most significant bit of any given field occupies the 1609
lowest-numbered bit address occupied by that field. When describing individual fields, 1610
however, the least significant bit is numbered zero. For example, the Access Password is 1611
a 32-bit unsigned integer consisting of bits b31b30…b0, where b31 is the most significant 1612
bit and b0 is the least significant bit. When the Access Password is stored at address 20h 1613
– 3Fh (inclusive) in the Reserved bank of a Gen 2 tag, the most significant bit b31 is stored 1614
at tag address 20h and the least significant bit b0 is stored at address 3Fh. 1615

The following diagram shows the layout of memory on a Gen 2 tag, The colors indicate 1616
the type of data following the categorization in Section Figure 1. 1617

http://www.autoidcenter.org/�

Copyright ©2005- 2010 EPCglobal®, All Rights Reserved. Page 56 of 210

 1618
Figure 15. Gen 2 Tag Memory Map 1619

The following table describes the fields in the memory map above. 1620

Bank Bits Field Description Category Where
Specified

Bank 00
(Reserved)

00h –
1Fh

Kill
Passwd

A 32-bit password that must be
presented to the tag in order to
complete the Gen 2 “kill”
command.

Control
Info

[UHFC1G2]

20h –
2Fh

Access
Passwd

A 32-bit password that must be
presented to the tag in order to
perform privileged operations

Control
Info

[UHFC1G2]

Kill Passwd Access Passwd
Bank 00

(Reserved)

Bank 01
(EPC)

00h 10h 20h 30h

CRC PC Bits EPC

00h 10h 20h

40h

210h

XPC Bits

Bank 10
(TID)

00h 10h 20h 30h

TID Bits

Bank 11
(User)

00h 10h 20h 30h

DFSID

08h

Encoded Data Elements

= Business Data

= Control Information

= Tag Manufacture Information

Filter value

Attribute bits

http://www.autoidcenter.org/�

Copyright ©2005- 2010 EPCglobal®, All Rights Reserved. Page 57 of 210

Bank Bits Field Description Category Where
Specified

Bank 01
(EPC)

00h –
0Fh

CRC A 16-bit Cyclic Redundancy
Check computed over the
contents of the EPC bank.

Control
Info

[UHFC1G2]

10h –
1Fh

PC Bits Protocol Control bits (see
below)

Control
Info

(see below)

20h –
end

EPC Electronic Product Code, plus
filter value. The Electronic
Product code is a globally
unique identifier for the
physical object to which the
tag is affixed. The filter value
provides a means to improve
tag read efficiency by selecting
a subset of tags of interest.

Business
Data
(except
filter
value,
which is
Control
Info)

The EPC is
defined in
Sections 6,
 7, and 13.
The filter
values are
defined in
Section 10.

210h
–
21Fh

XPC
Bits

Extended Protocol Control bits.
If bit 16h of the EPC bank is set
to one, then bits 210h – 21Fh
(inclusive) contain additional
protocol control bits as
specified in [UHFC1G2]

Control
Info

[UHFC1G2]

Bank 10
(TID)

00h –
end

TID
Bits

Tag Identification bits, which
provide information about the
tag itself, as opposed to the
physical object to which the
tag is affixed.

Tag
Manu-
facture
Info

Section 16

http://www.autoidcenter.org/�

Copyright ©2005- 2010 EPCglobal®, All Rights Reserved. Page 58 of 210

Bank Bits Field Description Category Where
Specified

Bank 11
(User)

00h –
end

DSFID Logically, the content of user
memory is a set of name-value
pairs, where the name part is
an OID [ASN.1] and the value
is a character string.
Physically, the first few bits are
a Data Storage Format
Identifier as specified in
[ISO15961] and [ISO15962].
The DSFID specifies the
format for the remainder of the
user memory bank. The
DSFID is typically eight bits in
length, but may be extended
further as specified in
[ISO15961]. When the DSFID
specifies Access Method 2, the
format of the remainder of user
memory is “packed objects” as
specified in Section 17. This
format is recommended for use
in EPC applications. The
physical encoding in the
packed objects data format is
as a sequence of “packed
objects,” where each packed
object includes one or more
name-value pairs whose values
are compacted together.

Business
Data

[ISO15961],
[ISO15962],
Section 17

Table 4. Gen 2 Memory Map 1621
The following diagram illustrates in greater detail the first few bits of the EPC Bank 1622
(Bank 01), and in particular shows the various fields within the Protocol Control bits (bits 1623
10h – 1Fh, inclusive). 1624

http://www.autoidcenter.org/�

Copyright ©2005- 2010 EPCglobal®, All Rights Reserved. Page 59 of 210

 1625
Figure 16. Gen 2 Protocol Control (PC) Bits Memory Map 1626

The following table specifies the meaning of the PC bits: 1627

Bits Field Description Where
Specified

10h –
14h

Length Represents the number of 16-bit words
comprising the PC field and the EPC field
(below). See discussion below for the
encoding of this field.

[UHFC1G2]

15h User Memory
Indicator (UMI)

Indicates whether the user memory bank is
present and contains data.

[UHFC1G2]

16h XPC Indicator
(XI)

Indicates whether an XPC is present [UHFC1G2]

17h Toggle If zero, indicates an EPCglobal application; in
particular, indicates that bits 18h – 1Fh contain
the Attribute Bits and the remainder of the
EPC bank contains a binary encoded EPC.

If one, indicates a non-EPCglobal application;
in particular, indicates that bits 18h – 1Fh
contain the ISO Application Family Identifier
(AFI) as defined in [ISO15961] and the
remainder of the EPC bank contains a Unique
Item Identifier (UII) appropriate for that AFI.

[UHFC1G2]

x00
x10

x14
x15
x16

x17
x18 x1F

x20
xF

CRC Length

User Memory Indicator (UMI)

Toggle – always zero for EPC

EPC
Binary
Encoding

Zero Fill
to the
word

boundary

Attribute
/AFI

PC

NSI

 Attribute bits for EPC

XPC Indicator (XI)

http://www.autoidcenter.org/�

Copyright ©2005- 2010 EPCglobal®, All Rights Reserved. Page 60 of 210

Bits Field Description Where
Specified

18h –
1Fh
(if
toggle
= 0)

Attribute Bits Bits that may guide the handling of the
physical object to which the tag is affixed.

Section 11

18h –
1Fh
(if
toggle
= 1)

AFI An Application Family Identifier that
specifies a non-EPCglobal application for
which the remainder of the EPC bank is
encoded

[ISO15961]

Table 5. Gen 2 Protocol Control (PC) Bits Memory Map 1628
Bits 17h – 1Fh (inclusive) are collectively known as the Numbering System Identifier 1629
(NSI). It should be noted, however, that when the toggle bit (bit 17h) is zero, the 1630
numbering system is always the Electronic Product Code, and bits 18h – 1Fh contain the 1631
Attribute Bits whose purpose is completely unrelated to identifying the numbering 1632
system being used. 1633

10 Filter Value 1634
The filter value is additional control information that may be included in the EPC 1635
memory bank of a Gen 2 tag. The intended use of the filter value is to allow an RFID 1636
reader to select or deselect the tags corresponding to certain physical objects, to make it 1637
easier to read the desired tags in an environment where there may be other tags present in 1638
the environment. For example, if the goal is to read the single tag on a pallet, and it is 1639
expected that there may be hundreds or thousands of item-level tags present, the 1640
performance of the capturing application may be improved by using the Gen 2 air 1641
interface to select the pallet tag and deselect the item-level tags. 1642
Filter values are available for all EPC types except for the General Identifier (GID). 1643
There is a different set of standardized filter value values associated with each type of 1644
EPC, as specified below. 1645

It is essential to understand that the filter value is additional “control information” that is 1646
not part of the Electronic Product Code. The filter value does not contribute to the 1647
unique identity of the EPC. For example, it is not permissible to attach two RFID tags to 1648
to different physical objects where both tags contain the same EPC, even if the filter 1649
values are different on the two tags. 1650
Because the filter value is not part of the EPC, the filter value is not included when the 1651
EPC is represented as a pure identity URI, nor should the filter value be considered as 1652
part of the EPC by business applications. Capturing applications may, however, read the 1653
filter value and pass it upwards to business applications in some data field other than the 1654
EPC. It should be recognized, however, that the purpose of the filter values is to assist in 1655
the data capture process, and in most cases the filter value will be of limited or no value 1656

http://www.autoidcenter.org/�

Copyright ©2005- 2010 EPCglobal®, All Rights Reserved. Page 61 of 210

to business applications. The filter value is not intended to provide a reliable packaging-1657
level indicator for business applications to use. 1658

10.1 Use of “Reserved” and “All Others” Filter Values 1659
In the following sections, filter values marked as “reserved” are reserved for assignment 1660
by EPCglobal in future versions of this specification. Implementations of the encoding 1661
and decoding rules specified herein SHALL accept any value of the filter values, whether 1662
reserved or not. Applications, however, SHOULD NOT direct an encoder to write a 1663
reserved value to a tag, nor rely upon a reserved value decoded from a tag, as doing so 1664
may cause interoperability problems if a reserved value is assigned in a future revision to 1665
this specification. 1666
Each EPC scheme includes a filter value identified as “All Others.” This filter value 1667
means that the object to which the tag is affixed does not match the description of any of 1668
the other filter values defined for that EPC scheme. In some cases, the “All Others” filter 1669
value may appear on a tag that was encoded to conform to an earlier version of this 1670
specification, at which time no other suitable filter value was available. When encoding a 1671
new tag, the filter value should be set to match the description of the object to which the 1672
tag is affixed, with “All Others” being used only if a suitable filter value for the object is 1673
not defined in this specification. 1674

10.2 Filter Values for SGTIN EPC Tags 1675
The normative specifications for Filter Values for SGTIN EPC Tags are specified below. 1676

Type Filter Value Binary Value

All Others (see Section 10.1) 0 000

Point of Sale (POS) Trade Item 1 001

Full Case for Transport 2 010

Reserved (see Section 10.1) 3 011

Inner Pack Trade Item Grouping for Handling 4 100

Reserved (see Section 10.1) 5 101

Unit Load (see Section 10.1) 6 110

Unit inside Trade Item or component inside a
product not intended for individual sale

7 111

Table 6. SGTIN Filter Values 1677

10.3 Filter Values for SSCC EPC Tags 1678
The normative specifications for Filter Values for SSCC EPC Tags are specified below. 1679

Type Filter Value Binary Value

All Others (see Section 10.1) 0 000

http://www.autoidcenter.org/�

Copyright ©2005- 2010 EPCglobal®, All Rights Reserved. Page 62 of 210

Type Filter Value Binary Value

Reserved (see Section 10.1) 1 001

Full Case for Transport 2 010

Reserved (see Section 10.1) 3 011

Reserved (see Section 10.1) 4 100

Reserved (see Section 10.1) 5 101

Unit Load (see Section 10.1) 6 110

Reserved (see Section 10.1) 7 111

Table 7. SSCC Filter Values 1680

10.4 Filter Values for SGLN EPC Tags 1681
Type Filter Value Binary Value

All Others (see Section 10.1) 0 000

Reserved (see Section 10.1) 1 001

Reserved (see Section 10.1) 2 010

Reserved (see Section 10.1) 3 011

Reserved (see Section 10.1) 4 100

Reserved (see Section 10.1) 5 101

Reserved (see Section 10.1) 6 110

Reserved (see Section 10.1) 7 111

Table 8. SGLN Filter Values 1682

10.5 Filter Values for GRAI EPC Tags 1683
Type Filter Value Binary Value

All Others (see Section 10.1) 0 000

Reserved (see Section 10.1) 1 001

Reserved (see Section 10.1) 2 010

Reserved (see Section 10.1) 3 011

Reserved (see Section 10.1) 4 100

Reserved (see Section 10.1) 5 101

Reserved (see Section 10.1) 6 110

Reserved (see Section 10.1) 7 111

http://www.autoidcenter.org/�

Copyright ©2005- 2010 EPCglobal®, All Rights Reserved. Page 63 of 210

Table 9. GRAI Filter Values 1684

10.6 Filter Values for GIAI EPC Tags 1685
Type Filter Value Binary Value

All Others (see Section 10.1) 0 000

Reserved (see Section 10.1) 1 001

Reserved (see Section 10.1) 2 010

Reserved (see Section 10.1) 3 011

Reserved (see Section 10.1) 4 100

Reserved (see Section 10.1) 5 101

Reserved (see Section 10.1) 6 110

Reserved (see Section 10.1) 7 111

Table 10. GIAI Filter Values 1686

10.7 Filter Values for GSRN EPC Tags 1687
Type Filter Value Binary Value

All Others (see Section 10.1) 0 000

Reserved (see Section 10.1) 1 001

Reserved (see Section 10.1) 2 010

Reserved (see Section 10.1) 3 011

Reserved (see Section 10.1) 4 100

Reserved (see Section 10.1) 5 101

Reserved (see Section 10.1) 6 110

Reserved (see Section 10.1) 7 111

Table 11. GSRN Filter Values 1688

10.8 Filter Values for GDTI EPC Tags 1689
Type Filter Value Binary Value

All Others (see Section 10.1) 0 000

Reserved (see Section 10.1) 1 001

Reserved (see Section 10.1) 2 010

Reserved (see Section 10.1) 3 011

Reserved (see Section 10.1) 4 100

http://www.autoidcenter.org/�

Copyright ©2005- 2010 EPCglobal®, All Rights Reserved. Page 64 of 210

Type Filter Value Binary Value

Reserved (see Section 10.1) 5 101

Reserved (see Section 10.1) 6 110

Reserved (see Section 10.1) 7 111

Table 12. GDTI Filter Values 1690

10.9 Filter Values for GID EPC Tags 1691
The GID EPC scheme does not provide for the use of filter values. 1692

10.10 Filter Values for DOD EPC Tags 1693
Filter values for US DoD EPC Tags are as specified in [USDOD]. 1694

11 Attribute Bits 1695
The Attribute Bits are eight bits of “control information” that may be used by capturing 1696
applications to guide the capture process. Attribute Bits may be used to determine 1697
whether the physical object to which a tag is affixed requires special handling of any 1698
kind. 1699

Attribute bits are available for all EPC types. The same definitions of attribute bits as 1700
specified below apply regardless of which EPC scheme is used. 1701

It is essential to understand that attribute bits are additional “control information” that is 1702
not part of the Electronic Product Code. Attribute bits do not contribute to the unique 1703
identity of the EPC. For example, it is not permissible to attach two RFID tags to to 1704
different physical objects where both tags contain the same EPC, even if the attribute bits 1705
are different on the two tags. 1706
Because attribute bits are not part of the EPC, they are not included when the EPC is 1707
represented as a pure identity URI, nor should the attribute bits be considered as part of 1708
the EPC by business applications. Capturing applications may, however, read the 1709
attribute bits and pass them upwards to business applications in some data field other than 1710
the EPC. It should be recognized, however, that the purpose of the attribute bits is to 1711
assist in the data capture and physical handling process, and in most cases the attribute 1712
bits will be of limited or no value to business applications. The attribute bits are not 1713
intended to provide a reliable master data or product descriptive attributes for business 1714
applications to use. 1715

The currently assigned attribute bits are as specified below: 1716

Bit Address Assigned as of TDS
Version

Meaning

18h [unassigned]

19h [unassigned]

http://www.autoidcenter.org/�

Copyright ©2005- 2010 EPCglobal®, All Rights Reserved. Page 65 of 210

Bit Address Assigned as of TDS
Version

Meaning

1Ah [unassigned]

1Bh [unassigned]

1Ch [unassigned]

1Dh [unassigned]

1Eh [unassigned]

1Fh 1.5 A “1” bit indicates the tag is
affixed to hazardous
material. A “0” bit provides
no such indication.

Table 13. Attribute Bit Assignments 1717
In the table above, attribute bits marked as “unassigned” are reserved for assignment by 1718
EPCglobal in future versions of this specification. Implementations of the encoding and 1719
decoding rules specified herein SHALL accept any value of the attribute bits, whether 1720
reserved or not. Applications, however, SHOULD direct an encoder to write a zero for 1721
each unassigned bit, and SHOULD NOT rely upon the value of an unassigned bit 1722
decoded from a tag, as doing so may cause interoperability problems if an unassigned 1723
value is assigned in a future revision to this specification. 1724

12 EPC Tag URI and EPC Raw URI 1725
The EPC memory bank of a Gen 2 tag contains a binary-encoded EPC, along with other 1726
control information. Applications do not normally process binary data directly. An 1727
application wishing to read the EPC may receive the EPC as a Pure Identity EPC URI, as 1728
defined in Section 6. In other situations, however, a capturing application may be 1729
interested in the control information on the tag as well as the EPC. Also, an application 1730
that writes the EPC memory bank needs to specify the values for control information that 1731
are written along with the EPC. In both of these situations, the EPC Tag URI and EPC 1732
Raw URI may be used. 1733

The EPC Tag URI specifies both the EPC and the values of control information in the 1734
EPC memory bank. It also specifies which of several variant binary coding schemes is to 1735
be used (e.g., the choice between SGTIN-96 and SGTIN-198). As such, an EPC Tag 1736
URI completely and uniquely specifies the contents of the EPC memory bank. The EPC 1737
Raw URI also specifies the complete contents of the EPC memory bank, but repesents 1738
the memory contents as a single decimal or hexadecimal numeral. 1739

12.1 Structure of the EPC Tag URI and EPC Raw URI 1740
The EPC Tag URI begins with urn:epc:tag:, and is used when the EPC memory 1741
bank contains a valid EPC. EPC Tag URIs resemble Pure Identity EPC URIs, but with 1742
added control information. The EPC Raw URI begins with urn:epc:raw:, and is 1743

http://www.autoidcenter.org/�

Copyright ©2005- 2010 EPCglobal®, All Rights Reserved. Page 66 of 210

used when the EPC memory bank does not contain a valid EPC. This includes situations 1744
where the toggle bit (bit 17h) is set to one, as well as situations where the toggle bit is set 1745
to zero but the remainder of the EPC bank does not conform to the coding rules specified 1746
in Section 14, either because the header bits are unassigned or the remainder of the binary 1747
encoding violates a validity check for that header. 1748
The following figure illustrates these URI forms. 1749

 1750
Figure 17. Illustration of EPC Tag URI and EPC Raw URI 1751

The first form in the figure, the EPC Tag URI, is used for a valid EPC. It resembles the 1752
Pure Identity EPC URI, with the addition of optional control information fields as 1753
specified in Section 12.2.2 and a (non-optional) filter value. The EPC scheme name 1754
(sgtin-96 in the example above) specifies a particular binary encoding scheme, and so 1755
it includes the length of the encoding. This is in contrast to the Pure Identity EPC URI 1756
which identifies an EPC scheme but not a specific binary encoding (e.g., sgtin but not 1757
specifically sgtin-96). 1758

The EPC Raw URI illustrated by the second example in the figure can be used whenever 1759
the toggle bit (bit 17h) is zero, but is typically only used if the first form cannot (that is, if 1760
the contents of the EPC bank cannot be decoded according to Section 14.4). It specifies 1761
the contents of bit 20h onward as a single hexadecimal numeral. The number of bits in 1762
this numeral is determined by the “length” field in the EPC bank of the tag (bits 10h – 1763
14h). (The grammar in Section 12.4 includes a variant of this form in which the contents 1764
are specified as a decimal numeral. This form is deprecated.) 1765

urn:epc:tag:[att=x01][xpc=x0004]:sgtin-96:3.0614141.112345.400

urn:epc:raw:[att=x01][xpc=x0004]:96.x0123456890ABCDEF01234567

urn:epc:raw:[umi=1][xpc=x0004]:64.x31.x0123456890ABCDEF

EPC Tag URI

EPC Raw URI, toggle=0

EPC Raw URI, toggle=1

Control fields
(optional)

Filter value

Application Family
Identifier (AFI)

EPC Encoding
Scheme Name

(includes length)

Explicit
Length

http://www.autoidcenter.org/�

Copyright ©2005- 2010 EPCglobal®, All Rights Reserved. Page 67 of 210

The EPC Raw URI illustrated by the third example in the figure is used when the toggle 1766
bit (bit 17h) is one. It is similar to the second form, but with an additional field between 1767
the length and payload that reports the value of the AFI field (bits 18h – 1Fh) as a 1768
hexadecimal numeral. 1769

Each of these forms is fully defined by the encoding and decoding procedures specified 1770
in Section 15. 1771

12.2 Control Information 1772
The EPC Tag URI and EPC Raw URI specify the complete contents of the Gen 2 EPC 1773
memory bank, including control information such as filter values and attribute bits. This 1774
section specifies how control information is included in these URIs. 1775

12.2.1 Filter Values 1776
Filter values are only available when the EPC bank contains a valid EPC, and only then 1777
when the EPC is an EPC scheme other than GID. In the EPC Tag URI, the filter value is 1778
indicated as an additional field following the scheme name and preceding the remainder 1779
of the EPC, as illustrated below: 1780

 1781
Figure 18. Illustration of Filter Value Within EPC Tag URI 1782

The filter value is a decimal integer. The allowed values of the filter value are specified 1783
in Section 10. 1784

12.2.2 Other Control Information Fields 1785
Control information in the EPC bank apart from the filter values is stored separately from 1786
the EPC. Such information can be represented both in the EPC Tag URI and the EPC 1787
Raw URI, using the name-value pair syntax described below. 1788

In both URI forms, control field name-value pairs may occur following the 1789
urn:epc:tag: or urn:epc:raw:, as illustrated below: 1790
urn:epc:tag:[att=x01][xpc=x0004]:sgtin-96:3.0614141.112345.400 1791
urn:epc:raw:[att=x01][xpc=x0004]:96.x012345689ABCDEF01234567 1792
Each element in square brackets specifies the value of one control information field. An 1793
omitted field is equivalent to specifying a value of zero. As a limiting case, if no control 1794
information fields are specified in the URI it is equivalent to specifying a value of zero 1795

urn:epc:id:sgtin:0614141.112345.400 EPC Pure Identity URI

urn:epc:tag:sgtin-96:3.0614141.112345.400 EPC Tag URI

Filter value

http://www.autoidcenter.org/�

Copyright ©2005- 2010 EPCglobal®, All Rights Reserved. Page 68 of 210

for all fields. This provides back-compatibility with earlier versions of the Tag Data 1796
Standard. 1797

The available control information fields are specified in the following table. 1798

Field Syntax Description Read/Write

Attribute Bits [att=xNN] The value of the attribute
bits (bits 18h – 1Fh), as a
two-digit hexadecimal
numeral NN.

This field is only available
if the toggle bit (bit 17h) is
zero.

Read / Write

User Memory
Indicator

[umi=B] The value of the user
memory indicator bit (bit
15h). The value B is either
the digit 0 or the digit 1.

Read / Write
Note that certain Gen 2
Tags may ignore the
value written to this bit,
and instead calculate
the value of the bit
from the contents of
user memory. See
[UHFC1G2].

Extended PC
Bits

[xpc=xNNNN] The value of the XPC bits
(bits 210h-21Fh) as a four-
digit hexadecimal numeral
NNNN.

Read only

Table 14. Control Information Fields 1799
The user memory indicator and extended PC bits are calculated by the tag as a function of 1800
other information on the tag or based on operations performed to the tag (such as 1801
recommissioning). Therefore, these fields cannot be written directly. When reading 1802
from a tag, any of the control information fields may appear in the URI that results from 1803
decoding the EPC memory bank. When writing a tag, the umi and xpc fields will be 1804
ignored when encoding the URI into the tag. 1805
To aid in decoding, any control information fields that appear in a URI must occur in 1806
alphabetical order (the same order as in the table above). 1807
Examples (non-normative): The following examples illustrate the use of control 1808
information fields in the EPC Tag URI and EPC Raw URI. 1809
urn:epc:tag:sgtin-96:3.0614141.112345.400 1810

This is a tag with an SGTIN EPC, filter bits = 3, the hazardous material attribute bit set 1811
to zero, no user memory (user memory indicator = 0), and not recommissioned (extended 1812
PC = 0). This illustrates back-compatibility with earlier versions of the Tag Data 1813
Standard. 1814

http://www.autoidcenter.org/�

Copyright ©2005- 2010 EPCglobal®, All Rights Reserved. Page 69 of 210

urn:epc:tag:[att=x01]:sgtin-96:3.0614141.112345.400 1815

This is a tag with an SGTIN EPC, filter bits = 3, the hazardous material attribute bit set 1816
to one, no user memory (user memory indicator = 0), and not recommissioned (extended 1817
PC = 0). This URI might be specified by an application wishing to commission a tag 1818
with the hazardous material bit set to one and the filter bits and EPC as shown. 1819
urn:epc:raw:[att=x01][umi=1][xpc=x0004]:96.x1234567890ABCDEF01234567 1820
This is a tag with toggle=0, random data in bits 20h onward (not decodable as an EPC), 1821
the hazardous material attribute bit set to one, non-zero contents in user memory, and 1822
has been recommissioned (as indicated by the extended PC). 1823
urn:epc:raw:[xpc=x0001]:96.xC1.x1234567890ABCDEF01234567 1824

This is a tag with toggle=1, Application Family Indicator = C1 (hexadecimal), and has 1825
had its user memory killed (as indicated by the extended PC). 1826

12.3 EPC Tag URI and EPC Pure Identity URI 1827
The Pure Identity EPC URI as defined in Section 6 is a representation of an EPC for use 1828
in information systems. The only information in a Pure Identity EPC URI is the EPC 1829
itself. The EPC Tag URI, in contrast, contains additional information: it specifies the 1830
contents of all control information fields in the EPC memory bank, and it also specifies 1831
which encoding scheme is used to encode the EPC into binary. Therefore, to convert a 1832
Pure Identity EPC URI to an EPC Tag URI, additional information must be provided. 1833
Conversely, to extract a Pure Identity EPC URI from an EPC Tag URI, this additional 1834
information is removed. The procedures in this section specify how these conversions 1835
are done. 1836

12.3.1 EPC Binary Coding Schemes 1837
For each EPC scheme as specified in Section 6, there are one or more corresponding EPC 1838
Binary Coding Schemes that determine how the EPC is encoded into binary 1839
representation for use in RFID tags. When there is more than one EPC Binary Coding 1840
Scheme available for a given EPC scheme, a user must choose which binary coding 1841
scheme to use. In general, the shorter binary coding schemes result in fewer bits and 1842
therefore permit the use of less expensive RFID tags containing less memory, but are 1843
restricted in the range of serial numbers that are permitted. The longer binary coding 1844
schemes allow for the full range of serial numbers permitted by the GS1 General 1845
Specifications, but require more bits and therefore more expensive RFID tags. 1846
It is important to note that two EPCs are the same if and only if the Pure Identity EPC 1847
URIs are character for character identical. A long binary encoding (e.g., SGTIN-198) is 1848
not a different EPC from a short binary encoding (e.g., SGTIN-96) if the GS1 Company 1849
Prefix, item reference with indicator, and serial numbers are identical. 1850

The following table enumerates the available EPC binary coding schemes, and indicates 1851
the limitations imposed on serial numbers. 1852

http://www.autoidcenter.org/�

Copyright ©2005- 2010 EPCglobal®, All Rights Reserved. Page 70 of 210

EPC
Scheme

EPC Binary
Coding
Scheme

EPC +
Filter

Bit
Count

Includes
Filter
Value

Serial Number Limitation

sgtin sgtin-96 96 Yes Numeric-only, no leading zeros, decimal
value must be less than 238 (i.e., decimal
value less than or equal to
274,877,906,943).

sgtin-198 198 Yes All values permitted by GS1 General
Specifications (up to 20 alphanumeric
characters)

sscc sscc-96 96 Yes All values permitted by GS1 General
Specifications (11 – 5 decimal digits
including extension digit, depending on
GS1 Company Prefix length)

sgln sgln-96 96 Yes Numeric-only, no leading zeros, decimal
value must be less than 241 (i.e., decimal
value less than or equal to
2,199,023,255,551).

sgln-195 195 Yes All values permitted by GS1 General
Specifications (up to 20 alphanumeric
characters)

grai grai-96 96 Yes Numeric-only, no leading zeros, decimal
value must be less than 238 (i.e., decimal
value less than or equal to
274,877,906,943).

grai-170 170 Yes All values permitted by GS1 General
Specifications (up to 16 alphanumeric
characters)

giai giai-96 96 Yes Numeric-only, no leading zeros, decimal
value must be less than a limit that varies
according to the length of the GS1
Company Prefix. See Section 14.5.5.1.

giai-202 202 Yes All values permitted by GS1 General
Specifications (up to 18 – 24
alphanumeric characters, depending on
company prefix length)

gsrn gsrn-96 96 Yes All values permitted by GS1 General
Specifications (11 – 5 decimal digits,
depending on GS1 Company Prefix
length)

http://www.autoidcenter.org/�

Copyright ©2005- 2010 EPCglobal®, All Rights Reserved. Page 71 of 210

EPC
Scheme

EPC Binary
Coding
Scheme

EPC +
Filter

Bit
Count

Includes
Filter
Value

Serial Number Limitation

gdti gdti-96 96 Yes Numeric-only, no leading zeros, decimal
value must be less than 241 (i.e., decimal
value less than or equal to
2,199,023,255,551).

gdti-113 113 Yes All values permitted by GS1 General
Specifications (up to 17 decimal digits,
with or without leading zeros)

gid gid-96 96 No Numeric-only, no leading zeros, decimal
value must be less than 236 (i.e., decimal
value must be less than or equal to
68,719,476,735).

usdod usdod-96 96 See “United States Department of Defense Supplier's
Passive RFID Information Guide” that can be
obtained at the United States Department of Defense's
web site (http://www.dodrfid.org/supplierguide.htm).

Table 15. EPC Binary Coding Schemes and Their Limitations 1853
Explanation (non-normative): For the SGTIN, SGLN, GRAI, and GIAI EPC schemes, the 1854
serial number according to the GS1 General Specifications is a variable length, 1855
alphanumeric string. This means that serial number 34, 034, 0034, etc, are all 1856
different serial numbers, as are P34, 34P, 0P34, P034, and so forth. In order to 1857
provide for up to 20 alphanumeric characters, 140 bits are required to encode the serial 1858
number. This is why the “long” binary encodings all have such a large number of bits. 1859
Similar considerations apply to the GDTI EPC scheme, except that the GDTI only allows 1860
digit characters (but still permits leading zeros). 1861
In order to accommodate the very common 96-bit RFID tag, additional binary coding 1862
schemes are introduced that only require 96 bits. In order to fit within 96 bits, some 1863
serial numbers have to be excluded. The 96-bit encodings of SGTIN, SGLN, GRAI, GIAI, 1864
and GDTI are limited to serial numbers that consist only of digits, which do not have 1865
leading zeros (unless the serial number consists in its entirety of a single 0 digit), and 1866
whose value when considered as a decimal numeral is less than 2B, where B is the 1867
number of bits available in the binary coding scheme. The choice to exclude serial 1868
numbers with leading zeros was an arbitrary design choice at the time the 96-bit 1869
encodings were first defined; for example, an alternative would have been to permit 1870
leading zeros, at the expense of excluding other serial numbers. But it is impossible to 1871
escape the fact that in B bits there can be no more than 2B different serial numbers. 1872
When decoding a “long” binary encoding, it is not permissible to strip off leading zeros 1873
when the binary encoding includes leading zero characters. Likewise, when encoding an 1874
EPC into either the “short” or “long” form, it is not permissible to strip off leading zeros 1875

http://www.autoidcenter.org/�
http://www.dodrfid.org/supplierguide.htm�

Copyright ©2005- 2010 EPCglobal®, All Rights Reserved. Page 72 of 210

prior to encoding. This means that EPCs whose serial numbers have leading zeros can 1876
only be encoded in the “long” form. 1877

In certain applications, it is desirable for the serial number to always contain a specific 1878
number of characters. Reasons for this may include wanting a predictable length for the 1879
EPC URI string, or for having a predictable size for a corresponding bar code encoding 1880
of the same identifier. In certain bar code applications, this is accomplished through the 1881
use of leading zeros. If 96-bit tags are used, however, the option to use leading zeros 1882
does not exist. 1883

Therefore, in applications that both require 96-bit tags and require that the serial number 1884
be a fixed number of characters, it is recommended that numeric serial numbers be used 1885
that are in the range 10D ≤ serial < 10D+1, where D is the desired number of digits. For 1886
example, if 11-digit serial numbers are desired, an application can use serial numbers in 1887
the range 10,000,000,000 through 99,999,999,999. Such applications must take care to 1888
use serial numbers that fit within the constraints of 96-bit tags. For example, if 12-digit 1889
serial numbers are desired for SGTIN-96 encodings, then the serial numbers must be in 1890
the range 100,000,000,000 through 274,877,906,943. 1891

It should be remembered, however, that many applications do not require a fixed number 1892
of characters in the serial number, and so all serial numbers from 0 through the 1893
maximum value (without leading zeros) may be used with 96-bit tags. 1894

12.3.2 EPC Pure Identity URI to EPC Tag URI 1895
Given: 1896

• An EPC Pure Identity URI as specified in Section 6. This is a string that matches the 1897
EPC-URI production of the grammar in Section 6.3. 1898

• A selection of a binary coding scheme to use. This is one of the the binary coding 1899
schemes specified in the “EPC Binary Coding Scheme” column of Table 15. The 1900
chosen binary coding scheme must be one that corresponds to the EPC scheme in the 1901
EPC Pure Identity URI. 1902

• A filter value, if the “Includes Filter Value” column of Table 15 indicates that the 1903
binary encoding includes a filter value. 1904

• The value of the attribute bits. 1905

• The value of the user memory indicator. 1906

Validation: 1907

• The serial number portion of the EPC (the characters following the rightmost dot 1908
character) must conform to any restrictions implied by the selected binary coding 1909
scheme, as specified by the “Serial Number Limitation” column of Table 15. 1910

• The filter value must be in the range 0 ≤ filter ≤ 7. 1911
Procedure: 1912

http://www.autoidcenter.org/�

Copyright ©2005- 2010 EPCglobal®, All Rights Reserved. Page 73 of 210

1. Starting with the EPC Pure Identity URI, replace the prefix urn:epc:id: with 1913
urn:epc:tag:. 1914

2. Replace the EPC scheme name with the selected EPC binary coding scheme name. 1915
For example, replace sgtin with sgtin-96 or sgtin-198. 1916

3. If the selected binary coding scheme includes a filter value, insert the filter value as a 1917
single decimal digit following the rightmost colon (“:”) character of the URI, 1918
followed by a dot (“.”) character. 1919

4. If the attribute bits are non-zero, construct a string [att=xNN], where NN is the 1920
value of the attribute bits as a 2-digit hexadecimal numeral. 1921

5. If the user memory indicator is non-zero, construct a string [umi=1]. 1922

6. If Step 4 or Step 5 yielded a non-empty string, insert those strings following the 1923
rightmost colon (“:”) character of the URI, followed by an additional colon 1924
character. 1925

7. The resulting string is the EPC Tag URI. 1926

12.3.3 EPC Tag URI to EPC Pure Identity URI 1927
Given: 1928

• An EPC Tag URI as specified in Section 12. This is a string that matches the 1929
TagURI production of the grammar in Section 12.4. 1930

Procedure: 1931

1. Starting with the EPC Tag URI, replace the prefix urn:epc:tag: with 1932
urn:epc:id:. 1933

2. Replace the EPC binary coding scheme name with the corresponding EPC scheme 1934
name. For example, replace sgtin-96 or sgtin-198 with sgtin. 1935

3. If the coding scheme includes a filter value, remove the filter value (the digit 1936
following the rightmost colon character) and the following dot (“.”) character. 1937

4. If the URI contains one or more control fields as specified in Section 12.2.2, remove 1938
them and the following colon character. 1939

5. The resulting string is the Pure Identity EPC URI. 1940

12.4 Grammar 1941
The following grammar specifies the syntax of the EPC Tag URI and EPC Raw URI. 1942
The grammar makes reference to grammatical elements defined in Sections 5 and 6.3. 1943
TagOrRawURI ::= TagURI | RawURI 1944
TagURI ::= “urn:epc:tag:” TagURIControlBody 1945
TagURIControlBody ::= (ControlField+ “:”)? TagURIBody 1946

http://www.autoidcenter.org/�

Copyright ©2005- 2010 EPCglobal®, All Rights Reserved. Page 74 of 210

TagURIBody ::= SGTINTagURIBody | SSCCTagURIBody | 1947
SGLNTagURIBody | GRAITagURIBody | GIAITagURIBody | 1948
GDTITagURIBody | GSRNTagURIBody | GIDTagURIBody | 1949
DODTagURIBody 1950
SGTINTagURIBody ::= SGTINEncName “:” NumericComponent “.” 1951
SGTINURIBody 1952
SGTINEncName ::= “sgtin-96” | “sgtin-198” 1953
SSCCTagURIBody ::= SSCCEncName “:” NumericComponent “.” 1954
SSCCURIBody 1955
SSCCEncName ::= “sscc-96” 1956
SGLNTagURIBody ::= SGLNEncName “:” NumericComponent “.” 1957
SGLNURIBody 1958
SGLNEncName ::= “sgln-96” | “sgln-195” 1959
GRAITagURIBody ::= GRAIEncName “:” NumericComponent “.” 1960
GRAIURIBody 1961
GRAIEncName ::= “grai-96” | “grai-170” 1962
GIAITagURIBody ::= GIAIEncName “:” NumericComponent “.” 1963
GIAIURIBody 1964
GIAIEncName ::= “giai-96” | “giai-202” 1965
GDTITagURIBody ::= GDTIEncName “:” NumericComponent “.” 1966
GDTIURIBody 1967
GDTIEncName ::= “gdti-96” | “gdti-113” 1968
GSRNTagURIBody ::= GSRNEncName “:” NumericComponent “.” 1969
GSRNURIBody 1970
GSRNEncName ::= “gsrn-96” 1971
GIDTagURIBody ::= GIDEncName “:” GIDURIBody 1972
GIDEncName ::= “gid-96” 1973
DODTagURIBody ::= DODEncName “:” NumericComponent “.” 1974
DODURIBody 1975
DODEncName ::= “dod-96” 1976
RawURI ::= “urn:epc:raw:” RawURIControlBody 1977
RawURIControlBody ::= (ControlField+ “:”)? RawURIBody 1978
RawURIBody ::= DecimalRawURIBody | HexRawURIBody | 1979
AFIRawURIBody 1980
DecimalRawURIBody ::= NonZeroComponent “.” NumericComponent 1981
HexRawURIBody ::= NonZeroComponent “.x” HexComponent 1982

http://www.autoidcenter.org/�

Copyright ©2005- 2010 EPCglobal®, All Rights Reserved. Page 75 of 210

AFIRawURIBody ::= NonZeroComponent “.x” HexComponent “.x” 1983
HexComponent 1984
ControlField ::= “[” ControlName “=” ControlValue “]” 1985
ControlName ::= “att” | “umi” | “xpc” 1986
ControlValue ::= BinaryControlValue | HexControlValue 1987
BinaryControlValue ::= “0” | “1” 1988
HexControlValue ::= “x” HexComponent 1989

13 URIs for EPC Patterns 1990
Certain software applications need to specify rules for filtering lists of tags according to 1991
various criteria. This specification provides an EPC Tag Pattern URI for this purpose. 1992
An EPC Tag Pattern URI does not represent a single tag encoding, but rather refers to a 1993
set of tag encodings. A typical pattern looks like this: 1994
urn:epc:pat:sgtin-96:3.0652642.[102400-204700].* 1995

This pattern refers to any tag containing a 96-bit SGTIN EPC Binary Encoding, whose 1996
Filter field is 3, whose GS1 Company Prefix is 0652642, whose Item Reference is in the 1997
range 102400 ≤ itemReference ≤ 204700, and whose Serial Number may be anything at 1998
all. 1999
In general, there is an EPC Tag Pattern URI scheme corresponding to each EPC Binary 2000
Encoding scheme, whose syntax is essentially identical except that ranges or the star (*) 2001
character may be used in each field. 2002

For the SGTIN, SSCC, SGLN, GRAI, GIAI, GSRN and GDTI patterns, the pattern 2003
syntax slightly restricts how wildcards and ranges may be combined. Only two 2004
possibilities are permitted for the CompanyPrefix field. One, it may be a star (*), in 2005
which case the following field (ItemReference, SerialReference, 2006
LocationReference, AssetType,IndividualAssetReference, 2007
ServiceReference or DocumentType) must also be a star. Two, it may be a 2008
specific company prefix, in which case the following field may be a number, a range, or a 2009
star. A range may not be specified for the CompanyPrefix. 2010

Explanation (non-normative): Because the company prefix is variable length, a range 2011
may not be specified, as the range might span different lengths. When a particular 2012
company prefix is specified, however, it is possible to match ranges or all values of the 2013
following field, because its length is fixed for a given company prefix. The other case 2014
that is allowed is when both fields are a star, which works for all tag encodings because 2015
the corresponding tag fields (including the Partition field, where present) are simply 2016
ignored. 2017
The pattern URI for the DoD Construct is as follows: 2018
urn:epc:pat:usdod-96:filterPat.CAGECodeOrDODAACPat.serialNumberPat 2019

where filterPat is either a filter value, a range of the form [lo-hi], or a * 2020
character; CAGECodeOrDODAACPat is either a CAGE Code/DODAAC or a * 2021

http://www.autoidcenter.org/�

Copyright ©2005- 2010 EPCglobal®, All Rights Reserved. Page 76 of 210

character; and serialNumberPat is either a serial number, a range of the form [lo-2022
hi], or a * character. 2023

13.1 Syntax 2024
The syntax of EPC Tag Pattern URIs is defined by the grammar below. 2025
PatURI ::= “urn:epc:pat:” PatBody 2026
PatBody ::= GIDPatURIBody | SGTINPatURIBody | 2027
SGTINAlphaPatURIBody | SGLNGRAI96PatURIBody | 2028
SGLNGRAIAlphaPatURIBody | SSCCPatURIBody | GIAI96PatURIBody 2029
| GIAIAlphaPatURIBody | GSRNPatURIBody | GDTIPatURIBody 2030
GIDPatURIBody ::= “gid-96:” 2*(PatComponent “.”) 2031
PatComponent 2032
SGTIN96PatURIBody ::= “sgtin-96:” PatComponent “.” 2033
GS1PatBody “.” PatComponent 2034
SGTINAlphaPatURIBody ::= “sgtin-198:” PatComponent “.” 2035
GS1PatBody “.” GS3A3PatComponent 2036
SGLNGRAI96PatURIBody ::= SGLNGRAI96TagEncName “:” 2037
PatComponent “.” GS1EPatBody “.” PatComponent 2038
SGLNGRAI96TagEncName ::= “sgln-96” | “grai-96” 2039
SGLNGRAIAlphaPatURIBody ::= SGLNGRAIAlphaTagEncName “:” 2040
PatComponent “.” GS1EPatBody “.” GS3A3PatComponent 2041
SGLNGRAIAlphaTagEncName ::= “sgln-195” | “grai-170” 2042
SSCCPatURIBody ::= “sscc-96:” PatComponent “.” GS1PatBody 2043
GIAI96PatURIBody ::= “giai-96:” PatComponent “.” GS1PatBody 2044
GIAIAlphaPatURIBody ::= “giai-202:” PatComponent “.” 2045
GS1GS3A3PatBody 2046
GSRNPatURIBody ::= “gsrn-96:” PatComponent “.” GS1PatBody 2047
GDTIPatURIBody ::= GDTI96PatURIBody | GDTI113PatURIBody 2048
GDTI96PatURIBody ::= “gdti-96:” PatComponent “.” 2049
GS1EPatBody “.” PatComponent 2050
GDTI113PatURIBody ::= “gdti-113:” PatComponent “.” 2051
GS1EPatBody “.” PaddedNumericOrStarComponent 2052
PaddedNumericOrStarComponent ::= PaddedNumericComponent 2053
 | StarComponent 2054
GS1PatBody ::= “*.*” | (PaddedNumericComponent “.” 2055
PaddedPatComponent) 2056
GS1EPatBody ::= “*.*” | (PaddedNumericComponent “.” 2057
PaddedOrEmptyPatComponent) 2058

http://www.autoidcenter.org/�

Copyright ©2005- 2010 EPCglobal®, All Rights Reserved. Page 77 of 210

GS1GS3A3PatBody ::= “*.*” | (PaddedNumericComponent “.” 2059
GS3A3PatComponent) 2060
PatComponent ::= NumericComponent 2061
 | StarComponent 2062
 | RangeComponent 2063
PaddedPatComponent ::= PaddedNumericComponent 2064
 | StarComponent 2065
 | RangeComponent 2066
PaddedOrEmptyPatComponent ::= PaddedNumericComponentOrEmpty 2067
 | StarComponent 2068
 | RangeComponent 2069
GS3A3PatComponent ::= GS3A3Component | StarComponent 2070
StarComponent ::= “*” 2071
RangeComponent ::= “[“ NumericComponent “-“ 2072
 NumericComponent “]” 2073

For a RangeComponent to be legal, the numeric value of the first 2074
NumericComponent must be less than or equal to the numeric value of the second 2075
NumericComponent. 2076

13.2 Semantics 2077
The meaning of an EPC Tag Pattern URI (urn:epc:pat:) is formally defined as 2078
denoting a set of EPC Tag URIs. 2079
The set of EPCs denoted by a specific EPC Tag Pattern URI is defined by the following 2080
decision procedure, which says whether a given EPC Tag URI belongs to the set denoted 2081
by the EPC Tag Pattern URI. 2082

Let urn:epc:pat:EncName:P1.P2...Pn be an EPC Tag Pattern URI. Let 2083
urn:epc:tag:EncName:C1.C2...Cn be an EPC Tag URI, where the EncName 2084
field of both URIs is the same. The number of components (n) depends on the value of 2085
EncName. 2086

First, any EPC Tag URI component Ci is said to match the corresponding EPC Tag 2087
Pattern URI component Pi if: 2088

• Pi is a NumericComponent, and Ci is equal to Pi; or 2089

• Pi is a PaddedNumericComponent, and Ci is equal to Pi both in numeric value 2090
as well as in length; or 2091

• Pi is a GS3A3Component, and Ci is equal to Pi, character for character; or 2092

• Pi is a CAGECodeOrDODAAC, and Ci is equal to Pi; or 2093

• Pi is a RangeComponent [lo-hi], and lo ≤ Ci ≤ hi; or 2094

http://www.autoidcenter.org/�

Copyright ©2005- 2010 EPCglobal®, All Rights Reserved. Page 78 of 210

• Pi is a StarComponent (and Ci is anything at all) 2095

Then the EPC Tag URI is a member of the set denoted by the EPC Pattern URI if and 2096
only if Ci matches Pi for all 1 ≤ i ≤ n. 2097

14 EPC Binary Encoding 2098
This section specifies how EPC Tag URIs are encoded into binary strings, and conversely 2099
how a binary string is decoded into an EPC Tag URI (if possible). The binary strings 2100
defined by the encoding and decoding procedures herein are suitable for use in the EPC 2101
memory bank of a Gen 2 tag, as specified in Section 15. 2102

The complete procedure for encoding an EPC Tag URI into the binary contents of the 2103
EPC memory bank of a Gen 2 tag is specified in Section 15.1.1. The procedure in 2104
Section 15.1.1 uses the procedure defined below in Section 14.3 to do the bulk of the 2105
work. Conversely, the complete procedure for decoding the binary contents of the EPC 2106
memory bank of a Gen 2 tag into an EPC Tag URI (or EPC Raw URI, if necessary) is 2107
specified in Section 15.2.2. The procedure in Section 15.2.2 uses the procedure defined 2108
below in Section 14.4 to do the bulk of the work. 2109

14.1 Overview of Binary Encoding 2110
The general structure of an EPC Binary Encoding as used on a tag is as a string of bits 2111
(i.e., a binary representation), consisting of a fixed length header followed by a series of 2112
fields whose overall length, structure, and function are determined by the header value. 2113
The assigned header values are specified in Section 14.2. 2114

The procedures for converting between the EPC Tag URI and the binary encoding are 2115
specified in Section 14.3 (encoding URI to binary) and Section 14.4 (decoding binary to 2116
URI). Both the encoding and decoding procedures are driven by coding tables specified 2117
in Section 14.5. Each coding table specifies, for a given header value, the structure of the 2118
fields following the header. 2119
To convert an EPC Tag URI to the EPC Binary Encoding, follow the procedure specified 2120
in Section 14.3, which is summarized as follows. First, the appropriate coding table is 2121
selected from among the tables specified in Section 14.5. The correct coding table is the 2122
one whose “URI Template” entry matches the given EPC Tag URI. Each column in the 2123
coding table corresponds to a bit field within the final binary encoding. Within each 2124
column, a “Coding Method” is specified that says how to calculate the corresponding bits 2125
of the binary encoding, given some portion of the URI as input. The encoding details for 2126
each “Coding Method” are given in subsections of Section 14.3. 2127
To convert an EPC Binary Encoding into an EPC Tag URI, follow the procedure 2128
specified in Section 14.4, which is summarized as follows. First, the most significant 2129
eight bits are looked up in the table of EPC binary headers (Table 16 in Section 14.2). 2130
This identifies the EPC coding scheme, which in turn selects a coding table from among 2131
those specified in Section 14.5. Each column in the coding table corresponds to a bit 2132
field in the input binary encoding. Within each column, a “Coding Method” is specified 2133
that says how to calculate a corresponding portion of the output URI, given that bit field 2134

http://www.autoidcenter.org/�

Copyright ©2005- 2010 EPCglobal®, All Rights Reserved. Page 79 of 210

as input. The decoding details for each “Coding Method” are given in subsections of 2135
Section 14.4. 2136

14.2 EPC Binary Headers 2137
The general structure of an EPC Binary Encoding as used on a tag is as a string of bits 2138
(i.e., a binary representation), consisting of a fixed length, 8 bit, header followed by a 2139
series of fields whose overall length, structure, and function are determined by the header 2140
value. For future expansion purpose, a header value of 11111111 is defined, to indicate 2141
that longer header beyond 8 bits is used; this provides for future expansion so that more 2142
than 256 header values may be accommodated by using longer headers. Therefore, the 2143
present specification provides for up to 255 8-bit headers, plus a currently undetermined 2144
number of longer headers. 2145

Back-compatibility note (non-normative) In a prior version of the Tag Data Standard, 2146
the header was of variable length, using a tiered approach in which a zero value in each 2147
tier indicated that the header was drawn from the next longer tier. For the encodings 2148
defined in the earlier specification, headers were either 2 bits or 8 bits. Given that a zero 2149
value is reserved to indicate a header in the next longer tier, the 2-bit header had 3 2150
possible values (01, 10, and 11, not 00), and the 8-bit header had 63 possible values 2151
(recognizing that the first 2 bits must be 00 and 00000000 is reserved to allow headers 2152
that are longer than 8 bits). The 2-bit headers were only used in conjunction with certain 2153
64-bit EPC Binary Encodings. 2154

In this version of the Tag Data Standard, the tiered header approach has been 2155
abandoned. Also, all 64-bit encodings (including all encodings that used 2-bit headers) 2156
have been deprecated, and should not be used in new applications. To facilitate an 2157
orderly transition, the portions of header space formerly occupied by 64-bit encodings 2158
are reserved in this version of the Tag Data Standard, with the intention that they be 2159
reclaimed after a “sunset date” has passed. After the “sunset date,” tags containing 64-2160
bit EPCs with 2-bit headers and tags with 64-bit headers starting with 00001 will no 2161
longer be properly interpreted. 2162

Sixteen encoding schemes have been defined in this version of the EPC Tag Data 2163
Standard, as shown in Table 1 below. The table also indicates header values that are 2164
currently unassigned, as well as header values that have been reserved to allow for an 2165
orderly “sunset” of 64-bit encodings defined in prior versions of the EPC Tag Data 2166
Standard. These will not be available for assignment until after the “sunset date” has 2167
passed. The “sunset date” is July 1, 2009, as stated by EPCglobal on July 1, 2006. 2168

Header
Value

(binary)

Header Value
(hexadecimal)

Encoding
Length
(bits)

Coding Scheme

0000 0000 00 NA Unprogrammed Tag

http://www.autoidcenter.org/�

Copyright ©2005- 2010 EPCglobal®, All Rights Reserved. Page 80 of 210

Header
Value

(binary)

Header Value
(hexadecimal)

Encoding
Length
(bits)

Coding Scheme

0000 0001
0000 001x
0000 01xx

01
02,03

04,05
06,07

NA
NA

NA
NA

Reserved for Future Use
Reserved for Future Use

Reserved for Future Use
Reserved for Future Use

0000 1000 08 64 Reserved until 64bit Sunset <SSCC-64>

0000 1001 09 64 Reserved until 64bit Sunset <SGLN-64>

0000 1010 0A 64 Reserved until 64bit Sunset <GRAI-64>

0000 1011 0B 64 Reserved until 64bit Sunset <GIAI-64>

0000 1100
to
0000 1111

0C

to
0F

 Reserved until 64 bit Sunset

Due to 64 bit encoding rule in Gen 1

0001 0000
to
0010 1011

10
to

2B

NA

NA

Reserved for Future Use

0010 1100 2C 96 GDTI-96

0010 1101 2D 96 GSRN-96

0010 1110 2E NA Reserved for Future Use

0010 1111 2F 96 DoD-96

0011 0000 30 96 SGTIN-96

0011 0001 31 96 SSCC-96

0011 0010 32 96 SGLN-96

0011 0011 33 96 GRAI-96

0011 0100 34 96 GIAI-96

0011 0101 35 96 GID-96

0011 0110 36 198 SGTIN-198

0011 0111 37 170 GRAI-170

0011 1000 38 202 GIAI-202

0011 1001 39 195 SGLN-195

0011 1010 3A 113 GDTI-113

http://www.autoidcenter.org/�

Copyright ©2005- 2010 EPCglobal®, All Rights Reserved. Page 81 of 210

Header
Value

(binary)

Header Value
(hexadecimal)

Encoding
Length
(bits)

Coding Scheme

0011 1011
to
0011 1111

3B
to

3F

NA Reserved for future Header values

0100 0000
to
0111 1111

40

to
7F

 Reserved until 64 bit Sunset

1000 0000
to
1011 1111

80
to

BF

64 Reserved until 64 bit Sunset <SGTIN-64>
(64 header values)

1100 0000
to
1100 1101

C0

to
CD

 Reserved until 64 bit Sunset

1100 1110 CE 64 Reserved until 64 bit Sunset <DoD-64>

1100 1111
to
1111 1110

CF
to
FE

 Reserved until 64 bit Sunset
Following 64 bit Sunset, E2 remains
reserved to avoid confusion with the first
eight bits of TID memory (Section 16).

1111 1111 FF NA Reserved for future headers longer than 8
bits

Table 16. EPC Binary Header Values 2169

14.3 Encoding Procedure 2170
The following procedure encodes an EPC Tag URI into a bit string containing the 2171
encoded EPC and (for EPC schemes that have a filter value) the filter value. This bit 2172
string is suitable for storing in the EPC memory bank of a Gen 2 Tag beginning at bit 20h. 2173
See Section 15.1.1 for the complete procedure for encoding the entire EPC memory bank, 2174
including control information that resides outside of the encoded EPC. (The procedure in 2175
Section 15.1.1 uses the procedure below as a subroutine.) 2176
Given: 2177

• An EPC Tag URI of the form urn:epc:tag:scheme:remainder 2178

Yields: 2179

• A bit string containing the EPC binary encoding of the specified EPC Tag URI, 2180
containing the encoded EPC together with the filter value (if applicable); OR 2181

http://www.autoidcenter.org/�

Copyright ©2005- 2010 EPCglobal®, All Rights Reserved. Page 82 of 210

• An exception indicating that the EPC Tag URI could not be encoded. 2182
Procedure: 2183

1. Use the scheme to identify the coding table for this URI scheme. If no such scheme 2184
exists, stop: this URI is not syntactically legal. 2185

2. Confirm that the URI syntactically matches the URI template associated with the 2186
coding table. If not, stop: this URI is not syntactically legal. 2187

3. Read the coding table left-to-right, and construct the encoding specified in each 2188
column to obtain a b-bit string, where b is specified in the “Coding Segment Bit 2189
Count” row of the table. The method for encoding each column depends on the 2190
“Coding Method” row of the table. If the “Coding Method” row specifies a specific 2191
bit string, use that bit string for that column. Otherwise, consult the following 2192
sections that specify the encoding methods. If the encoding of any segment fails, 2193
stop: this URI cannot be encoded. 2194

4. Concatenate the bit strings from Step 3 to form a single B-bit string, where B is the 2195
overall binary length specified by the scheme. The position of each segment within 2196
the concatenated bit string is as specified in the “Bit Position” row of the coding 2197
table. Section 15.1.1 specifies the procedure that uses the result of this step for 2198
encoding the EPC memory bank of a Gen 2 tag. 2199

The following sections specify the procedures to be used in Step 3. 2200

14.3.1 “Integer” Encoding Method 2201
The Integer encoding method is used for a segment that appears as a decimal integer in 2202
the URI, and as a binary integer in the binary encoding. 2203

Input: The input to the encoding method is the URI portion indicated in the “URI 2204
portion” row of the encoding table, a character string with no dot (“.”) characters. 2205

Validity Test: The input character string must satisfy the following: 2206

• It must match the grammar for NumericComponent as specified in Section 5. 2207

• The value of the string when considered as a decimal integer must be less than 2b, 2208
where b is the value specified in the “Coding Segmen Bit Count” row of the encoding 2209
table. 2210

If any of the above tests fails, the encoding of the URI fails. 2211
Output: The encoding of this segment is a b-bit integer, where b is the value specified in 2212
the “Coding Segment Bit Count” row of the encoding table, whose value is the value of 2213
the input character string considered as a decimal integer. 2214

14.3.2 “String” Encoding Method 2215
The String encoding method is used for a segment that appears as an alphanumeric string 2216
in the URI, and as an ISO 646 (ASCII) encoded bit string in the binary encoding. 2217

http://www.autoidcenter.org/�

Copyright ©2005- 2010 EPCglobal®, All Rights Reserved. Page 83 of 210

Input: The input to the encoding method is the URI portion indicated in the “URI 2218
portion” row of the encoding table, a character string with no dot (“.”) characters. 2219

Validity Test: The input character string must satisfy the following: 2220

• It must match the grammar for GS3A3Component as specified in Section 5. 2221

• For each portion of the string that matches the Escape production of the grammar 2222
specified in Section 5 (that is, a 3-character sequence consisting of a % character 2223
followed by two hexadecimal digits), the two hexadecimal characters following the % 2224
character must map to one of the 82 allowed characters specified in Table 46 2225
(Appendix A). 2226

• The number of characters must be less than b/7, where b is the value specified in the 2227
“Coding Segment Bit Count” row of the coding table. 2228

If any of the above tests fails, the encoding of the URI fails. 2229

Output: Consider the input to be a string of zero or more characters s1s2…sN, where each 2230
character si is either a single character or a 3-character sequence matching the Escape 2231
production of the grammar (that is, a 3-character sequence consisting of a % character 2232
followed by two hexadecimal digits). Translate each character to a 7-bit string. For a 2233
single character, the corresponding 7-bit string is specified in Table 46 (Appendix A). 2234
For an Escape sequence, the 7-bit string is the value of the two hexadecimal characters 2235
considered as a 7-bit integer. Concatenating those 7-bit strings in the order 2236
corresponding to the input, then pad with zero bits as necessary to total b bits, where b is 2237
the value specified in the “Coding Segment Bit Count” row of the coding table. (The 2238
number of padding bits will be b – 7N.) The resulting b-bit string is the output. 2239

14.3.3 “Partition Table” Encoding Method 2240
The Partition Table encoding method is used for a segment that appears in the URI as a 2241
pair of variable-length numeric fields separated by a dot (“.”) character, and in the 2242
binary encoding as a 3-bit “partition” field followed by two variable length binary 2243
integers. The number of characters in the two URI fields always totals to a constant 2244
number of characters, and the number of bits in the binary encoding likewise totals to a 2245
constant number of bits. 2246
The Partition Table encoding method makes use of a “partition table.” The specific 2247
partition table to use is specified in the coding table for a given EPC scheme. 2248

Input: The input to the encoding method is the URI portion indicated in the “URI 2249
portion” row of the encoding table. This consists of two strings of digits separated by a 2250
dot (“.”) character. For the purpose of this encoding procedure, the digit strings to the 2251
left and right of the dot are denoted C and D, respectively. 2252
Validity Test: The input must satisfy the following: 2253

• C must match the grammar for PaddedNumericComponent as specified in 2254
Section 5. 2255

http://www.autoidcenter.org/�

Copyright ©2005- 2010 EPCglobal®, All Rights Reserved. Page 84 of 210

• D must match the grammar for PaddedNumericComponentOrEmpty as 2256
specified in Section 5. 2257

• The number of digits in C must match one of the values specified in the “GS1 2258
Company Prefix Digits (L)” column of the partition table. The corresponding row is 2259
called the “matching partition table row” in the remainder of the encoding procedure. 2260

• The number of digits in D must match the corresponding value specified in the “Other 2261
Field Digits” column of the matching partition table row. Note that if the “Other 2262
Field Digits” column specifies zero, then D must be the empty string, implying the 2263
overall input segment ends with a “dot” character. 2264

Output: Construct the output bit string by concatenating the following three components: 2265

• The value P specified in the “partition value” column of the matching partition table 2266
row, as a 3-bit binary integer. 2267

• The value of C considered as a decimal integer, converted to an M-bit binary integer, 2268
where M is the number of bits specified in the “GS1 Company Prefix bits” column of 2269
the matching partition table row. 2270

• The value of D considered as a decimal integer, converted to an N-bit binary integer, 2271
where N is the number of bits specified in the “other field bits” column of the 2272
matching partition table row. If D is the empty string, the value of the N-bit integer is 2273
zero. 2274

The resulting bit string is (3 + M + N) bits in length, which always equals the “Coding 2275
Segment Bit Count” for this segment as indicated in the coding table. 2276

14.3.4 “Unpadded Partition Table” Encoding Method 2277
The Unpadded Partition Table encoding method is used for a segment that appears in the 2278
URI as a pair of variable-length numeric fields separated by a dot (“.”) character, and in 2279
the binary encoding as a 3-bit “partition” field followed by two variable length binary 2280
integers. The number of characters in the two URI fields is always less than or equal to a 2281
known limit, and the number of bits in the binary encoding is always a constant number 2282
of bits. 2283

The Unpadded Partition Table encoding method makes use of a “partition table.” The 2284
specific partition table to use is specified in the coding table for a given EPC scheme. 2285

Input: The input to the encoding method is the URI portion indicated in the “URI 2286
portion” row of the encoding table. This consists of two strings of digits separated by a 2287
dot (“.”) character. For the purpose of this encoding procedure, the digit strings to the 2288
left and right of the dot are denoted C and D, respectively. 2289
Validity Test: The input must satisfy the following: 2290

• C must match the grammar for PaddedNumericComponent as specified in 2291
Section 5. 2292

• D must match the grammar for NumericComponent as specified in Section 5. 2293

http://www.autoidcenter.org/�

Copyright ©2005- 2010 EPCglobal®, All Rights Reserved. Page 85 of 210

• The number of digits in C must match one of the values specified in the “GS1 2294
Company Prefix Digits (L)” column of the partition table. The corresponding row is 2295
called the “matching partition table row” in the remainder of the encoding procedure. 2296

• The value of D, considered as a decimal integer, must be less than 2N, where N is the 2297
number of bits specified in the “other field bits” column of the matching partition 2298
table row. 2299

Output: Construct the output bit string by concatenating the following three components: 2300

• The value P specified in the “partition value” column of the matching partition table 2301
row, as a 3-bit binary integer. 2302

• The value of C considered as a decimal integer, converted to an M-bit binary integer, 2303
where M is the number of bits specified in the “GS1 Company Prefix bits” column of 2304
the matching partition table row. 2305

• The value of D considered as a decimal integer, converted to an N-bit binary integer, 2306
where N is the number of bits specified in the “other field bits” column of the 2307
matching partition table row. If D is the empty string, the value of the N-bit integer is 2308
zero. 2309

The resulting bit string is (3 + M + N) bits in length, which always equals the “Coding 2310
Segment Bit Count” for this segment as indicated in the coding table. 2311

14.3.5 “String Partition Table” Encoding Method 2312
The String Partition Table encoding method is used for a segment that appears in the URI 2313
as a variable-length numeric field and a variable-length string field separated by a dot 2314
(“.”) character, and in the binary encoding as a 3-bit “partition” field followed by a 2315
variable length binary integer and a variable length binary-encoded character string. The 2316
number of characters in the two URI fields is always less than or equal to a known limit 2317
(counting a 3-character escape sequence as a single character), and the number of bits in 2318
the binary encoding is padded if necessary to a constant number of bits. 2319
The Partition Table encoding method makes use of a “partition table.” The specific 2320
partition table to use is specified in the coding table for a given EPC scheme. 2321
Input: The input to the encoding method is the URI portion indicated in the “URI 2322
portion” row of the encoding table. This consists of two strings separated by a dot (“.”) 2323
character. For the purpose of this encoding procedure, the strings to the left and right of 2324
the dot are denoted C and D, respectively. 2325
Validity Test: The input must satisfy the following: 2326

• C must match the grammar for PaddedNumericComponent as specified in 2327
Section 5. 2328

• D must match the grammar for GS3A3Component as specified in Section 5. 2329

• The number of digits in C must match one of the values specified in the “GS1 2330
Company Prefix Digits (L)” column of the partition table. The corresponding row is 2331
called the “matching partition table row” in the remainder of the encoding procedure. 2332

http://www.autoidcenter.org/�

Copyright ©2005- 2010 EPCglobal®, All Rights Reserved. Page 86 of 210

• The number of characters in D must be less than or equal to the corresponding value 2333
specified in the “Other Field Maximum Characters” column of the matching partition 2334
table row. For the purposes of this rule, an escape triplet (%nn) is counted as one 2335
character. 2336

• For each portion of D that matches the Escape production of the grammar specified 2337
in Section 5 (that is, a 3-character sequence consisting of a % character followed by 2338
two hexadecimal digits), the two hexadecimal characters following the % character 2339
must map to one of the 82 allowed characters specified in Table 46 (Appendix A). 2340

Output: Construct the output bit string by concatenating the following three components: 2341

• The value P specified in the “partition value” column of the matching partition table 2342
row, as a 3-bit binary integer. 2343

• The value of C considered as a decimal integer, converted to an M-bit binary integer, 2344
where M is the number of bits specified in the “GS1 Company Prefix bits” column of 2345
the matching partition table row. 2346

• The value of D converted to an N-bit binary string, where N is the number of bits 2347
specified in the “other field bits” column of the matching partition table row. This N-2348
bit binary string is constructed as follows. Consider D to be a string of zero or more 2349
characters s1s2…sN, where each character si is either a single character or a 3-2350
character sequence matching the Escape production of the grammar (that is, a 3-2351
character sequence consisting of a % character followed by two hexadecimal digits). 2352
Translate each character to a 7-bit string. For a single character, the corresponding 7-2353
bit string is specified in Table 46 (Appendix A). For an Escape sequence, the 7-bit 2354
string is the value of the two hexadecimal characters considered as a 7-bit integer. 2355
Concatenate those 7-bit strings in the order corresponding to the input, then pad with 2356
zero bits as necessary to total N bits. 2357

The resulting bit string is (3 + M + N) bits in length, which always equals the “Coding 2358
Segment Bit Count” for this segment as indicated in the coding table. 2359

14.3.6 “Numeric String” Encoding Method 2360
The Numeric String encoding method is used for a segment that appears as a numeric 2361
string in the URI, possibly including leading zeros. The leading zeros are preserved in 2362
the binary encoding by prepending a “1” digit to the numeric string before encoding. 2363

Input: The input to the encoding method is the URI portion indicated in the “URI 2364
portion” row of the encoding table, a character string with no dot (“.”) characters. 2365

Validity Test: The input character string must satisfy the following: 2366

• It must match the grammar for PaddedNumericComponent as specified in 2367
Section 5. 2368

• The number of digits in the string, D, must be such that 2 × 10D < 2b, where b is the 2369
value specified in the “Coding Segment Bit Count” row of the encoding table. (For 2370

http://www.autoidcenter.org/�

Copyright ©2005- 2010 EPCglobal®, All Rights Reserved. Page 87 of 210

the GDTI-113 scheme, b = 58 and therefore the number of digits D must be less than 2371
or equal to 17. GDTI-113 is the only scheme that uses this encoding method.) 2372

If any of the above tests fails, the encoding of the URI fails. 2373
Output: Construct the output bit string as follows: 2374

• Prepend the character “1” to the left of the input character string. 2375

• Convert the resulting string to a b-bit integer, where b is the value specified in the “bit 2376
count” row of the encoding table, whose value is the value of the input character 2377
string considered as a decimal integer. 2378

14.4 Decoding Procedure 2379
This procedure decodes a bit string as found beginning at bit 20h in the EPC memory 2380
bank of a Gen 2 Tag into an EPC Tag URI. This procedure only decodes the EPC and 2381
filter value (if applicable). Section 15.2.2 gives the complete procedure for decoding the 2382
entire contents of the EPC memory bank, including control information that is stored 2383
outside of the encoded EPC. The procedure in Section 15.2.2 should be used by most 2384
applications. (The procedure in Section 15.2.2 uses the procedure below as a subroutine.) 2385

Given: 2386

• A bit string consisting of N bits bN-1bN-2…b0 2387
Yields: 2388

• An EPC Tag URI beginning with urn:epc:tag:, which does not contain control 2389
information fields (other than the filter value if the EPC scheme includes a filter 2390
value); OR 2391

• An exception indicating that the bit string cannot be decoded into an EPC Tag URI. 2392
Procedure: 2393

1. Extract the most significant eight bits, the EPC header: bN-1bN-2…bN-8. Referring to 2394
 Table 16 in Section 14.2, use the header to identify the coding table for this binary 2395
encoding and the encoding bit length B. If no coding table exists for this header, stop: 2396
this binary encoding cannot be decoded. 2397

2. Confirm that the total number of bits N is greater than or equal to the total number of 2398
bits B specified for this header in Table 16. If not, stop: this binary encoding cannot 2399
be decoded. 2400

3. If necessary, truncate the least significant bits of the input to match the number of bits 2401
specified in Table 16. That is, if Table 16 specifies B bits, retain bits bN-1bN-2…bN-B. 2402
For the remainder of this procedure, consider the remaining bits to be numbered 2403
bB-1bB-2…b0. (The purpose of this step is to remove any trailing zero padding bits that 2404
may have been read due to word-oriented data transfer.) 2405

4. Separate the bits of the binary encoding into segments according to the “bit position” 2406
row of the coding table. For each segment, decode the bits to obtain a character string 2407
that will be used as a portion of the final URI. The method for decoding each column 2408

http://www.autoidcenter.org/�

Copyright ©2005- 2010 EPCglobal®, All Rights Reserved. Page 88 of 210

depends on the “coding method” row of the table. If the “coding method” row 2409
specifies a specific bit string, the corresponding bits of the input must match those 2410
bits exactly; if not, stop: this binary encoding cannot be decoded. Otherwise, consult 2411
the following sections that specify the decoding methods. If the decoding of any 2412
segment fails, stop: this binary encoding cannot be decoded. 2413

5. Concatenate the following strings to obtain the final URI: the string 2414
urn:epc:tag:, the scheme name as specified in the coding table, a colon (“:”) 2415
character, and the strings obtained in Step 3, inserting a dot (“.”) character between 2416
adjacent strings. 2417

The following sections specify the procedures to be used in Step 3. 2418

14.4.1 “Integer” Decoding Method 2419
The Integer decoding method is used for a segment that appears as a decimal integer in 2420
the URI, and as a binary integer in the binary encoding. 2421

Input: The input to the decoding method is the bit string identified in the “bit position” 2422
row of the coding table. 2423

Validity Test: There are no validity tests for this decoding method. 2424
Output: The decoding of this segment is a decimal numeral whose value is the value of 2425
the input considered as an unsigned binary integer. The output shall not begin with a 2426
zero character if it is two or more digits in length. 2427

14.4.2 “String” Decoding Method 2428
The String decoding method is used for a segment that appears as a alphanumeric string 2429
in the URI, and as an ISO 646 (ASCII) encoded bit string in the binary encoding. 2430
Input: The input to the decoding method is the bit string identified in the “bit position” 2431
row of the coding table. This length of this bit string is always a multiple of seven. 2432
Validity Test: The input bit string must satisfy the following: 2433

• Each 7-bit segment must have a value corresponding to a character specified in Table 2434
46 (Appendix A), or be all zeros. 2435

• All 7-bit segments following an all-zero segment must also be all zeros. 2436

• The first 7-bit segment must not be all zeros. (In other words, the string must contain 2437
at least one character.) 2438

If any of the above tests fails, the decoding of the segment fails. 2439

Output: Translate each 7-bit segment, up to but not including the first all-zero segment 2440
(if any), into a single character or 3-charcter escape triplet by looking up the 7-bit 2441
segment in Table 46 (Appendix A) and using the value found in the “URI Form” column. 2442
Concatenate the characters and/or 3-character triplets in the order corresponding to the 2443
input bit string. The resulting character string is the output. This character string 2444
matches the GS3A3 production of the grammar in Section 5. 2445

http://www.autoidcenter.org/�

Copyright ©2005- 2010 EPCglobal®, All Rights Reserved. Page 89 of 210

14.4.3 “Partition Table” Decoding Method 2446
The Partition Table decoding method is used for a segment that appears in the URI as a 2447
pair of variable-length numeric fields separated by a dot (“.”) character, and in the 2448
binary encoding as a 3-bit “partition” field followed by two variable length binary 2449
integers. The number of characters in the two URI fields always totals to a constant 2450
number of characters, and the number of bits in the binary encoding likewise totals to a 2451
constant number of bits. 2452

The Partition Table decoding method makes use of a “partition table.” The specific 2453
partition table to use is specified in the coding table for a given EPC scheme. 2454

Input: The input to the decoding method is the bit string identified in the “bit position” 2455
row of the coding table. Logically, this bit string is divided into three substrings, 2456
consisting of a 3-bit “partition” value, followed by two substrings of variable length. 2457
Validity Test: The input must satisfy the following: 2458

• The three most significant bits of the input bit string, considered as a binary integer, 2459
must match one of the values specified in the “partition value” column of the partition 2460
table. The corresponding row is called the “matching partition table row” in the 2461
remainder of the decoding procedure. 2462

• Extract the M next most significant bits of the input bit string following the three 2463
partition bits, where M is the value specified in the “Compay Prefix Bits” column of 2464
the matching partition table row. Consider these M bits to be an unsigned binary 2465
integer, C. The value of C must be less than 10L, where L is the value specified in the 2466
“GS1 Company Prefix Digits (L)” column of the matching partition table row. 2467

• There are N bits remaining in the input bit string, where N is the value specified in the 2468
“Other Field Bits” column of the matching partition table row. Consider these N bits 2469
to be an unsigned binary integer, D. The value of D must be less than 10K, where K is 2470
the value specified in the “Other Field Digits (K)” column of the matching partition 2471
table row. Note that if K = 0, then the value of D must be zero. 2472

Output: Construct the output character string by concatenating the following three 2473
components: 2474

• The value C converted to a decimal numeral, padding on the left with zero (“0”) 2475
characters to make L digits in total. 2476

• A dot (“.”) character. 2477

• The value D converted to a decimal numeral, padding on the left with zero (“0”) 2478
characters to make K digits in total. If K = 0, append no characters to the dot above 2479
(in this case, the final URI string will have two adjacent dot characters when this 2480
segment is combined with the following segment). 2481

14.4.4 “Unpadded Partition Table” Decoding Method 2482
The Unpadded Partition Table decoding method is used for a segment that appears in the 2483
URI as a pair of variable-length numeric fields separated by a dot (“.”) character, and in 2484

http://www.autoidcenter.org/�

Copyright ©2005- 2010 EPCglobal®, All Rights Reserved. Page 90 of 210

the binary encoding as a 3-bit “partition” field followed by two variable length binary 2485
integers. The number of characters in the two URI fields is always less than or equal to a 2486
known limit, and the number of bits in the binary encoding is always a constant number 2487
of bits. 2488

The Unpadded Partition Table decoding method makes use of a “partition table.” The 2489
specific partition table to use is specified in the coding table for a given EPC scheme. 2490

Input: The input to the decoding method is the bit string identified in the “bit position” 2491
row of the coding table. Logically, this bit string is divided into three substrings, 2492
consisting of a 3-bit “partition” value, followed by two substrings of variable length. 2493
Validity Test: The input must satisfy the following: 2494

• The three most significant bits of the input bit string, considered as a binary integer, 2495
must match one of the values specified in the “partition value” column of the partition 2496
table. The corresponding row is called the “matching partition table row” in the 2497
remainder of the decoding procedure. 2498

• Extract the M next most significant bits of the input bit string following the three 2499
partition bits, where M is the value specified in the “Compay Prefix Bits” column of 2500
the matching partition table row. Consider these M bits to be an unsigned binary 2501
integer, C. The value of C must be less than 10L, where L is the value specified in the 2502
“GS1 Company Prefix Digits (L)” column of the matching partition table row. 2503

• There are N bits remaining in the input bit string, where N is the value specified in the 2504
“Other Field Bits” column of the matching partition table row. Consider these N bits 2505
to be an unsigned binary integer, D. The value of D must be less than 10K, where K is 2506
the value specified in the “Other Field Max Digits (K)” column of the matching 2507
partition table row. 2508

Output: Construct the output character string by concatenating the following three 2509
components: 2510

• The value C converted to a decimal numeral, padding on the left with zero (“0”) 2511
characters to make L digits in total. 2512

• A dot (“.”) character. 2513

• The value D converted to a decimal numeral, with no leading zeros (except that if 2514
D = 0 it is converted to a single zero digit). 2515

14.4.5 “String Partition Table” Decoding Method 2516
The String Partition Table decoding method is used for a segment that appears in the URI 2517
as a variable-length numeric field and a variable-length string field separated by a dot 2518
(“.”) character, and in the binary encoding as a 3-bit “partition” field followed by a 2519
variable length binary integer and a variable length binary-encoded character string. The 2520
number of characters in the two URI fields is always less than or equal to a known limit 2521
(counting a 3-character escape sequence as a single character), and the number of bits in 2522
the binary encoding is padded if necessary to a constant number of bits. 2523

http://www.autoidcenter.org/�

Copyright ©2005- 2010 EPCglobal®, All Rights Reserved. Page 91 of 210

The Partition Table decoding method makes use of a “partition table.” The specific 2524
partition table to use is specified in the coding table for a given EPC scheme. 2525

Input: The input to the decoding method is the bit string identified in the “bit position” 2526
row of the coding table. Logically, this bit string is divided into three substrings, 2527
consisting of a 3-bit “partition” value, followed by two substrings of variable length. 2528
Validity Test: The input must satisfy the following: 2529

• The three most significant bits of the input bit string, considered as a binary integer, 2530
must match one of the values specified in the “partition value” column of the partition 2531
table. The corresponding row is called the “matching partition table row” in the 2532
remainder of the decoding procedure. 2533

• Extract the M next most significant bits of the input bit string following the three 2534
partition bits, where M is the value specified in the “Compay Prefix Bits” column of 2535
the matching partition table row. Consider these M bits to be an unsigned binary 2536
integer, C. The value of C must be less than 10L, where L is the value specified in the 2537
“GS1 Company Prefix Digits (L)” column of the matching partition table row. 2538

• There are N bits remaining in the input bit string, where N is the value specified in the 2539
“Other Field Bits” column of the matching partition table row. These bits must 2540
consist of one or more non-zero 7-bit segments followed by zero or more all-zero 2541
bits. 2542

• The number of non-zero 7-bit segments that precede the all-zero bits (if any) must be 2543
less or equal to than K, where K is the value specified in the “Maximum Characters” 2544
column of the matching partition table row. 2545

• Each of the non-zero 7-bit segments must have a value corresponding to a character 2546
specified in Table 46 (Appendix A). 2547

Output: Construct the output character string by concatenating the following three 2548
components: 2549

• The value C converted to a decimal numeral, padding on the left with zero (“0”) 2550
characters to make L digits in total. 2551

• A dot (“.”) character. 2552

• A character string determined as follows. Translate each non-zero 7-bit segment as 2553
determined by the validity test into a single character or 3-character escape triplet by 2554
looking up the 7-bit segment in Table 46 (Appendix A) and using the value found in 2555
the “URI Form” column. Concatenate the characters and/or 3-character triplet in the 2556
order corresponding to the input bit string. 2557

14.4.6 “Numeric String” Decoding Method 2558
The Numeric String decoding method is used for a segment that appears as a numeric 2559
string in the URI, possibly including leading zeros. The leading zeros are preserved in 2560
the binary encoding by prepending a “1” digit to the numeric string before encoding. 2561

http://www.autoidcenter.org/�

Copyright ©2005- 2010 EPCglobal®, All Rights Reserved. Page 92 of 210

Input: The input to the decoding method is the bit string identified in the “bit position” 2562
row of the coding table. 2563

Validity Test: The input must be such that the decoding procedure below does not fail. 2564
Output: Construct the output string as follows. 2565

• Convert the input bit string to a decimal numeral without leading zeros whose value is 2566
the value of the input considered as an unsigned binary integer. 2567

• If the numeral from the previous step does not begin with a “1” character, stop: the 2568
input is invalid. 2569

• If the numeral from the previous step consists only of one character, stop: the input is 2570
invalid (because this would correspond to an empty numeric string). 2571

• Delete the leading “1” character from the numeral. 2572

• The resulting string is the output. 2573

14.5 EPC Binary Coding Tables 2574
This section specifies coding tables for use with the encoding procedure of Section 14.3 2575
and the decoding procedure of Section 14.3.4. 2576

The “Bit Position” row of each coding table illustrates the relative bit positions of 2577
segments within each binary encoding. In the “Bit Position” row, the highest subscript 2578
indicates the most significant bit, and subscript 0 indicates the least significant bit. Note 2579
that this is opposite to the way RFID tag memory bank bit addresses are normally 2580
indicated, where address 0 is the most significant bit. 2581

14.5.1 Serialized Global Trade Identification Number (SGTIN) 2582
Two coding schemes for the SGTIN are specified, a 96-bit encoding (SGTIN-96) and a 2583
198-bit encoding (SGTIN-198). The SGTIN-198 encoding allows for the full range of 2584
serial numbers up to 20 alphanumeric characters as specified in [GS1GS10.0]. The 2585
SGTIN-96 encoding allows for numeric-only serial numbers, without leading zeros, 2586
whose value is less than 238 (that is, from 0 through 274,877,906,943, inclusive). 2587
Both SGTIN coding schemes make reference to the following partition table. 2588

Partition
Value

(P)

GS1 Company Prefix Indicator/Pad Digit
and Item
Reference

 Bits
(M)

Digits
(L)

Bits
(N)

Digits

0 40 12 4 1

1 37 11 7 2

2 34 10 10 3

http://www.autoidcenter.org/�

Copyright ©2005- 2010 EPCglobal®, All Rights Reserved. Page 93 of 210

Partition
Value

(P)

GS1 Company Prefix Indicator/Pad Digit
and Item
Reference

 Bits
(M)

Digits
(L)

Bits
(N)

Digits

3 30 9 14 4

4 27 8 17 5

5 24 7 20 6

6 20 6 24 7

Table 17. SGTIN Partition Table 2589

14.5.1.1 SGTIN-96 Coding Table 2590
Scheme SGTIN-96

URI
Template

urn:epc:tag:sgtin-96:F.C.I.S

Total Bits 96

Logical
Segment

EPC
Header

Filter Partition GS1
Company
Prefix (*)

Indicator
(**) / Item
Reference

Serial

Logical
Segment
Bit Count

8 3 3 20-40 24-4 38

Coding
Segment

EPC
Header

Filter GTIN Serial

URI
portion

 F C.I S

Coding
Segment
Bit Count

8 3 47 38

Bit
Position

b95b94…b88 b87b86b85 b84b83…b38 b37b36…b0

Coding
Method

00110000 Integer Partition Table 17 Integer

Table 18. SGTIN-96 Coding Table 2591
(*) See Section 7.1.2 for the case of an SGTIN derived from a GTIN-8. 2592
(**) Note that in the case of an SGTIN derived from a GTIN-12 or GTIN-13, a zero pad 2593
digit takes the place of the Indicator Digit. In all cases, see Section 7.1 for the definition 2594

http://www.autoidcenter.org/�

Copyright ©2005- 2010 EPCglobal®, All Rights Reserved. Page 94 of 210

of how the Indicator Digit (or zero pad) and the Item Reference are combined into this 2595
segment of the EPC. 2596

14.5.1.2 SGTIN-198 Coding Table 2597
Scheme SGTIN-198

URI
Template

urn:epc:tag:sgtin-198:F.C.I.S

Total
Bits

198

Logical
Segment

EPC Header Filter Partition GS1
Company
Prefix (*)

Indicator
(**) /
Item
Reference

Serial

Logical
Segment
Bit
Count

8 3 3 20-40 24-4 140

Coding
Segment

EPC Header Filter GTIN Serial

URI
portion

 F C.I S

Coding
Segment
Bit
Count

8 3 47 140

Bit
Position

b197b196…b190 b189b188b187 b186b185…b140 b139b138…b0

Coding
Method

00110110 Integer Partition Table 17 String

Table 19. SGTIN-198 Coding Table 2598
(*) See Section 7.1.2 for the case of an SGTIN derived from a GTIN-8. 2599

(**) Note that in the case of an SGTIN derived from a GTIN-12 or GTIN-13, a zero pad 2600
digit takes the place of the Indicator Digit. In all cases, see Section 7.1 for the definition 2601
of how the Indicator Digit (or zero pad) and the Item Reference are combined into this 2602
segment of the EPC. 2603

14.5.2 Serial Shipping Container Code (SSCC) 2604
One coding scheme for the SSCC is specified: the 96-bit encoding SSCC-96. The SSCC-2605
96 encoding allows for the full range of SSCCs as specified in [GS1GS10.0]. 2606

http://www.autoidcenter.org/�

Copyright ©2005- 2010 EPCglobal®, All Rights Reserved. Page 95 of 210

The SSCC-96 coding scheme makes reference to the following partition table. 2607

Partition
Value

(P)

GS1 Company Prefix Extension Digit
and Serial
Reference

 Bits
(M)

Digits
(L)

Bits
(N)

Digits

0 40 12 18 5

1 37 11 21 6

2 34 10 24 7

3 30 9 28 8

4 27 8 31 9

5 24 7 34 10

6 20 6 38 11

Table 20. SSCC Partition Table 2608

http://www.autoidcenter.org/�

Copyright ©2005- 2010 EPCglobal®, All Rights Reserved. Page 96 of 210

14.5.2.1 SSCC-96 Coding Table 2609
Scheme SSCC-96

URI
Template

urn:epc:tag:sscc-96:F.C.S

Total Bits 96

Logical
Segment

EPC
Header

Filter Partition GS1
Company
Prefix

Extension
/ Serial
Reference

(Reserved)

Logical
Segment
Bit Count

8 3 3 20-40 38-18 24

Coding
Segment

EPC
Header

Filter SSCC (Reserved)

URI
portion

 F C.S

Coding
Segment
Bit Count

8 3 61 24

Bit
Position

b95b94…b88 b87b86b85 b84b83…b24 b23b36…b0

Coding
Method

00110001 Integer Partition Table 20 00…0
(24 zero
bits)

Table 21. SSCC-96 Coding Table 2610

14.5.3 Serialized Global Location Number (SGLN) 2611
Two coding schemes for the SGLN are specified, a 96-bit encoding (SGLN-96) and a 2612
195-bit encoding (SGLN-195). The SGLN-195 encoding allows for the full range of 2613
GLN extensions up to 20 alphanumeric characters as specified in [GS1GS10.0]. The 2614
SGLN-96 encoding allows for numeric-only GLN extensions, without leading zeros, 2615
whose value is less than 241 (that is, from 0 through 2,199,023,255,551, inclusive). Note 2616
that an extension value of 0 is reserved to indicate that the SGLN is equivalent to the 2617
GLN indicated by the GS1 Company Prefix and location reference; this value is available 2618
in both the SGLN-96 and the SGLN-195 encodings. 2619

Both SGLN coding schemes make reference to the following partition table. 2620

Partition
Value
(P)

GS1 Company Prefix Location Reference

 Bits Digits Bits Digits

http://www.autoidcenter.org/�

Copyright ©2005- 2010 EPCglobal®, All Rights Reserved. Page 97 of 210

(M) (L) (N)

0 40 12 1 0

1 37 11 4 1

2 34 10 7 2

3 30 9 11 3

4 27 8 14 4

5 24 7 17 5

6 20 6 21 6

Table 22. SGLN Partition Table 2621

14.5.3.1 SGLN-96 Coding Table 2622
Scheme SGLN-96

URI
Template

urn:epc:tag:sgln-96:F.C.L.E

Total Bits 96

Logical
Segment

EPC
Header

Filter Partition GS1
Company
Prefix

Location
Reference

Extension

Logical
Segment
Bit Count

8 3 3 20-40 21-1 41

Coding
Segment

EPC
Header

Filter GLN Extension

URI
portion

 F C.L E

Coding
Segment
Bit Count

8 3 44 41

Bit
Position

b95b94…b88 b87b86b85 b84b83…b41 b40b39…b0

Coding
Method

00110010 Integer Partition Table 22 Integer

Table 23. SGLN-96 Coding Table 2623

http://www.autoidcenter.org/�

Copyright ©2005- 2010 EPCglobal®, All Rights Reserved. Page 98 of 210

14.5.3.2 SGLN-195 Coding Table 2624
Scheme SGLN-195

URI
Template

urn:epc:tag:sgln-195:F.C.L.E

Total
Bits

195

Logical
Segment

EPC Header Filter Partition GS1
Company
Prefix

Location
Reference

Extension

Logical
Segment
Bit
Count

8 3 3 20-40 21-1 140

Coding
Segment

EPC Header Filter GLN Extension

URI
portion

 F C.L E

Coding
Segment
Bit
Count

8 3 44 140

Bit
Position

b194b193…b187 b186b185b184 b183b182…b140 b139b138…b0

Coding
Method

00111001 Integer Partition Table 22 String

Table 24. SGLN-195 Coding Table 2625

14.5.4 Global Returnable Asset Identifier (GRAI) 2626
Two coding schemes for the GRAI are specified, a 96-bit encoding (GRAI-96) and a 2627
170-bit encoding (SGTIN-170). The GRAI-170 encoding allows for the full range of 2628
serial numbers up to 16 alphanumeric characters as specified in [GS1GS10.0]. The 2629
GRAI-96 encoding allows for numeric-only serial numbers, without leading zeros, whose 2630
value is less than 238 (that is, from 0 through 274,877,906,943, inclusive). 2631
Only GRAIs that include the optional serial number may be represented as EPCs. A 2632
GRAI without a serial number represents an asset class, rather than a specific instance, 2633
and therefore may not be used as an EPC (just as a non-serialized GTIN may not be used 2634
as an EPC). 2635
Both GRAI coding schemes make reference to the following partition table. 2636

http://www.autoidcenter.org/�

Copyright ©2005- 2010 EPCglobal®, All Rights Reserved. Page 99 of 210

Partition
Value

(P)

Company Prefix Asset Type

 Bits
(M)

Digits (L) Bits
(N)

Digits

0 40 12 4 0

1 37 11 7 1

2 34 10 10 2

3 30 9 14 3

4 27 8 17 4

5 24 7 20 5

6 20 6 24 6

Table 25. GRAI Partition Table 2637

14.5.4.1 GRAI-96 Coding Table 2638
Scheme GRAI-96

URI
Template

urn:epc:tag:grai-96:F.C.A.S

Total Bits 96

Logical
Segment

EPC
Header

Filter Partition GS1
Company
Prefix

Asset
Type

Serial

Logical
Segment
Bit Count

8 3 3 20-40 24-3 38

Coding
Segment

EPC
Header

Filter Partition + Company Prefix + Asset
Type

Serial

URI
portion

 F C.A S

Coding
Segment
Bit Count

8 3 47 38

Bit
Position

b95b94…b88 b87b86b85 b84b83…b38 b37b36…b0

Coding
Method

00110011 Integer Partition Table 25 Integer

Table 26. GRAI-96 Coding Table 2639

http://www.autoidcenter.org/�

Copyright ©2005- 2010 EPCglobal®, All Rights Reserved. Page 100 of 210

14.5.4.2 GRAI-170 Coding Table 2640
Scheme GRAI-170

URI
Template

urn:epc:tag:grai-170:F.C.A.S

Total Bits 170

Logical
Segment

EPC Header Filter Partition GS1
Company
Prefix

Asset
Type

Serial

Logical
Segment
Bit Count

8 3 3 20-40 24-3 112

Coding
Segment

EPC Header Filter Partition + Company Prefix +
Asset Type

Serial

URI
portion

 F C.A S

Coding
Segment
Bit Count

8 3 47 112

Bit
Position

b169b168…b162 b161b160b159 b158b157…b112 b111b110…b0

Coding
Method

00110111 Integer Partition Table 25 String

Table 27. GRAI-170 Coding Table 2641

14.5.5 Global Individual Asset Identifier (GIAI) 2642
Two coding schemes for the GIAI are specified, a 96-bit encoding (GIAI-96) and a 202-2643
bit encoding (GIAI-202). The GIAI-202 encoding allows for the full range of serial 2644
numbers up to 24 alphanumeric characters as specified in [GS1GS10.0]. The GIAI-96 2645
encoding allows for numeric-only serial numbers, without leading zeros, whose value is, 2646
up to a limit that varies with the length of the GS1 Company Prefix. 2647

Each GIAI coding schemes make reference to a different partition table, specified 2648
alongside the corresponding coding table in the subsections below. 2649

14.5.5.1 GIAI-96 Partition Table and Coding Table 2650
The GIAI-96 coding scheme makes use of the following partition table. 2651

http://www.autoidcenter.org/�

Copyright ©2005- 2010 EPCglobal®, All Rights Reserved. Page 101 of 210

Partition
Value

(P)

Company Prefix Individual Asset
Reference

 Bits
(M)

Digits
(L)

Bits
(N)

Max Digits
(K)

0 40 12 42 13

1 37 11 45 14

2 34 10 48 15

3 30 9 52 16

4 27 8 55 17

5 24 7 58 18

6 20 6 62 19

Table 28. GIAI-96 Partition Table 2652

Scheme GIAI-96

URI
Template

urn:epc:tag:giai-96:F.C.A

Total Bits 96

Logical
Segment

EPC
Header

Filter Partition GS1
Company
Prefix

Individual Asset
Reference

Logical
Segment
Bit Count

8 3 3 20-40 62–42

Coding
Segment

EPC
Header

Filter GIAI

URI
portion

 F C.A

Coding
Segment
Bit Count

8 3 85

Bit
Position

b95b94…b88 b87b86b85 b84b83…b0

Coding
Method

00110100 Integer Unpadded Partition Table 28

Table 29. GIAI-96 Coding Table 2653

http://www.autoidcenter.org/�

Copyright ©2005- 2010 EPCglobal®, All Rights Reserved. Page 102 of 210

14.5.5.2 GIAI-202 Partition Table and Coding Table 2654
The GIAI-202 coding scheme makes use of the following partition table. 2655

Partition
Value

(P)

Company Prefix Individual Asset
Reference

 Bits
(M)

Digits
(L)

Bits
(N)

Maximum
Characters

0 40 12 148 18

1 37 11 151 19

2 34 10 154 20

3 30 9 158 21

4 27 8 161 22

5 24 7 164 23

6 20 6 168 24

Table 30. GIAI-202 Partition Table 2656

http://www.autoidcenter.org/�

Copyright ©2005- 2010 EPCglobal®, All Rights Reserved. Page 103 of 210

Scheme GIAI-202

URI
Template

urn:epc:tag:giai-202:F.C.A

Total Bits 202

Logical
Segment

EPC Header Filter Partition GS1
Company
Prefix

Individual
Asset Reference

Logical
Segment
Bit Count

8 3 3 20-40 168–148

Coding
Segment

EPC Header Filter GIAI

URI
portion

 F C.A

Coding
Segment
Bit Count

8 3 191

Bit
Position

b201b200…b194 b193b192b191 b190b189…b0

Coding
Method

00111000 Integer String Partition Table 30

Table 31. GIAI-202 Coding Table 2657

14.5.6 Global Service Relation Number (GSRN) 2658
One coding scheme for the GSRN is specified: the 96-bit encoding GSRN-96. The 2659
GSRN-96 encoding allows for the full range of GSRN codes as specified in 2660
[GS1GS10.0]. 2661

The GSRN-96 coding scheme makes reference to the following partition table. 2662

Partition
Value

(P)

Company Prefix Service Reference

 Bits
(M)

Digits
(L)

Bits
(N)

Digits

0 40 12 18 5

1 37 11 21 6

2 34 10 24 7

3 30 9 28 8

http://www.autoidcenter.org/�

Copyright ©2005- 2010 EPCglobal®, All Rights Reserved. Page 104 of 210

Partition
Value

(P)

Company Prefix Service Reference

 Bits
(M)

Digits
(L)

Bits
(N)

Digits

4 27 8 31 9

5 24 7 34 10

6 20 6 38 11

Table 32. GSRN Partition Table 2663

14.5.6.1 GSRN-96 Coding Table 2664
Scheme GSRN-96

URI
Template

urn:epc:tag:gsrn-96:F.C.S

Total Bits 96

Logical
Segment

EPC
Header

Filter Partition GS1
Company
Prefix

Extension
/ Serial
Reference

(Reserved)

Logical
Segment
Bit Count

8 3 3 20-40 38-18 24

Coding
Segment

EPC
Header

Filter GSRN (Reserved)

URI
portion

 F C.S

Coding
Segment
Bit Count

8 3 61 24

Bit
Position

b95b94…b88 b87b86b85 b84b83…b24 b23b22…b0

Coding
Method

00101101 Integer Partition Table 32 00…0
(24 zero
bits)

Table 33. GSRN-96 Coding Table 2665

14.5.7 Global Document Type Identifier (GDTI) 2666
Two coding schemes for the GDTI specified, a 96-bit encoding (GDTI-96) and a 195-bit 2667
encoding (GDTI-113). The GDTI-113 encoding allows for the full range of document 2668

http://www.autoidcenter.org/�

Copyright ©2005- 2010 EPCglobal®, All Rights Reserved. Page 105 of 210

serial numbers up to 17 numeric characters (including leading zeros) as specified in 2669
[GS1GS10.0]. The GDTI-96 encoding allows for document serial numbers without 2670
leading zeros whose value is less than 241 (that is, from 0 through 2,199,023,255,551, 2671
inclusive). 2672

Only GDTIs that include the optional serial number may be represented as EPCs. A 2673
GDTI without a serial number represents a document class, rather than a specific 2674
document, and therefore may not be used as an EPC (just as a non-serialized GTIN may 2675
not be used as an EPC). 2676

Both GDTI coding schemes make reference to the following partition table. 2677

Partition
Value
(P)

Company Prefix Document Type

 Bits
(M)

Digits
(L)

Bits
(N)

Digits

0 40 12 1 0

1 37 11 4 1

2 34 10 7 2

3 30 9 11 3

4 27 8 14 4

5 24 7 17 5

6 20 6 21 6

Table 34. GDTI Partition Table 2678

http://www.autoidcenter.org/�

Copyright ©2005- 2010 EPCglobal®, All Rights Reserved. Page 106 of 210

14.5.7.1 GDTI-96 Coding Table 2679
Scheme GDTI-96

URI
Template

urn:epc:tag:gdti-96:F.C.D.S

Total Bits 96

Logical
Segment

EPC
Header

Filter Partition GS1
Company
Prefix

Document
Type

Serial

Logical
Segment
Bit Count

8 3 3 20-40 21-1 41

Coding
Segment

EPC
Header

Filter Partition + Company Prefix +
Document Type

Serial

URI
portion

 F C.D S

Coding
Segment
Bit Count

8 3 44 41

Bit
Position

b95b94…b88 b87b86b85 b84b83…b41 b40b39…b0

Coding
Method

00101100 Integer Partition Table 34 Integer

Table 35. GDTI-96 Coding Table 2680

http://www.autoidcenter.org/�

Copyright ©2005- 2010 EPCglobal®, All Rights Reserved. Page 107 of 210

14.5.7.2 GDTI-113 Coding Table 2681
Scheme GDTI-113

URI
Template

urn:epc:tag:gdti-113:F.C.D.S

Total
Bits

113

Logical
Segment

EPC Header Filter Partition GS1
Company
Prefix

Document
Type

Serial

Logical
Segment
Bit
Count

8 3 3 20-40 21-1 58

Coding
Segment

EPC Header Filter Partition + Company Prefix +
Document Type

Serial

URI
portion

 F C.D S

Coding
Segment
Bit
Count

8 3 44 58

Bit
Position

b112b111…b105 b104b103b102 b101b100…b58 b57b56…b0

Coding
Method

00111010 Integer Partition Table 34 Numeric
String

Table 36. GDTI-113 Coding Table 2682

14.5.8 General Identifier (GID) 2683
One coding scheme for the GID is specified: the 96-bit encoding GID-96. No partition 2684
table is required. 2685

http://www.autoidcenter.org/�

Copyright ©2005- 2010 EPCglobal®, All Rights Reserved. Page 108 of 210

14.5.8.1 GID-96 Coding Table 2686
Scheme GID-96

URI Template urn:epc:tag:gid-96:M.C.S

Total Bits 96

Logical
Segment

EPC Header General
Manager
Number

Object Class Serial Number

Logical
Segment Bit
Count

8 28 24 36

Coding
Segment

EPC Header General
Manager
Number

Object Class Serial Number

URI portion M C S

Coding
Segment Bit
Count

8 28 24 36

Bit Position b95b94…b88 b87b86…b60 b59b58…b36 b35b34…b0

Coding Method 00110101 Integer Integer Integer

Table 37. GID-96 Coding Table 2687

14.5.9 DoD Identifier 2688
At the time of this writing, the details of the DoD encoding is explained in a document 2689
titled "United States Department of Defense Supplier's Passive RFID Information Guide" 2690
that can be obtained at the United States Department of Defense's web site 2691
(http://www.dodrfid.org/supplierguide.htm). 2692

15 EPC Memory Bank Contents 2693
This section specifies how to translate the EPC Tag URI and EPC Raw URI into the 2694
binary contents of the EPC memory bank of a Gen 2 Tag, and vice versa. 2695

15.1 Encoding Procedures 2696
This section specifies how to translate the EPC Tag URI and EPC Raw URI into the 2697
binary contents of the EPC memory bank of a Gen 2 Tag. 2698

15.1.1 EPC Tag URI into Gen 2 EPC Memory Bank 2699
Given: 2700

• An EPC Tag URI beginning with urn:epc:tag: 2701

http://www.autoidcenter.org/�
http://www.dodrfid.org/supplierguide.htm�

Copyright ©2005- 2010 EPCglobal®, All Rights Reserved. Page 109 of 210

Encoding procedure: 2702
1. If the URI is not syntactically valid according to Section 12.4, stop: this URI cannot 2703

be encoded. 2704
2. Apply the encoding procedure of Section 14.3 to the URI. The result is a binary 2705

string of N bits. If the encoding procedure fails, stop: this URI cannot be encoded. 2706
3. Fill in the Gen 2 EPC Memory Bank according to the following table: 2707

Bits Field Contents

00h –
0Fh

CRC CRC code calculated from the remainder of the memory bank.
(Normally, this is calculated automatically by the reader, and
so software that implements this procedure need not be
concerned with it.)

10h –
14h

Length The number of bits, N, in the EPC binary encoding
determined in Step 2 above, divided by 16, and rounded up to
the next higher integer if N was not a multiple of 16.

15h User
Memory
Indicator

If the EPC Tag URI includes a control field [umi=1], a one
bit.

If the EPC Tag URI includes a control field [umi=0] or
does not contain a umi control field, a zero bit.

Note that certain Gen 2 Tags may ignore the value written to
this bit, and instead calculate the value of the bit from the
contents of user memory. See [UHFC1G2].

16h XPC
Indicator

This bit is calculated by the tag and ignored by the tag when
the tag is written, and so is disregarded by this encoding
procedure.

17h Toggle 0, indicating that the EPC bank contains an EPC

18h –
1Fh

Attribute
Bits

If the EPC Tag URI includes a control field [att=xNN], the
value NN considered as an 8-bit hexadecimal number.

If the EPC Tag URI does not contain such a control field,
zero.

20h – ? EPC / UII The N bits obtained from the EPCbinary encoding procedure
in Step 2 above, followed by enough zero bits to bring the
total number of bits to a multiple of 16 (0 – 15 extra zero bits)

Table 38. Recipe to Fill In Gen 2 EPC Memory Bank from EPC Tag URI 2708
Explanation (non-normative): The XPC bits (bits 210h – 21Fh) are not included in this 2709
procedure, because the only XPC bits defined in [UHFC1G2] are bits which are written 2710
indirectly via recommissioning. Those bits are not intended to be written explicitly by an 2711
application. 2712

http://www.autoidcenter.org/�

Copyright ©2005- 2010 EPCglobal®, All Rights Reserved. Page 110 of 210

15.1.2 EPC Raw URI into Gen 2 EPC Memory Bank 2713
Given: 2714

• An EPC Raw URI beginning with urn:epc:raw:. Such a URI has one of the 2715
following three forms: 2716
urn:epc:raw:OptionalControlFields:Length.xHexPayload 2717
urn:epc:raw:OptionalControlFields:Length.xAFI.xHexPayload 2718
urn:epc:raw:OptionalControlFields:Length.DecimalPayload 2719

Encoding procedure: 2720
1. If the URI is not syntactically valid according to the grammar in Section 12.4, stop: 2721

this URI cannot be encoded. 2722

2. Extract the leftmost NonZeroComponent according to the grammar (the Length 2723
field in the templates above). This component immediately follows the rightmost 2724
colon (:) character. Consider this as a decimal integer, N. This is the number of bits 2725
in the raw payload. 2726

3. Determine the toggle bit and AFI (if any): 2727

3.1. If the body of the URI matches the DecimalRawURIBody or 2728
HexRawURIBody production of the grammar (the first and third templates 2729
above), the toggle bit is zero. 2730

3.2. If the body of the URI matches the AFIRawURIBody production of the 2731
grammar (the second template above), the toggle bit is one. The AFI is the 2732
value of the leftmost HexComponent within the AFIRawURIBody (the AFI 2733
field in the template above), considered as an 8-bit unsigned hexadecimal 2734
integer. If the value of the HexComponent is greater than or equal to 256, 2735
stop: this URI cannot be encoded. 2736

4. Determine the EPC/UII payload: 2737

4.1. If the body of the URI matches the HexRawURIBody production of the 2738
grammar (first template above) or AFIRawURIBody production of the 2739
grammar (second template above), the payload is the rightmost 2740
HexComponent within the body (the HexPayload field in the templates 2741
above), considered as an N-bit unsigned hexadecimal integer, where N is as 2742
determined in Step 2 above. If the value of this HexComponent greater than 2743
or equal to 2N, stop: this URI cannot be encoded. 2744

4.2. If the body of the URI matches the DecimalRawURIBody production of the 2745
grammar (third template above), the payload is the rightmost 2746
NumericComponent within the body (the DecimalPayload field in the 2747
template above), considered as an N-bit unsigned decimal integer, where N is as 2748
determined in Step 2 above. If the value of this NumericComponent greater 2749
than or equal to 2N, stop: this URI cannot be encoded. 2750

5. Fill in the Gen 2 EPC Memory Bank according to the following table: 2751

http://www.autoidcenter.org/�

Copyright ©2005- 2010 EPCglobal®, All Rights Reserved. Page 111 of 210

Bits Field Contents

00h –
0Fh

CRC CRC code calculated from the remainder of the memory bank.
(Normally, this is calculated automatically by the reader, and
so software that implements this procedure need not be
concerned with it.)

10h –
14h

Length The number of bits, N, in the EPC binary encoding
determined in Step 2 above, divided by 16, and rounded up to
the next higher integer if N was not a multiple of 16.

15h User
Memory
Indicator

This bit is calculated by the tag and ignored by the tag when
the tag is written, and so is disregarded by this encoding
procedure.

16h XPC
Indicator

This bit is calculated by the tag and ignored by the tag when
the tag is written, and so is disregarded by this encoding
procedure.

17h Toggle The value determined in Step 3, above.

18h –
1Fh

AFI /
Attribute
Bits

If the toggle determined in Step 3 is one, the value of the AFI
determined in Step 3.2. Otherwise,

If the URI includes a control field [att=xNN], the value NN
considered as an 8-bit hexadecimal number.
If the URI does not contain such a control field, zero.

20h – ? EPC / UII The N bits determined in Step 4 above, followed by enough
zero bits to bring the total number of bits to a multiple of 16
(0 – 15 extra zero bits)

Table 39. Recipe to Fill In Gen 2 EPC Memory Bank from EPC Raw URI 2752

15.2 Decoding Procedures 2753
This section specifies how to translate the binary contents of the EPC memory bank of a 2754
Gen 2 Tag into the EPC Tag URI and EPC Raw URI. 2755

15.2.1 Gen 2 EPC Memory Bank into EPC Raw URI 2756
Given: 2757

• The contents of the EPC Memory Bank of a Gen 2 tag 2758
Procedure: 2759

1. Extract the length bits, bits 10h – 14h. Consider these bits to be an unsigned integer L. 2760
2. Calculate N = 16L. 2761

3. If bit 17h is set to one, extract bits 18h – 1Fh and consider them to be an unsigned 2762
integer A. Construct a string consisting of the letter “x”, followed by A as a 2-digit 2763

http://www.autoidcenter.org/�

Copyright ©2005- 2010 EPCglobal®, All Rights Reserved. Page 112 of 210

hexadecimal numeral (using digits and uppercase letters only), followed by a period 2764
(“.”). 2765

4. Apply the decoding procedure of Section 0 to decode control fields. 2766

5. Extract N bits beginning at bit 20h and consider them to be an unsigned integer V. 2767
Construct a string consisting of the letter “x” followed by V as a (N/4)-digit 2768
hexadecimal numeral (using digits and uppercase letters only). 2769

6. Construct a string consisting of “urn:epc:raw:”, followed by the result from 2770
Step 4 (if not empty), followed by N as a decimal numeral without leading zeros, 2771
followed by a period (“.”), followed by the result from Step 3 (if not empty), 2772
followed by the result from Step 5. This is the final EPC Raw URI. 2773

 Grammar issue for zero length bits 2774

15.2.2 Gen 2 EPC Memory Bank into EPC Tag URI 2775
This procedure decodes the contents of a Gen 2 EPC Memory bank into an EPC Tag URI 2776
beginning with urn:epc:tag: if the memory contains a valid EPC, or into an EPC 2777
Raw URI beginning urn:epc:raw: otherwise. 2778

Given: 2779

• The contents of the EPC Memory Bank of a Gen 2 tag 2780
Procedure: 2781

1. Extract the length bits, bits 10h – 14h. Consider these bits to be an unsigned integer L. 2782
2. Calculate N = 16L. 2783

3. Extract N bits beginning at bit 20h. Apply the decoding procedure of Section 14.4, 2784
passing the N bits as the input to that procedure. 2785

4. If the decoding procedure of Section 14.4 fails, continue with the decoding procedure 2786
of Section 15.2.1 to compute an EPC Raw URI. Otherwise, the decoding procedure 2787
of of Section 14.4 yielded an EPC Tag URI beginning urn:epc:tag:. Continue 2788
to the next step. 2789

5. Apply the decoding procedure of Section 0 to decode control fields. 2790
6. Insert the result from Section 0 (including any trailing colon) into the EPC Tag URI 2791

obtained in Step 4, immediately following the urn:epc:tag: prefix. (If Section 0 2792
yielded an empty string, this result is identical to what was obtained in Step 4.) The 2793
result is the final EPC Tag URI. 2794

 What about partial tag write – see existing tds 2795

15.2.3 Gen 2 EPC Memory Bank into Pure Identity EPC URI 2796
This procedure decodes the contents of a Gen 2 EPC Memory bank into a Pure Identity 2797
EPC URI beginning with urn:epc:id: if the memory contains a valid EPC, or into an 2798
EPC Raw URI beginning urn:epc:raw: otherwise. 2799

http://www.autoidcenter.org/�

Copyright ©2005- 2010 EPCglobal®, All Rights Reserved. Page 113 of 210

Given: 2800

• The contents of the EPC Memory Bank of a Gen 2 tag 2801

Procedure: 2802
1. Apply the decoding procedure of Section 15.2.2 to obtain either an EPC Tag URI or 2803

an EPC Raw URI. If an EPC Raw URI is obtained, this is the final result. 2804
2. Otherwise, apply the procedure of Section 12.3.3 to the EPC Tag URI from Step 1 to 2805

obtain a Pure Identity EPC URI. This is the final result. 2806

15.2.4 Decoding of Control Information 2807
This procedure is used as a subroutine by the decoding procedures in Sections 15.2.1 2808
and 15.2.2. It calculates a string that is inserted immediately following the 2809
urn:epc:tag: or urn:epc:raw: prefix, containing the values of all non-zero 2810
control information fields (apart from the filter value). If all such fields are zero, this 2811
procedure returns an empty string, in which case nothing additional is inserted after the 2812
urn:epc:tag: or urn:epc:raw: prefix. 2813

Given: 2814

• The contents of the EPC Memory Bank of a Gen 2 tag 2815

Procedure: 2816
1. If bit 17h is zero, extract bits 18h – 1Fh and consider them to be an unsigned integer A. 2817

If A is non-zero, append the string [att=xAA] (square brackets included) to CF, 2818
where AA is the value of A as a two-digit hexadecimal numeral. 2819

2. If bit 15h is non-zero, append the string [umi=1] (square brackets included) to CF. 2820

3. If bit 16h is non-zero, extract bits 210h – 21Fh and consider them to be an unsigned 2821
integer X. If X is non-zero, append the string [xpc=xXXXX] (square brackets 2822
included) to CF, where XXXX is the value of X as a four-digit hexadecimal numeral. 2823
Note that in the Gen 2 air interface, bits 210h – 21Fh are inserted into the 2824
backscattered inventory data immediately following bit 1Fh, when bit 16h is non-zero. 2825
See [UHFC1G2]. 2826

4. Return the resulting string (which may be empty). 2827

16 Tag Identification (TID) Memory Bank Contents 2828
To conform to this specification, the Tag Identification memory bank (bank 10) SHALL 2829
contain an 8 bit ISO/IEC 15963 allocation class identifier of E2h at memory locations 00h 2830
to 07h. TID memory locations 08h to 13h SHALL contain a 12 bit Tag mask designer 2831
identifier (MDID) obtainable from EPCglobal. TID memory locations 14h to 1Fh SHALL 2832
contain a 12-bit vendor-defined Tag model number (TMN) as described below. 2833
EPCglobal will assign two MDIDs to each mask designer, one with bit 08h equal to one 2834
and one with bit 08h equal to zero. Readers and applications that are not configured to 2835
handle the extended TID will treat both of these numbers as a 12 bit MDID. Readers and 2836

http://www.autoidcenter.org/�

Copyright ©2005- 2010 EPCglobal®, All Rights Reserved. Page 114 of 210

applications that are configured to handle the extended TID will recognize the TID 2837
memory location 08h as the Extended Tag Identification bit. The value of this bit 2838
indicates the format of the rest of the TID. A value of zero indicates a short TID in which 2839
the values beyond address 1Fh are not defined. A value of one indicates an Extended Tag 2840
Identification (XTID) in which the memory locations beyond 1Fh contain additional data 2841
as specified in Section 16.2. 2842

The Tag model number (TMN) may be assigned any value by the holder of a given 2843
MDID. However, [UHFC1G2] states “TID memory locations above 07h shall be defined 2844
according to the registration authority defined by this class identifier value and shall 2845
contain, at a minimum, sufficient identifying information for an Interrogator to uniquely 2846
identify the custom commands and/or optional features that a Tag supports.” For the 2847
allocation class identifier of E2h this information is the MDID and TMN, regardless of 2848
whether the extended TID is present or not. If two tags differ in custom commands 2849
and/or optional features, they must be assigned different MDID/TMN combinations. In 2850
particular, if two tags contain an extended TID and the values in their respective extended 2851
TIDs differ in any value other than the value of the serial number, they must be assigned 2852
a different MDID/TMN combination. (The serial number by definition must be different 2853
for any two tags having the same MDID and TMN, so that the Serialized Tag 2854
Identification specified in Section 16.3 is globally unique.) For tags that do not contain 2855
an extended TID, it should be possible in principle to use the MDID and TMN to look up 2856
the same information that would be encoded in the extended TID were it actually present 2857
on the tag, and so again a different MDID/TMN combination must be used if two tags 2858
differ in the capabilities as they would be described by the extended TID, were it actually 2859
present. 2860

16.1 Short Tag Identification 2861
If the XTID bit (bit 08h of the TID bank) is set to zero, the TID bank only contains the 2862
allocation class identifier, mask designer identifier (MDID), and Tag model number 2863
(TMN) as specified above. Readers and applications that are not configured to handle the 2864
extended TID will treat all TIDs as short tag identification, regardless of whether the 2865
XTID bit is zero or one. 2866

Note: The memory maps depicted in this document are identical to how they are depicted 2867
in [UHFC1G2]. The lowest word address starts at the bottom of the map and increases 2868
as you go up the map. The bit address reads from left to right starting with bit zero and 2869
ending with bit fifteen. The fields (MDID, TMN, etc) described in the document put their 2870
most significant bit (highest bit number) into the lowest bit address in memory and the 2871
least significant bit (bit zero) into the highest bit address in memory. Take the ISO/IEC 2872
15963 allocation class identifier of E2h = 111000102 as an example. The most significant 2873
bit of this field is a one and it resides at address 00h of the TID memory bank. The least 2874
significant bit value is a zero and it resides at address 07h of the TID memory bank. 2875
When tags backscatter data in response to a read command they transmit each word 2876
starting from bit address zero and ending with bit address fifteen. 2877
 2878

http://www.autoidcenter.org/�

Copyright ©2005- 2010 EPCglobal®, All Rights Reserved. Page 115 of 210

TID MEM

BANK BIT
ADDRESS

BIT ADDRESS WITHIN WORD (In Hexadecimal)

0 1 2 3 4 5 6 7 8 9 A B C D E F

10h-1Fh TAG MDID[3:0] TAG MODEL NUMBER[11:0]

00h-0Fh E2h TAG MDID[11:4]

Table 40. Short TID format 2879

16.2 Extended Tag Identification (XTID) 2880
The XTID is intended to provide more information to end users about the capabilities of 2881
tags that are observed in their RFID applications. The XTID extends the format by 2882
adding support for serialization and information about key features implemented by the 2883
tag. 2884

If the XTID bit (bit 08h of the TID bank) is set to one, the TID bank SHALL contain the 2885
allocation class identifier, mask designer identifier (MDID), and Tag model number 2886
(TMN) as specified above, and SHALL also contain additional information as specified 2887
in this section. 2888

TID memory locations 20h to 2Fh SHALLcontain a 16-bit XTID header as specified in 2889
Section 16.2.1. The values in the XTID header specify what additional information is 2890
present in memory locations 30h and above. TID memory locations 00h through 2Fh are 2891
the only fixed location fields in the extended TID; all fields following the XTID header 2892
can vary in their location in memory depending on the values in the XTID header. 2893
The information in the XTID following the XTID header SHALL consist of zero or more 2894
multi-word “segments,” each segment being divided into one or more “fields,” each field 2895
providing certain information about the tag as specified below. The XTID header 2896
indicates which of the XTID segments the tag mask-designer has chosen to include. The 2897
order of the XTID segments in the TID bank shall follow the order that they are listed in 2898
the XTID header from most significant bit to least significant bit. If an XTID segment is 2899
not present then segments at less significant bits in the XTID header shall move to lower 2900
TID memory addresses to keep the XTID memory structure contiguous. In this way a 2901
minimum amount of memory is used to provide a serial number and/or describe the 2902
features of the tag. A fully populated XTID is shown in the table below. 2903
Informative: The XTID header corresponding to this memory map would be 2904
00111100000000002 . If the tag only contained a 48 bit serial number the XTID header 2905
would be 00100000000000002 . The serial number would start at bit address 30h and end 2906
at bit address 5Fh. If the tag contained just the BlockWrite and BlockErase segment and 2907
the User Memory and BlockPermaLock segment the XTID header would be 2908
00001100000000002 . The BlockWrite and BlockErase segment would start at bit 2909
address 30h and end at bit address 6Fh. The User Memory and BlockPermaLock segment 2910
would start at bit address 70h and end at bit address 8Fh. 2911

 TDS TID MEM BIT ADDRESS WITHIN WORD (In Hexadecimal)

http://www.autoidcenter.org/�

Copyright ©2005- 2010 EPCglobal®, All Rights Reserved. Page 116 of 210

Reference

Section

BANK BIT
ADDRESS 0 1 2 3 4 5 6 7 8 9 A B C D E F

 16.2.5 C0h-CFh User Memory and BlockPermaLock Segment [15:0]

B0h-BFh User Memory and BlockPermaLock Segment [31:16]

 16.2.4 A0h-AFh BlockWrite and BlockErase Segment [15:0]

90h-9Fh BlockWrite and BlockErase Segment [31:16]

80h-8Fh BlockWrite and BlockErase Segment [47:32]

70h-7Fh BlockWrite and BlockErase Segment [63:48]

 16.2.3 60h-6Fh Optional Command Support Segment [15:0]

 16.2.2 50h-5Fh Serial Number Segment [15:0]

40h-4Fh Serial Number Segment [31:16]

30h-3Fh Serial Number Segment [47:32]

 16.2.1 20h-2Fh XTID Header Segment [15:0]

 16.1 and
 16.2

10h-1Fh TAG MDID[3:0] TAG MODEL NUMBER[11:0]

00h-0Fh E2h TAG MDID[11:4]

Table 41. The Extended Tag Identification (XTID) format for the TID memory bank. Note that 2912
the table above is fully filled in and that the actual amount of memory used, presence of a 2913

segment, and address location of a segment depends on the XTID Header. 2914

16.2.1 XTID Header 2915
The XTID header is shown in Table 42. It contains defined and reserved for future use 2916
(RFU) bits. The extended header bit and RFU bits (bits 9 through 0) shall be set to zero 2917
to comply with this version of the specification. Bits 15 through 13 of the XTID header 2918
word indicate the presence and size of serialization on the tag. If they are set to zero then 2919
there is no serialization in the XTID. If they are not zero then there is a tag serial number 2920
immediately following the header. The optional features currently in bits 12 through 10 2921
are handled differently. A zero indicates the reader needs to perform a database look up 2922
or that the tag does not support the optional feature. A one indicates that the tag supports 2923
the optional feature and that the XTID contains the segment describing this feature 2924

http://www.autoidcenter.org/�

Copyright ©2005- 2010 EPCglobal®, All Rights Reserved. Page 117 of 210

Bit
Position
in Word

Field Description

0 Extended Header
Present

If non-zero, specifies that additional XTID header bits
are present beyond the 16 XTID header bits specified
herein. This provides a mechanism to extend the XTID
in future versions of the EPC Tag Data Standard. This
bit SHALL be set to zero to comply with this version of
the EPC Tag Data Standard.

If zero, specifies that the XTID header only contains the
16 bits defined herein.

9 – 1 RFU Reserved for future use. These bits SHALL be zero to
comply with this version of the EPC Tag Data Standard

10 User Memory
and Block Perma
Lock Segment
Present

If non-zero, specifies that the XTID includes the User
Memory and Block PermaLock segment specified in
Section 16.2.5.
If zero, specifies that the XTID does not include the User
Memory and Block PermaLock words.

11 BlockWrite and
BlockErase
Segment Present

If non-zero, specifies that the XTID includes the
BlockWrite and BlockErase segment specified in
Section 16.2.4.

If zero, specifies that the XTID does not include the
BlockWrite and BlockErase words.

12 Optional
Command
Support Segment
Present

If non-zero, specifies that the XTID includes the Optional
Command Support segment specified in Section 16.2.3.

If zero, specifies that the XTID does not include the
Optional Command Support word.

13 – 15 Serialization If non-zero, specifies that the XTID includes a unique
serial number, whose length in bits is 48 + 16(N – 1),
where N is the value of this field.
If zero, specifies that the XTID does not include a unique
serial number.

Table 42. The XTID header 2925

16.2.2 XTID Serialization 2926
The length of the XTID serialization is specified in the XTID header. The managing 2927
entity specified by the tag mask designer ID is responsible for assigning unique serial 2928
numbers for each tag model number. The length of the serial number uses the following 2929
algorithm: 2930
0: Indicates no serialization 2931

http://www.autoidcenter.org/�

Copyright ©2005- 2010 EPCglobal®, All Rights Reserved. Page 118 of 210

1-7: Length in bits = 48 + ((Value-1) * 16) 2932

16.2.3 Optional Command Support Segment 2933
If bit twelve is set in the XTID header then the following word is added to the XTID. Bit 2934
fields that are left as zero indicate that the tag does not support that feature. The 2935
description of the features is as follows. 2936

Bit
Position in
Segment

Field Description

4 – 0 Max EPC Size This five bit field shall indicate the maximum size that
can be programmed into the first five bits of the PC.

5 Recom Support If this bit is set the tag supports recommissioning as
specified in [UHFC1G2].

6 Access If this bit is set the it indicates that the tag supports the
access command.

7 Separate
Lockbits

If this bit is set it means that the tag supports lock bits for
each memory bank rather than the simplest
implementation of a single lock bit for the entire tag.

8 Auto UMI
Support

If this bit is set it means that the tag automatically sets its
user memory indicator bit in the PC word.

9 PJM Support If this bit is set it indicates that the tag supports phase
jitter modulation. This is an optional modulation mode
supported only in Gen 2 HF tags.

10 BlockErase
Supported

If set this indicates that the tag supports the BlockErase
command. How the tag supports the BlockErase
command is described in Section 16.2.4. A manufacture
may choose to set this bit, but not include the BlockWrite
and BlockErase field if how to use the command needs
further explanation through a database lookup.

11 BlockWrite
Supported

If set this indicates that the tag supports the BlockWrite
command. How the tag supports the BlockErase
command is described in Section 16.2.4. A manufacture
may choose to set this bit, but not include the BlockWrite
and BlockErase field if how to use the command needs
further explanation through a database lookup.

http://www.autoidcenter.org/�

Copyright ©2005- 2010 EPCglobal®, All Rights Reserved. Page 119 of 210

Bit
Position in
Segment

Field Description

12 BlockPermaLo
ck Supported

If set this indicates that the tag supports the
BlockPermaLock command. How the tag supports the
BlockPermaLock command is described in
Section 16.2.5. A manufacture may choose to set this bit,
but not include the BlockPermaLock and User Memory
field if how to use the command needs further
explanation through a database lookup.

15 – 13 [RFU] These bits are RFU and should be set to zero.

Table 43. Optional Command Support XTID Word 2937

16.2.4 BlockWrite and BlockErase Segment 2938
If bit eleven of the XTID header is set then the XTID shall include the four-word 2939
BlockWrite and BlockErase segment. To indicate that a command is not supported, the 2940
tag shall have all fields related to that command set to zero. The descriptions of the fields 2941
are as follows. 2942

Bit
Position in
Segment

Field Description

7 – 0 Block Write
Size

Max block size that the tag supports for the BlockWrite
command. This value should be between 1-255 if the
BlockWrite command is described in this field.

8 Variable Size
Block Write

This bit is used to indicate if the tag supports BlockWrite
commands with variable sized blocks.

• If the value is zero the tag only supports writing
blocks exactly the maximum block size indicated in
bits [7-0].

• If the value is one the tag supports writing blocks less
than the maximum block size indicated in bits [7-0].

16 – 9 Block Write
EPC Address
Offset

This indicates the starting word address of the first full
block that may be written to using BlockWrite in the
EPC memory bank.

http://www.autoidcenter.org/�

Copyright ©2005- 2010 EPCglobal®, All Rights Reserved. Page 120 of 210

Bit
Position in
Segment

Field Description

17 No Block
Write EPC
address
alignment

This bit is used to indicate if the tag memory architecture
has hard block boundaries in the EPC memory bank.

• If the value is zero the tag has hard block boundaries
in the EPC memory bank. The tag will not accept
BlockWrite commands that start in one block and end
in another block. These block boundaries are
determined by the max block size and the starting
address of the first full block. All blocks have the
same maximum size.

• If the value is one the tag has no block boundaries in
the EPC memory bank. It will accept all BlockWrite
commands that are within the memory bank.

25 – 18 Block Write
User Address
Offset

This indicates the starting word address of the first full
block that may be written to using BlockWrite in the
User memory.

26 No Block
Write User
Address
Alignment

This bit is used to indicate if the tag memory architecture
has hard block boundaries in the USER memory bank.

• If the value is zero the tag has hard block boundaries
in the USER memory bank. The tag will not accept
BlockWrite commands that start in one block and end
in another block. These block boundaries are
determined by the max block size and the starting
address of the first full block. All blocks have the
same maximum size.

• If the value is one the tag has no block boundaries in
the USER memory bank. It will accept all
BlockWrite commands that are within the memory
bank.

31 – 27 [RFU] These bits are RFU and should be set to zero.

39 –32 Size of Block
Erase

Max block size that the tag supports for the BlockErase
command. This value should be between 1-255 if the
BlockErase command is described in this field.

http://www.autoidcenter.org/�

Copyright ©2005- 2010 EPCglobal®, All Rights Reserved. Page 121 of 210

Bit
Position in
Segment

Field Description

40 Variable Size
Block Erase

This bit is used to indicate if the tag supports BlockErase
commands with variable sized blocks.

• If the value is zero the tag only supports erasing
blocks exactly the maximum block size indicated in
bits [39-32].

• If the value is one the tag supports erasing blocks less
than the maximum block size indicated in bits [39-
32].

48 – 41 Block Erase
EPC Address
Offset

This indicates the starting address of the first full block
that may be erased in EPC memory bank.

49 No Block
Erase EPC
Address
Alignment

This bit is used to indicate if the tag memory architecture
has hard block boundaries in the EPC memory bank.

• If the value is zero the tag has hard block boundaries
in the EPC memory bank. The tag will not accept
BlockErase commands that start in one block and end
in another block. These block boundaries are
determined by the max block size and the starting
address of the first full block. All blocks have the
same maximum size.

• If the value is one the tag has no block boundaries in
the EPC memory bank. It will accept all BlockErase
commands that are within the memory bank.

57 – 50 Block Erase
User Address
Offset

This indicates the starting address of the first full block
that may be erased in User memory bank.

http://www.autoidcenter.org/�

Copyright ©2005- 2010 EPCglobal®, All Rights Reserved. Page 122 of 210

Bit
Position in
Segment

Field Description

58 No Block
Erase User
Address
Alignment

Bit 58: This bit is used to indicate if the tag memory
architecture has hard block boundaries in the USER
memory bank.

• If the value is zero the tag has hard block boundaries
in the USER memory bank. The tag will not accept
BlockErase commands that start in one block and end
in another block. These block boundaries are
determined by the max block size and the starting
address of the first full block. All blocks have the
same maximum size.

• If the value is one the tag has no block boundaries in
the USER memory bank. It will accept all
BlockErase commands that are within the memory
bank.

63 – 59 [RFU] These bits are reserved for future use and should be set to
zero.

Table 44. XTID Block Write and Block Erase Information 2943

16.2.5 User Memory and BlockPermaLock Segment 2944
This two-word segment is present in the XTID if bit 10 of the XTID header is set. Bits 2945
15-0 shall indicate the size of user memory in words. Bits 31-16 shall indicate the size of 2946
the blocks in the USER memory bank in words for the BlockPermaLock command. 2947
Note: These block sizes only apply to the BlockPermaLock command and are 2948
independent of the BlockWrite and BlockErase commands. 2949

Bit
Position in
Segment

Field Description

15 – 0 User Memory
Size

Number of 16-bit words in user memory.

31 –16 BlockPermaLock
Block Size

If non-zero, the size in words of each block that may
be block permalocked. That is, the block permalock
feature allows blocks of N*16 bits to be locked, where
N is the value of this field.

If zero, then the XTID does not describe the block size
for the BlockPermaLock feature. The tag may or may
not support block permalocking.

Table 45. XTID Block PermaLock and User Memory Information 2950

http://www.autoidcenter.org/�

Copyright ©2005- 2010 EPCglobal®, All Rights Reserved. Page 123 of 210

16.3 Serialized Tag Identification (STID) 2951
This section specifies a URI form for the serialization encoded within an XTID, called 2952
the Serialized Tag Identifier (STID). The STID URI form may be used by business 2953
applications that use the serialized TID to uniquely identify the tag onto which an EPC 2954
has been programmed. The STID URI is intended to supplement, not replace, the EPC 2955
for those applications that make use of RFID tag serialization in addition to the EPC that 2956
uniquely identifies the physical object to which the tag is affixed; e.g., in an application 2957
that uses the STID to help ensure a tag has not been counterfeited. 2958

16.3.1 STID URI Grammar 2959
The syntax of the STID URI is specified by the following grammar: 2960
STID-URI ::= "urn:epc:stid:" 2*("x" HexComponent ".") "x" 2961
HexComponent 2962

where the first and second HexComponents SHALL consist of exactly three 2963
UpperHexChars and the third HexComponent SHALL consist of 12, 16, 20, 24, 28, 2964
32, or 36 UpperHexChars. 2965

The first HexComponent is the value of the Tag Mask Designer ID (MDID) as 2966
specified in Sections 16.1 and 16.2. The second HexComponent is the value of the Tag 2967
Model Number as specified in Sections 16.1 and 16.2. The third HexComponent is the 2968
value of the XTID serial number as specified in Sections 16.2 and 16.2.2. The number of 2969
UpperHexChars in the third HexComponent is equal to the number of bits in the 2970
XTID serial number divided by four. 2971

16.3.2 Decoding Procedure: TID Bank Contents to STID URI 2972
The following procedure specifies how to construct an STID URI given the contents of 2973
the TID bank of a Gen 2 Tag. 2974

Given: 2975

• The contents of the TID memory bank of a Gen 2 Tag, as a bit string b0b1…bN-1, 2976
where the number of bits N is at least 48. 2977

Yields: 2978

• An STID-URI 2979
Procedure: 2980

1. Bits b0…b7 should match the value 11100010. If not, stop: this TID bank contents 2981
does not contain an XTID as specified herein. 2982

2. Bit b8 should be set to one. If not, stop: this TID bank contents does not contain an 2983
XTID as specified herein. 2984

3. Consider bits b8…b19 as a 12 bit unsigned integer. This is the Tag Mask Designer ID 2985
(MDID). 2986

4. Consider bits b20…b31 as a 12 bit unsigned integer. This is the Tag Model Number. 2987

http://www.autoidcenter.org/�

Copyright ©2005- 2010 EPCglobal®, All Rights Reserved. Page 124 of 210

5. Consider bits b32…b34 as a 3-bit unsigned integer V. If V equals zero, stop: this TID 2988
bank contents does not contain a serial number. Otherwise, calculate the length of the 2989
serial number L = 48 + 16(V − 1). Consider bits b48b49…b48+L-1 as an L-bit unsigned 2990
integer. This is the serial number. 2991

6. Construct the STID-URI by concatenating the following strings: the prefix 2992
urn:epc:stid:, the lowercase letter x, the value of the MDID from Step 3 as a 3-2993
character hexadecimal numeral, a dot (.) character, the lowercase letter x, the value 2994
of the Tag Model Number from Step 4 as a 3-character hexadecimal numeral, a dot 2995
(.) character, the lowercase letter x, and the value of the serial number from Step 5 as 2996
a (L/4)-character hexadecimal numeral. Only uppercase letters A through F shall be 2997
used in constructing the hexadecimal numerals. 2998

17 User Memory Bank Contents 2999
The EPCglobal User Memory Bank provides a variable size memory to store additional 3000
data attributes related to the object identified in the EPC Memory Bank of the tag. 3001
User memory may or may not be present on a given tag. When user memory is not 3002
present, bit 15h of the EPC memory bank SHALL be set to zero. When user memory is 3003
present and uninitialized, bit 15h of the EPC memory bank SHALL be set to zero and bits 3004
03h through 07h of the User Memory bank SHALL be set to zero. When user memory is 3005
present and initialized, bit 15h of the Protocol Control Word in EPC memory SHALL be 3006
set to one to indicate the presence of encoded data in User Memory, and the user memory 3007
bank SHALL be programmed as specified herein. 3008

To conform with this specification, the first eight bits of the User Memory Bank SHALL 3009
contain a Data Storage Format Identifier (DSFID) as specified in [ISO15962]. This 3010
maintains compatibility with other standards. The DSFID consists of three logical fields: 3011
Access Method, Extended Syntax Indicator, and Data Format. The Access Method is 3012
specified in the two most significant bits of the DSFID, and is encoded with the value 3013
“10” to designate the “Packed Objects” Access Method as specified in Appendix I herein 3014
if the “Packed Objects” Access Method is employed, and is encoded with the value “00” 3015
to designate the “No-Directory” Access Method as specified in [ISO15962] if the “No-3016
Directory” Access Method is employed. The next bit is set to one if there is a second 3017
DSFID byte present. The five least significant bits specify the Data Format, which 3018
indicates what data system predominates in the memory contents. If GS1 Application 3019
Identifiers (AIs) predominate, the value of “01001” specifies the GS1 Data Format 09 as 3020
registered with ISO, which provides most efficient support for the use of AI data 3021
elements. Appendix I through Appendix M of this specification contain the complete 3022
specification of the “Packed Objects” Access Method; it is expected that this content will 3023
appear as Annex I through Annex M, respectively, of ISO/IEC 15962, 2nd Edition 3024
[ISO15962], when the latter becomes available A complete definition of the DSFID is 3025
specified in ISO/IEC 15962 [ISO15962]. A complete definition of the table that governs 3026
the Packed Objects encoding of Application Identifiers (AIs) is specified by GS1 and 3027
registered with ISO under the procedures of ISO/IEC 15961, and is reproduced in 3028
 Appendix F. This table is similar in format to the hypothetical example shown as Table 3029

http://www.autoidcenter.org/�

Copyright ©2005- 2010 EPCglobal®, All Rights Reserved. Page 125 of 210

L-1 in Appendix L, but with entries to accommodate encoding of all valid Application 3030
Identifiers. 3031

A tag whose User Memory Bank programming conforms to this specification SHALL be 3032
encoded using either the Packed Objects Access Method or the No-Directory Access 3033
Method, provided that if the No-Directory Access Method is used that the “application-3034
defined” compaction mode as specified in [ISO15962] SHALL NOT be used. A tag 3035
whose User Memory Bank programming conforms to this specification MAY use any 3036
registered Data Format including Data Format 09. 3037

Where the Packged Objects specification in Appendix I makes reference to Extensible Bit 3038
Vectors (EBVs), the format specified in Appendix D SHALL be used. 3039

A hardware or software component that conforms to this specification for User Memory 3040
Bank reading and writing SHALL fully implement the Packed Objects Access Method as 3041
specified in Appendix I through Appendix M of this specification (implying support for 3042
all registered Data Formats), SHALL implement the No-Directory Access Method as 3043
specified in [ISO15962], and MAY implement other Access Methods defined in 3044
[ISO15962] and subsequent versions of that standard. A hardware or software 3045
component NEED NOT, however, implement the“application-defined” compaction mode 3046
of the No-Directory Access Method as specified in [ISO15962]. A hardware or software 3047
component whose intended function is only to initialize tags (e.g., a printer) may conform 3048
to a subset of this specification by implementing either the Packed Objects or the No-3049
Directory access method, but in this case NEED NOT implement both. 3050
Explanation (non-normative): This specification allows two methods of encoding data in 3051
user memory. The ISO/IEC 15962 “No-Directory” Access Method has an installed base 3052
owing to its longer history and acceptance within certain end user communities. The 3053
Packed Objects Access Method was developed to provide for more efficient reading and 3054
writing of tags, and less tag memory consumption. 3055

The “application-defined” compaction mode of the No-Directory Access Method is not 3056
allowed because it cannot be understood by a receiving system unless both sides have the 3057
same definition of how the compaction works. 3058
Note that the Packed Objects Access Method supports the encoding of data either with or 3059
without a directory-like structure for random access. The fact that the other access 3060
method is named “No-Directory” in [ISO15962] should not be taken to imply that the 3061
Packed Objects Access Method always includes a directory. 3062

Appendix A Character Set for Alphanumeric Serial 3063
Numbers 3064

The following table specifies the characters that are permitted by the GS1 General 3065
Specifications [GS1GS10.0] for use in alphanumeric serial numbers. The columns are as 3066
follows: 3067

• Graphic Symbol The printed representation of the character as used in human-3068
readable forms. 3069

• Name The common name for the character 3070

http://www.autoidcenter.org/�

Copyright ©2005- 2010 EPCglobal®, All Rights Reserved. Page 126 of 210

• Hex Value A hexadecimal numeral that gives the 7-bit binary value for the character 3071
as used in EPC binary encodings. This hexadecimal value is always equal to the ISO 3072
646 (ASCII) code for the character. 3073

• URI Form The representation of the character within Pure Identity EPC URI and 3074
EPC Tag URI forms. This is either a single character whose ASCII code is equal to 3075
the value in the “hex value” column, or an escape triplet consisting of a percent 3076
character followed by two characters giving the hexadecimal value for the character. 3077

Graphic
Symbol

Name Hex
Value

URI
Form

Graphic
Symbol

Name Hex
Value

URI
Form

! Exclamation
Mark

21 ! M Capital
Letter M

4D M

" Quotation
Mark

22 %22 N Capital
Letter N

4E N

% Percent
Sign

25 %25 O Capital
Letter O

4F O

& Ampersand 26 %26 P Capital
Letter P

50 P

' Apostrophe 27 ' Q Capital
Letter Q

51 Q

(Left
Parenthesis

28 (R Capital
Letter R

52 R

) Right
Parenthesis

29) S Capital
Letter S

53 S

* Asterisk 2A * T Capital
Letter T

54 T

+ Plus sign 2B + U Capital
Letter U

55 U

, Comma 2C , V Capital
Letter V

56 V

- Hyphen/
Minus

2D - W Capital
Letter
W

57 W

. Full Stop 2E . X Capital
Letter X

58 X

/ Solidus 2F %2F Y Capital
Letter Y

59 Y

0 Digit Zero 30 0 Z Capital
Letter Z

5A Z

http://www.autoidcenter.org/�

Copyright ©2005- 2010 EPCglobal®, All Rights Reserved. Page 127 of 210

Graphic
Symbol

Name Hex
Value

URI
Form

Graphic
Symbol

Name Hex
Value

URI
Form

1 Digit One 31 1 _ Low
Line

5F _

2 Digit Two 32 2 a Small
Letter a

61 a

3 Digit Three 33 3 b Small
Letter b

62 b

4 Digit Four 34 4 c Small
Letter c

63 c

5 Digit Five 35 5 d Small
Letter d

64 d

6 Digit Six 36 6 e Small
Letter e

65 e

7 Digit Seven 37 7 f Small
Letter f

66 f

8 Digit Eight 38 8 g Small
Letter g

67 g

9 Digit Nine 39 9 h Small
Letter h

68 h

: Colon 3A : i Small
Letter i

69 i

; Semicolon 3B ; j Small
Letter j

6A j

< Less-than
Sign

3C %3C k Small
Letter k

6B k

= Equals Sign 3D = l Small
Letter l

6C l

> Greater-than
Sign

3E %3E m Small
Letter m

6D m

? Question
Mark

3F %3F n Small
Letter n

6E n

A Capital
Letter A

41 A o Small
Letter o

6F o

B Capital
Letter B

42 B p Small
Letter p

70 p

http://www.autoidcenter.org/�

Copyright ©2005- 2010 EPCglobal®, All Rights Reserved. Page 128 of 210

Graphic
Symbol

Name Hex
Value

URI
Form

Graphic
Symbol

Name Hex
Value

URI
Form

C Capital
Letter C

43 C q Small
Letter q

71 q

D Capital
Letter D

44 D r Small
Letter r

72 r

E Capital
Letter E

45 E s Small
Letter s

73 s

F Capital
Letter F

46 F t Small
Letter t

74 t

G Capital
Letter G

47 G u Small
Letter u

75 u

H Capital
Letter H

48 H v Small
Letter v

76 v

I Capital
Letter I

49 I w Small
Letter w

77 w

J Capital
Letter J

4A J x Small
Letter x

78 x

K Capital
Letter K

4B K y Small
Letter y

79 y

L Capital
Letter L

4C L z Small
Letter z

7A z

Table 46. Characters Permitted in Alphanumeric Serial Numbers 3078

Appendix B Glossary (non-normative) 3079
Term Defined

Where
Meaning

Application
Identifier (AI)

[GS1GS10.0] A numeric code that identifies a data element within a
GS1 Element String.

Attribute Bits Section 11 An 8-bit field of control information that is stored in
the EPC Memory Bank of a Gen 2 RFID Tag when
the tag contains an EPC. The Attribute Bits includes
data that guides the handling of the object to which
the tag is affixed, for example a bit that indicates the
presence of hazardous material.

Bar Code A data carrier that holds text data in the form of light
and dark markings which may be read by an optical
reader device.

http://www.autoidcenter.org/�

Copyright ©2005- 2010 EPCglobal®, All Rights Reserved. Page 129 of 210

Term Defined
Where

Meaning

Control
Information

Section 9.1 Information that is used by data capture applications
to help control the process of interacting with RFID
Tags. Control Information includes data that helps a
capturing application filter out tags from large
populations to increase read efficiency, special
handling information that affects the behavior of
capturing application, information that controls tag
security features, and so on. Control Information is
typically not passed directly to business applications,
though Control Information may influence how a
capturing application presents business data to the
business application level. Unlike Business Data,
Control Information has no equivalent in bar codes or
other data carriers.

Data Carrier Generic term for a marking or device that is used to
physically attach data to a physical object. Examples
of data carriers include Bar Codes and RFID Tags.

Electronic
Product Code
(EPC)

Section 4 A universal identifier for any physical object. The
EPC is designed so that every physical object of
interest to information systems may be given an EPC
that is globally unique and persistent through time.

The primary representation of an EPC is in the form
of a Pure Identity EPC URI (q.v.), which is a unique
string that may be used in information systems,
electronic messages, databases, and other contexts. A
secondary representation, the EPC Binary Encoding
(q.v.) is available for use in RFID Tags and other
settings where a compact binary representation is
required.

EPC Section 4 See Electronic Product Code

EPC Bank (of a
Gen 2 RFID
Tag)

[UHFC1G2] Bank 01 of a Gen 2 RFID Tag as specified in
[UHFC1G2]. The EPC Bank holds the EPC Binary
Encoding of an EPC, together with additional control
information as specified in Section 8.

http://www.autoidcenter.org/�

Copyright ©2005- 2010 EPCglobal®, All Rights Reserved. Page 130 of 210

Term Defined
Where

Meaning

EPC Binary
Encoding

Section 13 A compact encoding of an Electronic Product Code,
together with a filter value (if the encoding scheme
includes a filter value), into a binary bit string that is
suitable for storage in RFID Tags, including the EPC
Memory Bank of a Gen 2 RFID Tag. Owing to
tradeoffs between data capacity and the number of
bits in the encoded value, more than one binary
encoding scheme exists for certain EPC schemes.

EPC Binary
Encoding
Scheme

Section 13 A particular format for the encoding of an Electronic
Product Code, together with a Filter Value in some
cases, into an EPC Binary Encoding. Each EPC
Scheme has at least one corresponding EPC Binary
Encoding Scheme. from a specified combination of
data elements. Owing to tradeoffs between data
capacity and the number of bits in the encoded value,
more than one binary encoding scheme exists for
certain EPC schemes. An EPC Binary Encoding
begins with an 8-bit header that identifies which
binary encoding scheme is used for that binary
encoding; this serves to identify how the remainder of
the binary encoding is to be interpreted.

EPC Pure
Identity URI

Section 6 See Pure Identity EPC URI.

EPC Raw URI Section 12 A representation of the complete contents of the EPC
Memory Bank of a Gen 2 RFID Tag,

EPC Scheme Section 6 A particular format for the construction of an
Electronic Product Code from a specified
combination of data elements. A Pure Identity EPC
URI begins with the name of the EPC Scheme used
for that URI, which both serves to ensure global
uniqueness of the complete URI as well as identify
how the remainder of the URI is to be interpreted.
Each type of GS1 Key has a corresponding EPC
Scheme that allows for the construction of an EPC
that corresponds to the value of a GS1 Key, under
certain conditions. Other EPC Schemes exist that
allow for construction of EPCs not related to GS1
keys.

http://www.autoidcenter.org/�

Copyright ©2005- 2010 EPCglobal®, All Rights Reserved. Page 131 of 210

Term Defined
Where

Meaning

EPC Tag URI Section 12 A representation of the complete contents of the EPC
Memory Bank of a Gen 2 RFID Tag, in the form of
an Internet Uniform Resource Identifier that includes
a decoded representation of EPC data fields, usable
when the EPC Memory Bank contains a valid EPC
Binary Encoding. Because the EPC Tag URI
represents the complete contents of the EPC Memory
Bank, it includes control information in addition to
the EPC, in contrast to the Pure Identity EPC URI.

Extended Tag
Identification
(XTID)

Section 16 Information that may be included in the TID Bank of
a Gen 2 RFID Tag in addition to the make and model
information. The XTID may include a manufacturer-
assigned unique serial number and may also include
other information that describes the capabilities of the
tag.

Filter Value Section 10 A 3-bit field of control information that is stored in
the EPC Memory Bank of a Gen 2 RFID Tag when
the tag contains certain types of EPCs. The filter
value makes it easier to read desired RFID Tags in an
environment where there may be other tags present,
such as reading a pallet tag in the presence of a large
number of item-level tags.

Gen 2 RFID Tag Section 8 An RFID Tag that conforms to one of the EPCglobal
Gen 2 family of air interface protocols. This includes
the UHF Class 1 Gen 2 Air Interface [UHFC1G2],
and other standards currently under development
within EPCglobal.

GS1 Company
Prefix

[GS1GS10.0] Part of the GS1 System identification number
consisting of a GS1 Prefix and a Company Number,
both of which are allocated by GS1 Member
Organisations.

GS1 Element
String

[GS1GS10.0] The combination of a GS1 Application Identifier and
GS1 Application Identifier Data Field.

GS1 Key [GS1GS10.0] A generic term for nine different identification keys
defined in the GS1 General Specifications
[GS1GS10.0], namely the GTIN, SSCC, GLN,
GRAI, GIAI, GSRN, GDTI, GSIN, and GINC.

http://www.autoidcenter.org/�

Copyright ©2005- 2010 EPCglobal®, All Rights Reserved. Page 132 of 210

Term Defined
Where

Meaning

Pure Identity
EPC URI

Section 6 The primary concrete representation of an Electronic
Product Code. The Pure Identity EPC URI is an
Internet Uniform Resource Identifier that contains an
Electronic Product Code and no other information.

Radio-Frequency
Identification
(RFID) Tag

 A data carrier that holds binary data, which may be
affixed to a physical object, and which communicates
the data to a interrogator (“reader”) device through
radio.

Reserved Bank
(of a Gen 2
RFID Tag)

[UHFC1G2] Bank 00 of a Gen 2 RFID Tag as specified in
[UHFC1G2]. The Reserved Bank holds the access
password and the kill password.

Tag
Identification
(TID)

[UHFC1G2] Information that describes a Gen 2 RFID Tag itself,
as opposed to describing the physical object to which
the tag is affixed. The TID includes an indication of
the make and model of the tag, and may also include
Extended TID (XTID) information.

TID Bank (of a
Gen 2 RFID
Tag)

[UHFC1G2] Bank 10 of a Gen 2 RFID Tag as specified in
[UHFC1G2]. The TID Bank holds the TID and
XTID (q.v.).

Uniform
Resource
Identifier (URI)

[RFC3986] A compact sequence of characters that identifies an
abstract or physical resource. A URI may be further
classified as a Uniform Resource Name (URN) or a
Uniform Resource Locator (URL), q.v.

Uniform
Resource
Locator (URL)

[RFC3986] A Uniform Resource Identifier (URI) that, in addition
to identifying a resource, provides a means of
locating the resource by describing its primary access
mechanism (e.g., its network "location").

Uniform
Resource Name
(URN)

[RFC3986],
[RFC2141]

A Uniform Resource Identifier (URI) that is part of
the urn scheme as specified by [RFC2141]. Such
URIs refer to a specific resource independent of its
network location or other method of access, or which
may not have a network location at all. The term
URN may also refer to any other URI having similar
properties.

Because an Electronic Product Code is a unique
identifier for a physical object that does not
necessarily have a network locatin or other method of
access, URNs are used to represent EPCs.

http://www.autoidcenter.org/�

Copyright ©2005- 2010 EPCglobal®, All Rights Reserved. Page 133 of 210

Term Defined
Where

Meaning

User Memory
Bank (of a Gen 2
RFID Tag)

[UHFC1G2] Bank 11 of a Gen 2 RFID Tag as specified in
[UHFC1G2]. The User Memory may be used to hold
additional business data elements beyond the EPC.

 3080

Appendix C References 3081
[ASN.1] CCITT, “Specification of Basic Encoding Rules for Abstract Syntax Notation 3082
One (ASN.1)", CCITT Recommendation X.209, January 1988. 3083
[EPCAF] F. Armenio et al, “EPCglobal Architecture Framework,” EPCglobal Final 3084
Version 1.3, March 2009, 3085
http://www.epcglobalinc.org/standards/architecture/architecture_1_3-framework-3086
20090319.pdf. 3087
[GS1GS10.0] “GS1 General Specifications,- Version 10.0, Issue 1” January 2010, 3088
Published by GS1, Blue Tower, Avenue Louise 326, bte10, Brussels 1009, B-1050, 3089
Belgium, www.gs1.org. 3090

[ISO15961] ISO/IEC, “Information technology – Radio frequency identification (RFID) 3091
for item management – Data protocol: application interface,” ISO/IEC 15961:2004, 3092
October 2004. 3093
[ISO15962] ISO/IEC, “Information technology – Radio frequency identification (RFID) 3094
for item management – Data protocol: data encoding rules and logical memory 3095
functions,” ISO/IEC 15962:2004, October 2004. (When ISO/IEC 15962, 2nd Edition, is 3096
published, it should be used in prefrence to the earlier version. References herein to 3097
Annex D of [15962] refer only to ISO/IEC 15962, 2nd Edition or later.) 3098

[ISODir2] ISO, “Rules for the structure and drafting of International Standards 3099
(ISO/IEC Directives, Part 2, 2001, 4th edition),” July 2002. 3100

[RFC2141] R. Moats, “URN Syntax,” RFC2141, May 1997, 3101
http://www.ietf.org/rfc/rfc2141. 3102

[RFC3986] T. Berners-Lee, R. Fielding, L. Masinter, “Uniform Resource Identifier 3103
(URI): Generic Syntax,” RFC3986, January 2005, http://www.ietf.org/rfc/rfc3986. 3104

[ONS1.0.1] EPCglobal, “EPCglobal Object Naming Service (ONS), Version 1.0.1,” 3105
EPCglobal Ratified Standard, May 2008, 3106
http://www.epcglobalinc.org/standards/ons/ons_1_0_1-standard-20080529.pdf. 3107
[UHFC1G2] EPCglobal, “EPC™ Radio-Frequency Identity Protocols Class-1 3108
Generation-2 UHF RFID Protocol for Communications at 860 MHz – 960 MHz Version 3109
1.2.0,” EPCglobal Specification, May 2008, 3110
http://www.epcglobalinc.org/standards/uhfc1g2/uhfc1g2_1_2_0-standard-20080511.pdf. 3111
[USDOD] “United States Department of Defense Suppliers’ Passive RFID Information 3112
Guide,” http://www.dodrfid.org/supplierguide.htm 3113

http://www.autoidcenter.org/�
http://www.epcglobalinc.org/standards/architecture/architecture_1_3-framework-20090319.pdf�
http://www.epcglobalinc.org/standards/architecture/architecture_1_3-framework-20090319.pdf�
http://www.gs1.org/�
http://www.ietf.org/rfc/rfc2141�
http://www.ietf.org/rfc/rfc3986�
http://www.epcglobalinc.org/standards/ons/ons_1_0_1-standard-20080529.pdf�
http://www.epcglobalinc.org/standards/uhfc1g2/uhfc1g2_1_2_0-standard-20080511.pdf�
http://www.dodrfid.org/supplierguide.htm�

Copyright ©2005- 2010 EPCglobal®, All Rights Reserved. Page 134 of 210

Appendix D Extensible Bit Vectors 3114
An Extensible Bit Vector (EBV) is a data structure with an extensible data range. 3115

An EBV is an array of blocks. Each block contains a single extension bit followed by a 3116
specific number of data bits. If B is the total number of bits in one block, then a block 3117
contains B − 1 data bits. The notation EBV-n used in this specification indicates an EBV 3118
with a block size of n; e.g., EBV-8 denotes an EBV with B=8. 3119

The data value represented by an EBV is simply the bit string formed by the data bits as 3120
read from left to right, ignoring all extension bits. The last block of an EBV has an 3121
extension bit of zero, and all blocks of an EBV preceding the last block (if any) have an 3122
extension bit of one. 3123

The following table illustrates different values represented in EBV-6 format and EBV-8 3124
format. Spaces are added to the EBVs for visual clarity. 3125

Value EBV-6 EBV-8

0 000000 00000000

1 000001 00000001

31 (25−1) 011111 00011111

32 (25) 100001 000000 00100000

33 (25+1) 100001 000001 00100001

127 (27−1) 100011 011111 01111111

128 (27) 100100 000000 10000001 00000000

129 (27+1) 100100 000001 10000001 00000001

16384 (214) 110000 100000 000000 10000001 10000000 00000000

 3126

The Packed Objects specification in Appendix I makes use of EBV-3, EBV-6, and EBV-3127
8. 3128

Appendix E (non-normative) Examples: EPC 3129
Encoding and Decoding 3130

This section presents two examples showing encoding and decoding between the 3131
Serialized Global Identification Number (SGTIN) and the EPC memory bank of a Gen 2 3132
RFID tag. 3133
As these are merely illustrative examples, in all cases the indicated normative sections of 3134
this specification should be consulted for the definitive rules for encoding and decoding. 3135
The diagrams and accompanying notes in this section are not intended to be a complete 3136
specification for encoding or decoding, but instead serve only to illustrate the highlights 3137
of how the normative encoding and decoding procedures function. The procedures for 3138

http://www.autoidcenter.org/�

Copyright ©2005- 2010 EPCglobal®, All Rights Reserved. Page 135 of 210

encoding other types of identifiers are different in significant ways, and the appropriate 3139
sections of this specification should be consulted. 3140

E.1 Encoding a Serialized Global Trade Item Number (SGTIN) to 3141
SGTIN-96 3142

This example illustrates the encoding of a GS1 Element String containing a Serialized 3143
Global Trade Item Number (SGTIN) into an EPC Gen 2 RFID tag using the SGTIN-96 3144
EPC scheme, with intermediate steps including the EPC URI, the EPC Tag URI, and the 3145
EPC Binary Encoding. 3146

In some applications, only a part of this illustration is relevant. For example, an 3147
application may only need to transform a GS1 Element String into an EPC URI, in which 3148
case only the top of the illustration is needed. 3149
The illustration below makes reference to the following notes: 3150

• Note 1: The step of converting a GS1 Element String into the EPC Pure Identity URI 3151
requires that the number of digits in the GS1 Company Prefix be determined; e.g., by 3152
reference to an external table of company prefixes. In this example, the GS1 3153
Company Prefix is shown to be seven digits. 3154

• Note 2: The check digit in GTIN as it appears in the GS1 Element String is not 3155
included in the EPC Pure Identity URI. 3156

• Note 3: The SGTIN-96 EPC scheme may only be used if the Serial Number meets 3157
certain constraints. Specifically, the serial number must (a) consist only of digit 3158
characters; (b) not begin with a zero digit (unless the entire serial number is the single 3159
digit ‘0’); and (c) correspond to a decimal numeral whose numeric value that is less 3160
than 238 (less than 274,877,906,944). For all other serial numbers, the SGTIN-198 3161
EPC scheme must be used. Note that the EPC URI is identical regardless of whether 3162
SGTIN-96 or SGTIN-198 is used in the RFID Tag. 3163

• Note 4: EPC Binary Encoding header values are defined in Section 14.2. 3164

• Note 5: The number of bits in the GS1 Company Prefix and Indicator/Item Reference 3165
fields in the EPC Binary Encoding depends on the number of digits in the GS1 3166
Company Prefix portion of the EPC URI, and this is indicated by a code in the 3167
Partition field of the EPC Binary Encoding. See Table 17 (for the SGTIN EPC only). 3168

• Note 6: The Serial field of the EPC Binary Encoding for SGTIN-96 is 38 bits; not all 3169
bits are shown here due to space limitations. 3170

 3171

http://www.autoidcenter.org/�

Copyright ©2005- 2010 EPCglobal®, All Rights Reserved. Page 136 of 210

 3172

(01)80614141123458(21)6789

(01) 8 0614141 12345 8 (21) 6789

urn:epc:id:sgtin: 0614141 . 8 12345 . 6789

urn:epc:id:sgtin:0614141.812345.6789

GS1 Element String

GS1 Element String to
EPC Pure Identity URI
(Section 7.1)

urn:epc:id:sgtin: 0614141.812345.6789
EPC Pure Identity URI
to EPC Tag URI
(Section 12.3.2)

urn:epc:tag:sgtin-96: 3 .0614141.812345.6789

EPC Pure Identity URI

Filter Value = 3
(Section 10.2)

urn:epc:tag:sgtin-96:3.0614141.812345.6789 EPC Tag URI

urn:epc:tag:sgtin-96:3.0614141.812345.6789
EPC Tag URI
to EPC Binary Encoding
(Section 14.3)

001100000111010000100101011110111111011100011001010011100100000000000
000000000000001101010000101

EPC Binary

00110000

Header

011

Filter

101

Partition

000010010101111011111101

GS1 Company Prefix

11000110010100111001

Indicator/Item Ref

000…01101010000101

Serial (38 bits)

EPC Binary Encoding
to Gen 2 memory
(Section 15.1)

…

CRC (16 bits)

0

Toggle

00000000

AttributeBits

00110000…10000101

EPC binary

0

XPC

0

UMI

00110

Length

00h 15h 16h 17h 20h 18h 1Fh 0Fh 7Fh Memory Address

Note 1 Note 2

Note 5 Note 6

96-bit EPC
Scheme Selected

Note 3

Note 4

http://www.autoidcenter.org/�

Copyright ©2005- 2010 EPCglobal®, All Rights Reserved. Page 137 of 210

E.2 Decoding an SGTIN-96 to a Serialized Global Trade Item 3173
Number (SGTIN) 3174

This example illustrates the decoding of an EPC Gen 2 RFID tag containing an SGTIN-3175
96 EPC Binary Encoding into a GS1 Element String containing a Serialized Global Trade 3176
Item Number (SGTIN), with intermediate steps including the EPC Binary Encoding, the 3177
EPC Tag URI, and the EPC URI. 3178

In some applications, only a part of this illustration is relevant. For example, an 3179
application may only need to convert an EPC URI to a GS1 Element String, in which 3180
case only the top of the illustration is needed. 3181
The illustration below makes reference to the following notes: 3182

• Note 1: The EPC Binary Encoding header indicates how to interpret the remainder of 3183
the binary data, and the EPC scheme name to be included in the EPC Tag URI. EPC 3184
Binary Encoding header values are defined in Section 14.2. 3185

• Note 2: The Partition field of the EPC Binary Encoding contains a code that indicates 3186
the number of bits in the GS1 Company Prefix field and the Indicator/Item Reference 3187
field. The partition code also determines the number of decimal digits to be used for 3188
those fields in the EPC Tag URI (the decimal representation for those two fields is 3189
padded on the left with zero characters as necessary). See Table 17 (for the SGTIN 3190
EPC only). 3191

• Note 3: For the SGTIN-96 EPC scheme, the Serial Number field is decoded by 3192
interpreting the bits as a binary integer and converting to a decimal numeral without 3193
leading zeros (unless all serial number bits are zero, which decodes as the string “0”). 3194
Serial numbers containing non-digit characters or that begin with leading zero 3195
characters may only be encoded in the SGTIN-198 EPC scheme. 3196

• Note 4: The check digit in the GS1 Element String is calculated from other digits in 3197
the EPC Pure Identity URI, as specified in Section 7.1. 3198

http://www.autoidcenter.org/�

Copyright ©2005- 2010 EPCglobal®, All Rights Reserved. Page 138 of 210

 3199

urn:epc:tag:sgtin-96:3.0614141.812345.6789

EPC Binary
Encoding to EPC
Tag URI
(Section 14.4)

00110000

Header

011

Filter

101

Partition

000010010101111011111101

GS1 Company Prefix

11000110010100111001

Indicator/Item Ref

000…01101010000101

Serial (38 bits)

Gen 2 memory to
EPC Binary Enco-
ding (Section 15.2)

…

CRC (16 bits)

0

Toggle

00000000

AttributeBits

00110000…10000101

EPC binary

0

XPC

0

UMI

00110

Length

00h 15h 16h 17h 20h 18h 1Fh 0Fh 7Fh Memory Address

(01)80614141123458(21)6789 GS1 Element String

urn:epc:id:sgtin:0614141.812345.6789 EPC Pure Identity URI

Filter Value = 3
(Section 10.2)

urn:epc:tag:sgtin-96:3.0614141.812345.6789 EPC Tag URI

001100000111010000100101011110111111011100011001010011100100000000000
000000000000001101010000101

EPC Binary

(01) 8 0614141 12345 8 (21) 6789
EPC Pure Identity URI
to GS1 Element String
(Section 7.1)

Note 1

Note 2

96-bit EPC
Scheme Selected

urn:epc:id:sgtin: 0614141.812345.6789

EPC Tag URI to EPC
Pure Identity URI
(Section 12.3)

urn:epc:tag:sgtin-96: 3 .0614141.812345.6789

urn:epc:id:sgtin: 0614141 . 8 12345 . 6789

Σ Note 4

Note 3

http://www.autoidcenter.org/�

Copyright ©2005- 2010 EPCglobal®, All Rights Reserved. Page 139 of 210

Appendix F Packed Objects ID Table for Data Format 9 3200
This section provides the Packed Objects ID Table for Data Format 9, which defines 3201
Packed Objects ID values, OIDs, and format strings for GS1 Application Identifiers. 3202
Section F.1 is a non-normative listing of the content of the ID Table for Data Format 9, in 3203
a human readable, tabular format. Section F.2 is the normative table, in machine 3204
readable, comma-separated-value format, as registered with ISO. 3205

F.1 Tabular Format (non-normative) 3206
This section is a non-normative listing of the content of the ID Table for Data Format 9, 3207
in a human readable, tabular format. See Section F.2 for the normative, machine 3208
readable, comma-separated-value format, as registered with ISO. 3209
K-Text = GS1 AI ID Table for ISO/IEC 15961 Format 9

K-Version = 1.00

K-ISO15434=05

K-Text = Primary Base Table

K-TableID = F9B0

K-RootOID = urn:oid:1.0.15961.9

K-IDsize = 90

AI or
AIs

IDvalue OIDs IDstring Name Data Title FormatString

00 1 0 00 SSCC (Serial Shipping
Container Code)

SSCC 18n

01 2 1 01 Global Trade Item Number GTIN 14n
02 + 37 3 (2)(37) (02)(37) GTIN + Count of trade

items contained in a
logistic unit

CONTENT +
COUNT

(14n)(1*8n)

10 4 10 10 Batch or lot number BATCH/LOT 1*20an
11 5 11 11 Production date

(YYMMDD)
PROD DATE 6n

12 6 12 12 Due date (YYMMDD) DUE DATE 6n
13 7 13 13 Packaging date

(YYMMDD)
PACK DATE 6n

15 8 15 15 Best before date
(YYMMDD)

BEST BEFORE
OR SELL BY

6n

17 9 17 17 Expiration date
(YYMMDD)

USE BY OR
EXPIRY

6n

20 10 20 20 Product variant VARIANT 2n
21 11 21 21 Serial number SERIAL 1*20an
22 12 22 22 Secondary data for

specific health industry
products

QTY/DATE/BATCH 1*29an

240 13 240 240 Additional product
identification assigned by
the manufacturer

ADDITIONAL ID 1*30an

http://www.autoidcenter.org/�

Copyright ©2005- 2010 EPCglobal®, All Rights Reserved. Page 140 of 210

241 14 241 241 Customer part number CUST. PART NO. 1*30an
242 15 242 242 Made-to-Order Variation

Number
VARIATION
NUMBER

1*6n

250 16 250 250 Secondary serial number SECONDARY
SERIAL

1*30an

251 17 251 251 Reference to source entity REF. TO SOURCE 1*30an
253 18 253 253 Global Document Type

Identifier
DOC. ID 13*30n

30 19 30 30 Variable count VAR. COUNT 1*8n
310n
320n

etc

20 K-Secondary
= S00

 Net weight, kilograms or
pounds or troy oz
(Variable Measure Trade
Item)

311n
321n

etc

21 K-Secondary
= S01

 Length of first dimension
(Variable Measure Trade
Item)

312n
324n

etc

22 K-Secondary
= S02

 Width, diameter, or
second dimension
(Variable Measure Trade
Item)

313n
327n

etc

23 K-Secondary
= S03

 Depth, thickness, height,
or third dimension
(Variable Measure Trade
Item)

314n
350n

etc

24 K-Secondary
= S04

 Area (Variable Measure
Trade Item)

315n
316n

etc

25 K-Secondary
= S05

 Net volume (Variable
Measure Trade Item)

330n or
340n

26 330%x30-36 /
340%x30-36

330%x30-36 /
340%x30-36

Logistic weight, kilograms
or pounds

GROSS WEIGHT
(kg) or (lb)

6n / 6n

331n,
341n,

etc

27 K-Secondary
= S09

 Length or first dimension

332n,
344n,

etc

28 K-Secondary
= S10

 Width, diameter, or
second dimension

333n,
347n,

etc

29 K-Secondary
= S11

 Depth, thickness, height,
or third dimension

334n
353n

etc

30 K-Secondary
= S07

 Logistic Area

335n
336n

etc

31 K-Secondary
= S06

335%x30-36 Logistic volume

337(***) 32 337%x30-36 337%x30-36 Kilograms per square
metre

KG PER m² 6n

390n or
391n

33 390%x30-39 /
391%x30-39

390%x30-39 /
391%x30-39

Amount payable – single
monetary area or with ISO
currency code

AMOUNT 1*15n / 4*18n

http://www.autoidcenter.org/�

Copyright ©2005- 2010 EPCglobal®, All Rights Reserved. Page 141 of 210

392n or
393n

34 392%x30-39 /
393%x30-39

392%x30-39 /
393%x30-39

Amount payable for
Variable Measure Trade
Item – single monetary
unit or ISO cc

 PRICE 1*15n / 4*18n

400 35 400 400 Customer's purchase
order number

ORDER NUMBER 1*30an

401 36 401 401 Global Identification
Number for Consignment

GINC 1*30an

402 37 402 402 Global Shipment
Identification Number

GSIN 17n

403 38 403 403 Routing code ROUTE 1*30an
410 39 410 410 Ship to - deliver to Global

Location Number
SHIP TO LOC 13n

411 40 411 411 Bill to - invoice to Global
Location Number

BILL TO 13n

412 41 412 412 Purchased from Global
Location Number

PURCHASE
FROM

13n

413 42 413 413 Ship for - deliver for -
forward to Global Location
Number

SHIP FOR LOC 13n

414
and
254

43 (414) [254] (414) [254] Identification of a physical
location GLN, and optional
Extension

LOC No + GLN
EXTENSION

(13n)
[1*20an]

415
and

8020

44 (415) (8020) (415) (8020) Global Location Number
of the Invoicing Party and
Payment Slip Reference
Number

PAY + REF No (13n)
(1*25an)

420 or
421

45 (420/421) (420/421) Ship to - deliver to postal
code

SHIP TO POST (1*20an / 3n
1*9an)

422 46 422 422 Country of origin of a trade
item

ORIGIN 3n

423 47 423 423 Country of initial
processing

COUNTRY -
INITIAL
PROCESS.

3*15n

424 48 424 424 Country of processing COUNTRY -
PROCESS.

3n

425 49 425 425 Country of disassembly COUNTRY -
DISASSEMBLY

3n

426 50 426 426 Country covering full
process chain

COUNTRY – FULL
PROCESS

3n

7001 51 7001 7001 NATO stock number NSN 13n
7002 52 7002 7002 UN/ECE meat carcasses

and cuts classification
MEAT CUT 1*30an

7003 53 7003 7003 Expiration Date and Time EXPIRY
DATE/TIME

10n

7004 54 7004 7004 Active Potency ACTIVE
POTENCY

1*4n

703s 55 7030 7030 Approval number of
processor with ISO
country code

PROCESSOR # s 3n 1*27an

703s 56 7031 7031 Approval number of
processor with ISO
country code

PROCESSOR # s 3n 1*27an

http://www.autoidcenter.org/�

Copyright ©2005- 2010 EPCglobal®, All Rights Reserved. Page 142 of 210

703s 57 7032 7032 Approval number of
processor with ISO
country code

PROCESSOR # s 3n 1*27an

703s 58 7033 7033 Approval number of
processor with ISO
country code

PROCESSOR # s 3n 1*27an

703s 59 7034 7034 Approval number of
processor with ISO
country code

PROCESSOR # s 3n 1*27an

703s 60 7035 7035 Approval number of
processor with ISO
country code

PROCESSOR # s 3n 1*27an

703s 61 7036 7036 Approval number of
processor with ISO
country code

PROCESSOR # s 3n 1*27an

703s 62 7037 7037 Approval number of
processor with ISO
country code

PROCESSOR # s 3n 1*27an

703s 63 7038 7038 Approval number of
processor with ISO
country code

PROCESSOR # s 3n 1*27an

703s 64 7039 7039 Approval number of
processor with ISO
country code

PROCESSOR # s 3n 1*27an

8001 65 8001 8001 Roll products - width,
length, core diameter,
direction, and splices

DIMENSIONS 14n

8002 66 8002 8002 Electronic serial identifier
for cellular mobile
telephones

CMT No 1*20an

8003 67 8003 8003 Global Returnable Asset
Identifier

GRAI 14n 0*16an

8004 68 8004 8004 Global Individual Asset
Identifier

GIAI 1*30an

8005 69 8005 8005 Price per unit of measure PRICE PER UNIT 6n
8006 70 8006 8006 Identification of the

component of a trade item
GCTIN 18n

8007 71 8007 8007 International Bank
Account Number

IBAN 1*30an

8008 72 8008 8008 Date and time of
production

PROD TIME 8*12n

8018 73 8018 8018 Global Service Relation
Number

GSRN 18n

8100
8101

etc

74 K-Secondary
= S08

 Coupon Codes

90 75 90 90 Information mutually
agreed between trading
partners (including FACT
DIs)

INTERNAL 1*30an

91 76 91 91 Company internal
information

INTERNAL 1*30an

92 77 92 92 Company internal
information

INTERNAL 1*30an

http://www.autoidcenter.org/�

Copyright ©2005- 2010 EPCglobal®, All Rights Reserved. Page 143 of 210

93 78 93 93 Company internal
information

INTERNAL 1*30an

94 79 94 94 Company internal
information

INTERNAL 1*30an

95 80 95 95 Company internal
information

INTERNAL 1*30an

96 81 96 96 Company internal
information

INTERNAL 1*30an

97 82 97 97 Company internal
information

INTERNAL 1*30an

98 83 98 98 Company internal
information

INTERNAL 1*30an

99 84 99 99 Company internal
information

INTERNAL 1*30an

K-TableEnd = F9B0

 3210
K-Text = Sec. IDT - Net weight, kilograms or pounds or troy oz (Variable Measure Trade Item)

K-TableID = F9S00

K-RootOID = urn:oid:1.0.15961.9

K-IDsize = 4

AI or
AIs

IDvalue OIDs IDstring Name Data Title FormatString

310(***) 0 310%x30-36 310%x30-36 Net weight, kilograms
(Variable Measure Trade
Item)

NET WEIGHT (kg) 6n

320(***) 1 320%x30-36 320%x30-36 Net weight, pounds
(Variable Measure Trade
Item)

NET WEIGHT (lb) 6n

356(***) 2 356%x30-36 356%x30-36 Net weight, troy ounces
(Variable Measure Trade
Item)

NET WEIGHT (t) 6n

K-TableEnd = F9S00

 3211
K-Text = Sec. IDT - Length of first dimension (Variable Measure Trade Item)

K-TableID = F9S01

K-RootOID = urn:oid:1.0.15961.9

K-IDsize = 4

AI or
AIs

IDvalue OIDs IDstring Name Data Title FormatString

311(***) 0 311%x30-36 311%x30-36 Length of first dimension,
metres (Variable Measure
Trade Item)

LENGTH (m) 6n

321(***) 1 321%x30-36 321%x30-36 Length or first dimension,
inches (Variable Measure
Trade Item)

LENGTH (i) 6n

http://www.autoidcenter.org/�

Copyright ©2005- 2010 EPCglobal®, All Rights Reserved. Page 144 of 210

322(***) 2 322%x30-36 322%x30-36 Length or first dimension,
feet (Variable Measure
Trade Item)

LENGTH (f) 6n

323(***) 3 323%x30-36 323%x30-36 Length or first dimension,
yards (Variable Measure
Trade Item)

LENGTH (y) 6n

K-TableEnd = F9S01

 3212
K-Text = Sec. IDT - Width, diameter, or second dimension (Variable Measure Trade Item)

K-TableID = F9S02

K-RootOID = urn:oid:1.0.15961.9

K-IDsize = 4

AI or
AIs

IDvalue OIDs IDstring Name Data Title FormatString

312(***) 0 312%x30-36 312%x30-36 Width, diameter, or
second dimension, metres
(Variable Measure Trade
Item)

WIDTH (m) 6n

324(***) 1 324%x30-36 324%x30-36 Width, diameter, or
second dimension, inches
(Variable Measure Trade
Item)

WIDTH (i) 6n

325(***) 2 325%x30-36 325%x30-36 Width, diameter, or
second dimension,
(Variable Measure Trade
Item)

WIDTH (f) 6n

326(***) 3 326%x30-36 326%x30-36 Width, diameter, or
second dimension, yards
(Variable Measure Trade
Item)

WIDTH (y) 6n

K-TableEnd = F9S02

 3213
K-Text = Sec. IDT - Depth, thickness, height, or third dimension (Variable Measure Trade Item)

K-TableID = F9S03

K-RootOID = urn:oid:1.0.15961.9

K-IDsize = 4

AI or
AIs

IDvalue OIDs IDstring Name Data Title FormatString

313(***) 0 313%x30-36 313%x30-36 Depth, thickness, height,
or third dimension, metres
(Variable Measure Trade
Item)

HEIGHT (m) 6n

327(***) 1 327%x30-36 327%x30-36 Depth, thickness, height,
or third dimension, inches
(Variable Measure Trade
Item)

HEIGHT (i) 6n

http://www.autoidcenter.org/�

Copyright ©2005- 2010 EPCglobal®, All Rights Reserved. Page 145 of 210

328(***) 2 328%x30-36 328%x30-36 Depth, thickness, height,
or third dimension, feet
(Variable Measure Trade
Item)

HEIGHT (f) 6n

329(***) 3 329%x30-36 329%x30-36 Depth, thickness, height,
or third dimension, yards
(Variable Measure Trade
Item)

HEIGHT (y) 6n

K-TableEnd = F9S03

 3214
K-Text = Sec. IDT - Area (Variable Measure Trade Item)

K-TableID = F9S04

K-RootOID = urn:oid:1.0.15961.9

K-IDsize = 4

AI or
AIs

IDvalue OIDs IDstring Name Data Title FormatString

314(***) 0 314%x30-36 314%x30-36 Area, square metres
(Variable Measure Trade
Item)

AREA (m2) 6n

350(***) 1 350%x30-36 350%x30-36 Area, square inches
(Variable Measure Trade
Item)

AREA (i2) 6n

351(***) 2 351%x30-36 351%x30-36 Area, square feet
(Variable Measure Trade
Item)

AREA (f2) 6n

352(***) 3 352%x30-36 352%x30-36 Area, square yards
(Variable Measure Trade
Item)

AREA (y2) 6n

K-TableEnd = F9S04

 3215
K-Text = Sec. IDT - Net volume (Variable Measure Trade Item)

K-TableID = F9S05

K-RootOID = urn:oid:1.0.15961.9

K-IDsize = 8

AI or
AIs

IDvalue OIDs IDstring Name Data Title FormatString

315(***) 0 315%x30-36 315%x30-36 Net volume, litres
(Variable Measure Trade
Item)

NET VOLUME (l) 6n

316(***) 1 316%x30-36 316%x30-36 Net volume, cubic metres
(Variable Measure Trade
Item)

NET VOLUME
(m3)

6n

357(***) 2 357%x30-36 357%x30-36 Net weight (or volume),
ounces (Variable Measure
Trade Item)

NET VOLUME (oz) 6n

http://www.autoidcenter.org/�

Copyright ©2005- 2010 EPCglobal®, All Rights Reserved. Page 146 of 210

360(***) 3 360%x30-36 360%x30-36 Net volume, quarts
(Variable Measure Trade
Item)

NET VOLUME (q) 6n

361(***) 4 361%x30-36 361%x30-36 Net volume, gallons U.S.
(Variable Measure Trade
Item)

NET VOLUME (g) 6n

364(***) 5 364%x30-36 364%x30-36 Net volume, cubic inches VOLUME (i3), log 6n
365(***) 6 365%x30-36 365%x30-36 Net volume, cubic feet

(Variable Measure Trade
Item)

VOLUME (f3), log 6n

366(***) 7 366%x30-36 366%x30-36 Net volume, cubic yards
(Variable Measure Trade
Item)

VOLUME (y3), log 6n

K-TableEnd = F9S05

 3216
K-Text = Sec. IDT - Logistic Volume

K-TableID = F9S06

K-RootOID = urn:oid:1.0.15961.9

K-IDsize = 8

AI or
AIs

IDvalue OIDs IDstring Name Data Title FormatString

335(***) 0 335%x30-36 335%x30-36 Logistic volume, litres VOLUME (l), log 6n
336(***) 1 336%x30-36 336%x30-36 Logistic volume, cubic

meters
VOLUME (m3), log 6n

362(***) 2 362%x30-36 362%x30-36 Logistic volume, quarts VOLUME (q), log 6n
363(***) 3 363%x30-36 363%x30-36 Logistic volume, gallons VOLUME (g), log 6n
367(***) 4 367%x30-36 367%x30-36 Logistic volume, cubic

inches
VOLUME (q), log 6n

368(***) 5 368%x30-36 368%x30-36 Logistic volume, cubic feet VOLUME (g), log 6n
369(***) 6 369%x30-36 369%x30-36 Logistic volume, cubic

yards
VOLUME (i3), log 6n

K-TableEnd = F9S06

 3217
K-Text = Sec. IDT - Logistic Area

K-TableID = F9S07

K-RootOID = urn:oid:1.0.15961.9

K-IDsize = 4

AI or
AIs

IDvalue OIDs IDstring Name Data Title FormatString

334(***) 0 334%x30-36 334%x30-36 Area, square metres AREA (m2), log 6n
353(***) 1 353%x30-36 353%x30-36 Area, square inches AREA (i2), log 6n
354(***) 2 354%x30-36 354%x30-36 Area, square feet AREA (f2), log 6n

http://www.autoidcenter.org/�

Copyright ©2005- 2010 EPCglobal®, All Rights Reserved. Page 147 of 210

355(***) 3 355%x30-36 355%x30-36 Area, square yards AREA (y2), log 6n
K-TableEnd = F9S07

 3218
K-Text = Sec. IDT - Coupon Codes

K-TableID = F9S08

K-RootOID = urn:oid:1.0.15961.9

K-IDsize = 8

AI or
AIs

IDvalue OIDs IDstring Name Data Title FormatString

8100 0 8100 8100 GS1-128 Coupon
Extended Code - NSC +
Offer Code

- 6n

8101 1 8101 8101 GS1-128 Coupon
Extended Code - NSC +
Offer Code + end of offer
code

- 10n

8102 2 8102 8102 GS1-128 Coupon
Extended Code – NSC

- 2n

8110 3 8110 8110 Coupon Code
Identification for Use in
North America

 1*30an

K-TableEnd = F9S08

 3219
K-Text = Sec. IDT - Length or first dimension

K-TableID = F9S09

K-RootOID = urn:oid:1.0.15961.9

K-IDsize = 4

AI or
AIs

IDvalue OIDs IDstring Name Data Title FormatString

331(***) 0 331%x30-36 331%x30-36 Length or first dimension,
metres

LENGTH (m), log 6n

341(***) 1 341%x30-36 341%x30-36 Length or first dimension,
inches

LENGTH (i), log 6n

342(***) 2 342%x30-36 342%x30-36 Length or first dimension,
feet

LENGTH (f), log 6n

343(***) 3 343%x30-36 343%x30-36 Length or first dimension,
yards

LENGTH (y), log 6n

K-TableEnd = F9S09

 3220

http://www.autoidcenter.org/�

Copyright ©2005- 2010 EPCglobal®, All Rights Reserved. Page 148 of 210

K-Text = Sec. IDT - Width, diameter, or second dimension

K-TableID = F9S10

K-RootOID = urn:oid:1.0.15961.9

K-IDsize = 4

AI or
AIs

IDvalue OIDs IDstring Name Data Title FormatString

332(***) 0 332%x30-36 332%x30-36 Width, diameter, or
second dimension, metres

WIDTH (m), log 6n

344(***) 1 344%x30-36 344%x30-36 Width, diameter, or
second dimension

WIDTH (i), log 6n

345(***) 2 345%x30-36 345%x30-36 Width, diameter, or
second dimension

WIDTH (f), log 6n

346(***) 3 346%x30-36 346%x30-36 Width, diameter, or
second dimension

WIDTH (y), log 6n

K-TableEnd = F9S10

 3221
K-Text = Sec. IDT - Depth, thickness, height, or third dimension

K-TableID = F9S11

K-RootOID = urn:oid:1.0.15961.9

K-IDsize = 4

AI or
AIs

IDvalue OIDs IDstring Name Data Title FormatString

333(***) 0 333%x30-36 333%x30-36 Depth, thickness, height,
or third dimension, metres

HEIGHT (m), log 6n

347(***) 1 347%x30-36 347%x30-36 Depth, thickness, height,
or third dimension

HEIGHT (i), log 6n

348(***) 2 348%x30-36 348%x30-36 Depth, thickness, height,
or third dimension

HEIGHT (f), log 6n

349(***) 3 349%x30-36 349%x30-36 Depth, thickness, height,
or third dimension

HEIGHT (y), log 6n

K-TableEnd = F9S11

 3222

F.2 Comma-Separated-Value (CSV) Format 3223
This section is the Packed Objects ID Table for Data Format 9 (GS1 Application 3224
Identifiers) in machine readable, comma-separated-value format, as registered with ISO. 3225
See Section F.1 for a non-normative listing of the content of the ID Table for Data 3226
Format 9, in a human readable, tabular format. 3227
In the comma-separated-value format, line breaks are significant. However, certain lines 3228
are too long to fit within the margins of this document. In the listing below, the 3229
symbol █ at the end of line indicates that the ID Table line is continued on the following 3230
line. Such a line shall be interpreted by concatenating the following line and omitting the 3231
█ symbol. 3232
K-Text = GS1 AI ID Table for ISO/IEC 15961 Format 9,,,,,, 3233
K-Version = 1.00,,,,,, 3234

http://www.autoidcenter.org/�

Copyright ©2005- 2010 EPCglobal®, All Rights Reserved. Page 149 of 210

K-ISO15434=05,,,,,, 3235
K-Text = Primary Base Table,,,,,, 3236
K-TableID = F9B0,,,,,, 3237
K-RootOID = urn:oid:1.0.15961.9,,,,,, 3238
K-IDsize = 90,,,,,, 3239
AI or AIs,IDvalue,OIDs,IDstring,Name,Data Title,FormatString 3240
00,1,0,"00",SSCC (Serial Shipping Container Code),SSCC,18n 3241
01,2,1,"01",Global Trade Item Number,GTIN,14n 3242
02 + 37,3,(2)(37),(02)(37),GTIN + Count of trade items contained in a logistic unit,CONTENT + COUNT,(14n)(1*8n) 3243
10,4,10,10,Batch or lot number,BATCH/LOT,1*20an 3244
11,5,11,11,Production date (YYMMDD),PROD DATE,6n 3245
12,6,12,12,Due date (YYMMDD),DUE DATE,6n 3246
13,7,13,13,Packaging date (YYMMDD),PACK DATE,6n 3247
15,8,15,15,Best before date (YYMMDD),BEST BEFORE OR SELL BY,6n 3248
17,9,17,17,Expiration date (YYMMDD),USE BY OR EXPIRY,6n 3249
20,10,20,20,Product variant,VARIANT,2n 3250
21,11,21,21,Serial number,SERIAL,1*20an 3251
22,12,22,22,Secondary data for specific health industry products ,QTY/DATE/BATCH,1*29an 3252
240,13,240,240,Additional product identification assigned by the manufacturer,ADDITIONAL ID,1*30an 3253
241,14,241,241,Customer part number,CUST. PART NO.,1*30an 3254
242,15,242,242,Made-to-Order Variation Number,VARIATION NUMBER,1*6n 3255
250,16,250,250,Secondary serial number,SECONDARY SERIAL,1*30an 3256
251,17,251,251,Reference to source entity,REF. TO SOURCE ,1*30an 3257
253,18,253,253,Global Document Type Identifier,DOC. ID,13*30n 3258
30,19,30,30,Variable count,VAR. COUNT,1*8n 3259
310n 320n etc,20,K-Secondary = S00,,"Net weight, kilograms or pounds or troy oz (Variable Measure Trade Item)",, 3260
311n 321n etc,21,K-Secondary = S01,,Length of first dimension (Variable Measure Trade Item),, 3261
312n 324n etc,22,K-Secondary = S02,,"Width, diameter, or second dimension (Variable Measure Trade Item)",, 3262
313n 327n etc,23,K-Secondary = S03,,"Depth, thickness, height, or third dimension (Variable Measure Trade Item)",, 3263
314n 350n etc,24,K-Secondary = S04,,Area (Variable Measure Trade Item),, 3264
315n 316n etc,25,K-Secondary = S05,,Net volume (Variable Measure Trade Item),, 3265
330n or 340n,26,330%x30-36 / 340%x30-36,330%x30-36 / 340%x30-36,"Logistic weight, kilograms or pounds",█ 3266
GROSS WEIGHT (kg) or (lb),6n / 6n 3267
"331n, 341n, etc",27,K-Secondary = S09,,Length or first dimension,, 3268
"332n, 344n, etc",28,K-Secondary = S10,,"Width, diameter, or second dimension",, 3269
"333n, 347n, etc",29,K-Secondary = S11,,"Depth, thickness, height, or third dimension",, 3270
334n 353n etc,30,K-Secondary = S07,,Logistic Area,, 3271
335n 336n etc,31,K-Secondary = S06,335%x30-36,Logistic volume,, 3272
337(***),32,337%x30-36,337%x30-36,Kilograms per square metre,KG PER m²,6n 3273
390n or 391n,33,390%x30-39 / 391%x30-39,390%x30-39 / 391%x30-39,Amount payable – single monetary area or with █ 3274
ISO currency code,AMOUNT,1*15n / 4*18n 3275
392n or 393n,34,392%x30-39 / 393%x30-39,392%x30-39 / 393%x30-39,Amount payable for Variable Measure Trade Item – █ 3276
single monetary unit or ISO cc, PRICE,1*15n / 4*18n 3277
400,35,400,400,Customer's purchase order number,ORDER NUMBER,1*30an 3278
401,36,401,401,Global Identification Number for Consignment,GINC,1*30an 3279
402,37,402,402,Global Shipment Identification Number,GSIN,17n 3280
403,38,403,403,Routing code,ROUTE,1*30an 3281
410,39,410,410,Ship to - deliver to Global Location Number ,SHIP TO LOC,13n 3282
411,40,411,411,Bill to - invoice to Global Location Number,BILL TO ,13n 3283
412,41,412,412,Purchased from Global Location Number,PURCHASE FROM,13n 3284
413,42,413,413,Ship for - deliver for - forward to Global Location Number,SHIP FOR LOC,13n 3285
414 and 254,43,(414) [254],(414) [254],"Identification of a physical location GLN, and optional Extension",LOC No + █ 3286
GLN EXTENSION,(13n) [1*20an] 3287
415 and 8020,44,(415) (8020),(415) (8020),Global Location Number of the Invoicing Party and Payment Slip Reference █ 3288
Number,PAY + REF No,(13n) (1*25an) 3289
420 or 421,45,(420/421),(420/421),Ship to - deliver to postal code,SHIP TO POST,(1*20an / 3n 1*9an) 3290
422,46,422,422,Country of origin of a trade item,ORIGIN,3n 3291
423,47,423,423,Country of initial processing,COUNTRY - INITIAL PROCESS.,3*15n 3292
424,48,424,424,Country of processing,COUNTRY - PROCESS.,3n 3293
425,49,425,425,Country of disassembly,COUNTRY - DISASSEMBLY,3n 3294
426,50,426,426,Country covering full process chain,COUNTRY – FULL PROCESS,3n 3295
7001,51,7001,7001,NATO stock number,NSN,13n 3296
7002,52,7002,7002,UN/ECE meat carcasses and cuts classification,MEAT CUT,1*30an 3297
7003,53,7003,7003,Expiration Date and Time,EXPIRY DATE/TIME,10n 3298
7004,54,7004,7004,Active Potency,ACTIVE POTENCY,1*4n 3299
703s,55,7030,7030,Approval number of processor with ISO country code,PROCESSOR # s,3n 1*27an 3300
703s,56,7031,7031,Approval number of processor with ISO country code,PROCESSOR # s,3n 1*27an 3301
703s,57,7032,7032,Approval number of processor with ISO country code,PROCESSOR # s,3n 1*27an 3302
703s,58,7033,7033,Approval number of processor with ISO country code,PROCESSOR # s,3n 1*27an 3303
703s,59,7034,7034,Approval number of processor with ISO country code,PROCESSOR # s,3n 1*27an 3304
703s,60,7035,7035,Approval number of processor with ISO country code,PROCESSOR # s,3n 1*27an 3305
703s,61,7036,7036,Approval number of processor with ISO country code,PROCESSOR # s,3n 1*27an 3306
703s,62,7037,7037,Approval number of processor with ISO country code,PROCESSOR # s,3n 1*27an 3307
703s,63,7038,7038,Approval number of processor with ISO country code,PROCESSOR # s,3n 1*27an 3308
703s,64,7039,7039,Approval number of processor with ISO country code,PROCESSOR # s,3n 1*27an 3309
8001,65,8001,8001,"Roll products - width, length, core diameter, direction, and splices",DIMENSIONS,14n 3310
8002,66,8002,8002,Electronic serial identifier for cellular mobile telephones,CMT No,1*20an 3311
8003,67,8003,8003,Global Returnable Asset Identifier,GRAI,14n 0*16an 3312
8004,68,8004,8004,Global Individual Asset Identifier,GIAI,1*30an 3313
8005,69,8005,8005,Price per unit of measure,PRICE PER UNIT,6n 3314
8006,70,8006,8006,Identification of the component of a trade item,GCTIN,18n 3315
8007,71,8007,8007,International Bank Account Number ,IBAN,1*30an 3316
8008,72,8008,8008,Date and time of production,PROD TIME,8*12n 3317
8018,73,8018,8018,Global Service Relation Number ,GSRN,18n 3318
8100 8101 etc,74,K-Secondary = S08,,Coupon Codes,, 3319
90,75,90,90,Information mutually agreed between trading partners (including FACT DIs),INTERNAL,1*30an 3320
91,76,91,91,Company internal information,INTERNAL,1*30an 3321
92,77,92,92,Company internal information,INTERNAL,1*30an 3322
93,78,93,93,Company internal information,INTERNAL,1*30an 3323
94,79,94,94,Company internal information,INTERNAL,1*30an 3324
95,80,95,95,Company internal information,INTERNAL,1*30an 3325
96,81,96,96,Company internal information,INTERNAL,1*30an 3326
97,82,97,97,Company internal information,INTERNAL,1*30an 3327
98,83,98,98,Company internal information,INTERNAL,1*30an 3328

http://www.autoidcenter.org/�

Copyright ©2005- 2010 EPCglobal®, All Rights Reserved. Page 150 of 210

99,84,99,99,Company internal information,INTERNAL,1*30an 3329
 3330
K-TableEnd = F9B0,,,,,, 3331
 3332
 3333
"K-Text = Sec. IDT - Net weight, kilograms or pounds or troy oz (Variable Measure Trade Item)",,,,,, 3334
K-TableID = F9S00,,,,,, 3335
K-RootOID = urn:oid:1.0.15961.9,,,,,, 3336
K-IDsize = 4,,,,,, 3337
AI or AIs,IDvalue,OIDs,IDstring,Name,Data Title,FormatString 3338
310(***),0,310%x30-36,310%x30-36,"Net weight, kilograms (Variable Measure Trade Item)",NET WEIGHT (kg),6n 3339
320(***),1,320%x30-36,320%x30-36,"Net weight, pounds (Variable Measure Trade Item)",NET WEIGHT (lb),6n 3340
356(***),2,356%x30-36,356%x30-36,"Net weight, troy ounces (Variable Measure Trade Item)",NET WEIGHT (t),6n 3341
K-TableEnd = F9S00,,,,,, 3342
 3343
 3344
K-Text = Sec. IDT - Length of first dimension (Variable Measure Trade Item),,,,,, 3345
K-TableID = F9S01,,,,,, 3346
K-RootOID = urn:oid:1.0.15961.9,,,,,, 3347
K-IDsize = 4,,,,,, 3348
AI or AIs,IDvalue,OIDs,IDstring,Name,Data Title,FormatString 3349
311(***),0,311%x30-36,311%x30-36,"Length of first dimension, metres (Variable Measure Trade Item)",LENGTH (m),6n 3350
321(***),1,321%x30-36,321%x30-36,"Length or first dimension, inches (Variable Measure Trade Item)",LENGTH (i),6n 3351
322(***),2,322%x30-36,322%x30-36,"Length or first dimension, feet (Variable Measure Trade Item)",LENGTH (f),6n 3352
323(***),3,323%x30-36,323%x30-36,"Length or first dimension, yards (Variable Measure Trade Item)",LENGTH (y),6n 3353
K-TableEnd = F9S01,,,,,, 3354
 3355
 3356
"K-Text = Sec. IDT - Width, diameter, or second dimension (Variable Measure Trade Item)",,,,,, 3357
K-TableID = F9S02,,,,,, 3358
K-RootOID = urn:oid:1.0.15961.9,,,,,, 3359
K-IDsize = 4,,,,,, 3360
AI or AIs,IDvalue,OIDs,IDstring,Name,Data Title,FormatString 3361
312(***),0,312%x30-36,312%x30-36,"Width, diameter, or second dimension, metres (Variable Measure Trade Item)", █ 3362
WIDTH (m),6n 3363
324(***),1,324%x30-36,324%x30-36,"Width, diameter, or second dimension, inches (Variable Measure Trade Item)", █ 3364
WIDTH (i),6n 3365
325(***),2,325%x30-36,325%x30-36,"Width, diameter, or second dimension, (Variable Measure Trade Item)", █ 3366
WIDTH (f),6n 3367
326(***),3,326%x30-36,326%x30-36,"Width, diameter, or second dimension, yards (Variable Measure Trade Item)", █ 3368
WIDTH (y),6n 3369
K-TableEnd = F9S02,,,,,, 3370
 3371
 3372
"K-Text = Sec. IDT - Depth, thickness, height, or third dimension (Variable Measure Trade Item)",,,,,, 3373
K-TableID = F9S03,,,,,, 3374
K-RootOID = urn:oid:1.0.15961.9,,,,,, 3375
K-IDsize = 4,,,,,, 3376
AI or AIs,IDvalue,OIDs,IDstring,Name,Data Title,FormatString 3377
313(***),0,313%x30-36,313%x30-36,"Depth, thickness, height, or third dimension, metres (Variable Measure █ 3378
Trade Item)",HEIGHT (m),6n 3379
327(***),1,327%x30-36,327%x30-36,"Depth, thickness, height, or third dimension, inches (Variable Measure █ 3380
Trade Item)",HEIGHT (i),6n 3381
328(***),2,328%x30-36,328%x30-36,"Depth, thickness, height, or third dimension, feet (Variable Measure █ 3382
Trade Item)",HEIGHT (f),6n 3383
329(***),3,329%x30-36,329%x30-36,"Depth, thickness, height, or third dimension, yards (Variable Measure █ 3384
Trade Item)",HEIGHT (y),6n 3385
K-TableEnd = F9S03,,,,,, 3386
 3387
 3388
K-Text = Sec. IDT - Area (Variable Measure Trade Item),,,,,, 3389
K-TableID = F9S04,,,,,, 3390
K-RootOID = urn:oid:1.0.15961.9,,,,,, 3391
K-IDsize = 4,,,,,, 3392
AI or AIs,IDvalue,OIDs,IDstring,Name,Data Title,FormatString 3393
314(***),0,314%x30-36,314%x30-36,"Area, square metres (Variable Measure Trade Item)",AREA (m2),6n 3394
350(***),1,350%x30-36,350%x30-36,"Area, square inches (Variable Measure Trade Item)",AREA (i2),6n 3395
351(***),2,351%x30-36,351%x30-36,"Area, square feet (Variable Measure Trade Item)",AREA (f2),6n 3396
352(***),3,352%x30-36,352%x30-36,"Area, square yards (Variable Measure Trade Item)",AREA (y2),6n 3397
K-TableEnd = F9S04,,,,,, 3398
 3399
 3400
K-Text = Sec. IDT - Net volume (Variable Measure Trade Item),,,,,, 3401
K-TableID = F9S05,,,,,, 3402
K-RootOID = urn:oid:1.0.15961.9,,,,,, 3403
K-IDsize = 8,,,,,, 3404
AI or AIs,IDvalue,OIDs,IDstring,Name,Data Title,FormatString 3405
315(***),0,315%x30-36,315%x30-36,"Net volume, litres (Variable Measure Trade Item)",NET VOLUME (l),6n 3406
316(***),1,316%x30-36,316%x30-36,"Net volume, cubic metres (Variable Measure Trade Item)",NET VOLUME (m3),6n 3407
357(***),2,357%x30-36,357%x30-36,"Net weight (or volume), ounces (Variable Measure Trade Item)",NET VOLUME (oz),6n 3408
360(***),3,360%x30-36,360%x30-36,"Net volume, quarts (Variable Measure Trade Item)",NET VOLUME (q),6n 3409
361(***),4,361%x30-36,361%x30-36,"Net volume, gallons U.S. (Variable Measure Trade Item)",NET VOLUME (g),6n 3410
364(***),5,364%x30-36,364%x30-36,"Net volume, cubic inches","VOLUME (i3), log",6n 3411
365(***),6,365%x30-36,365%x30-36,"Net volume, cubic feet (Variable Measure Trade Item)","VOLUME (f3), log",6n 3412
366(***),7,366%x30-36,366%x30-36,"Net volume, cubic yards (Variable Measure Trade Item)","VOLUME (y3), log",6n 3413
K-TableEnd = F9S05,,,,,, 3414
 3415
 3416
K-Text = Sec. IDT - Logistic Volume,,,,,, 3417
K-TableID = F9S06,,,,,, 3418
K-RootOID = urn:oid:1.0.15961.9,,,,,, 3419
K-IDsize = 8,,,,,, 3420
AI or AIs,IDvalue,OIDs,IDstring,Name,Data Title,FormatString 3421
335(***),0,335%x30-36,335%x30-36,"Logistic volume, litres","VOLUME (l), log",6n 3422

http://www.autoidcenter.org/�

Copyright ©2005- 2010 EPCglobal®, All Rights Reserved. Page 151 of 210

336(***),1,336%x30-36,336%x30-36,"Logistic volume, cubic metres","VOLUME (m3), log",6n 3423
362(***),2,362%x30-36,362%x30-36,"Logistic volume, quarts","VOLUME (q), log",6n 3424
363(***),3,363%x30-36,363%x30-36,"Logistic volume, gallons","VOLUME (g), log",6n 3425
367(***),4,367%x30-36,367%x30-36,"Logistic volume, cubic inches","VOLUME (q), log",6n 3426
368(***),5,368%x30-36,368%x30-36,"Logistic volume, cubic feet","VOLUME (g), log",6n 3427
369(***),6,369%x30-36,369%x30-36,"Logistic volume, cubic yards","VOLUME (i3), log",6n 3428
K-TableEnd = F9S06,,,,,, 3429
 3430
 3431
K-Text = Sec. IDT - Logistic Area,,,,,, 3432
K-TableID = F9S07,,,,,, 3433
K-RootOID = urn:oid:1.0.15961.9,,,,,, 3434
K-IDsize = 4,,,,,, 3435
AI or AIs,IDvalue,OIDs,IDstring,Name,Data Title,FormatString 3436
334(***),0,334%x30-36,334%x30-36,"Area, square metres","AREA (m2), log",6n 3437
353(***),1,353%x30-36,353%x30-36,"Area, square inches","AREA (i2), log",6n 3438
354(***),2,354%x30-36,354%x30-36,"Area, square feet","AREA (f2), log",6n 3439
355(***),3,355%x30-36,355%x30-36,"Area, square yards","AREA (y2), log",6n 3440
K-TableEnd = F9S07,,,,,, 3441
 3442
 3443
K-Text = Sec. IDT - Coupon Codes,,,,,, 3444
K-TableID = F9S08,,,,,, 3445
K-RootOID = urn:oid:1.0.15961.9,,,,,, 3446
K-IDsize = 8,,,,,, 3447
AI or AIs,IDvalue,OIDs,IDstring,Name,Data Title,FormatString 3448
8100,0,8100,8100,GS1-128 Coupon Extended Code - NSC + Offer Code,-,6n 3449
8101,1,8101,8101,GS1-128 Coupon Extended Code - NSC + Offer Code + end of offer code,-,10n 3450
8102,2,8102,8102,GS1-128 Coupon Extended Code – NSC,-,2n 3451
8110,3,8110,8110,Coupon Code Identification for Use in North America,,1*30an 3452
 3453
 3454
 3455
 3456
K-TableEnd = F9S08,,,,,, 3457
 3458
 3459
K-Text = Sec. IDT - Length or first dimension,,,,,, 3460
K-TableID = F9S09,,,,,, 3461
K-RootOID = urn:oid:1.0.15961.9,,,,,, 3462
K-IDsize = 4,,,,,, 3463
AI or AIs,IDvalue,OIDs,IDstring,Name,Data Title,FormatString 3464
331(***),0,331%x30-36,331%x30-36,"Length or first dimension, metres","LENGTH (m), log",6n 3465
341(***),1,341%x30-36,341%x30-36,"Length or first dimension, inches","LENGTH (i), log",6n 3466
342(***),2,342%x30-36,342%x30-36,"Length or first dimension, feet","LENGTH (f), log",6n 3467
343(***),3,343%x30-36,343%x30-36,"Length or first dimension, yards","LENGTH (y), log",6n 3468
K-TableEnd = F9S09,,,,,, 3469
 3470
 3471
"K-Text = Sec. IDT - Width, diameter, or second dimension",,,,,, 3472
K-TableID = F9S10,,,,,, 3473
K-RootOID = urn:oid:1.0.15961.9,,,,,, 3474
K-IDsize = 4,,,,,, 3475
AI or AIs,IDvalue,OIDs,IDstring,Name,Data Title,FormatString 3476
332(***),0,332%x30-36,332%x30-36,"Width, diameter, or second dimension, metres","WIDTH (m), log",6n 3477
344(***),1,344%x30-36,344%x30-36,"Width, diameter, or second dimension","WIDTH (i), log",6n 3478
345(***),2,345%x30-36,345%x30-36,"Width, diameter, or second dimension","WIDTH (f), log",6n 3479
346(***),3,346%x30-36,346%x30-36,"Width, diameter, or second dimension","WIDTH (y), log",6n 3480
K-TableEnd = F9S10,,,,,, 3481
 3482
 3483
"K-Text = Sec. IDT - Depth, thickness, height, or third dimension",,,,,, 3484
K-TableID = F9S11,,,,,, 3485
K-RootOID = urn:oid:1.0.15961.9,,,,,, 3486
K-IDsize = 4,,,,,, 3487
AI or AIs,IDvalue,OIDs,IDstring,Name,Data Title,FormatString 3488
333(***),0,333%x30-36,333%x30-36,"Depth, thickness, height, or third dimension, metres","HEIGHT (m), log",6n 3489
347(***),1,347%x30-36,347%x30-36,"Depth, thickness, height, or third dimension","HEIGHT (i), log",6n 3490
348(***),2,348%x30-36,348%x30-36,"Depth, thickness, height, or third dimension","HEIGHT (f), log",6n 3491
349(***),3,349%x30-36,349%x30-36,"Depth, thickness, height, or third dimension","HEIGHT (y), log",6n 3492
K-TableEnd = F9S11,,,,,, 3493

Appendix G (Intentionally Omitted) 3494
[This appendix is omitted so that Appendices I through M, which specify packed objects, 3495
have the same appendix letters as the corresponding annexes of ISO/IEC 15962 , 2nd 3496
Edition.] 3497

Appendix H (Intentionally Omitted) 3498
[This appendix is omitted so that Appendices I through M, which specify packed objects, 3499
have the same appendix letters as the corresponding annexes of ISO/IEC 15962 , 2nd 3500
Edition.] 3501

http://www.autoidcenter.org/�

Copyright ©2005- 2010 EPCglobal®, All Rights Reserved. Page 152 of 210

Appendix I Packed Objects Structure 3502

I.1 Overview 3503
The Packed Objects format provides for efficient encoding and access of user data. The 3504
Packed Objects format offers increased encoding efficiency compared to the No-3505
Directory and Directory Access-Methods partly by utilizing sophisticated compaction 3506
methods, partly by defining an inherent directory structure at the front of each Packed 3507
Object (before any of its data is encoded) that supports random access while reducing the 3508
fixed overhead of some prior methods, and partly by utilizing data-system-specific 3509
information (such as the GS1 definitions of fixed-length Application Identifiers). 3510

I.2 Overview of Packed Objects Documentation 3511
The formal description of Packed Objects is presented in this Appendix and Appendices 3512
J, K, L, and M, as follows: 3513

• The overall structure of Packed Objects is described in Section I.3. 3514

• The individual sections of a Packed Object are described in Sections I.4 through I.9. 3515

• The structure and features of ID Tables (utilized by Packed Objects to represent 3516
various data system identifiers) are described in Appendix J. 3517

• The numerical bases and character sets used in Packed Objects are described in 3518
Appendix K. 3519

• An encoding algorithm and worked example are described in Appendix L. 3520

• The decoding algorithm for Packed Objects is described in Appendix M. 3521
In addition, note that all descriptions of specific ID Tables for use with Packed Objects 3522
are registered separately, under the procedures of ISO/IEC 15961-2 as is the complete 3523
formal description of the machine-readable format for registered ID Tables. 3524

I.3 High-Level Packed Objects Format Design 3525

I.3.1 Overview 3526
The Packed Objects memory format consists of a sequence in memory of one or more 3527
“Packed Objects” data structures. Each Packed Object may contain either encoded data 3528
or directory information, but not both. The first Packed Object in memory is preceded by 3529
a DSFID. The DSFID indicates use of Packed Objects as the memory’s Access Method, 3530
and indicates the registered Data Format that is the default format for every Packed 3531
Object in that memory. Every Packed Object may be optionally preceded or followed by 3532
padding patterns (if needed for alignment on word or block boundaries). In addition, at 3533
most one Packed Object in memory may optionally be preceded by a pointer to a 3534
Directory Packed Object (this pointer may itself be optionally followed by padding). 3535
This series of Packed Objects is terminated by optional padding followed by one or more 3536
zero-valued octets aligned on byte boundaries. See Figure I 3-1, which shows this 3537
sequence when appearing in an RFID tag. 3538

http://www.autoidcenter.org/�

Copyright ©2005- 2010 EPCglobal®, All Rights Reserved. Page 153 of 210

NOTE: Because the data structures within an encoded Packed Object are bit-aligned 3539
rather than byte-aligned, this Appendix use the term ‘octet’ instead of ‘byte’ except in 3540
case where an eight-bit quantity must be aligned on a byte boundary. 3541

Figure I 3-1: Overall Memory structure when using Packed Objects 3542

DSFID Optional

Pointer*
And/Or

Padding

First
Packed
Object

Optional

Pointer*
And/Or

Padding

Optional

Second
Packed

Object

…

Optional

Packed
Object

Optional

Pointer*
And/Or

Padding

Zero
Octet(s)

*Note: the Optional Pointer to a Directory Packed Object may appear at most only once 3543
in memory 3544
Every Packed Object represents a sequence of one or more data system Identifiers, each 3545
specified by reference to an entry within a Base ID Table from a registered data format. 3546
The entry is referenced by its relative position within the Base Table; this relative 3547
position or Base Table index is referred to throughout this specification as an “ID Value.” 3548
There are two different Packed Objects methods available for representing a sequence of 3549
Identifiers by reference to their ID Values: 3550

• An ID List Packed Object (IDLPO) encodes a series of ID Values as a list, whose 3551
length depends on the number of data items being represented; 3552

• An ID Map Packed Object (IDMPO) instead encodes a fixed-length bit array, whose 3553
length depends on the total number of entries defined in the registered Base Table. 3554
Each bit in the array is ‘1’ if the corresponding table entry is represented by the 3555
Packed Object, and is ‘0’ otherwise. 3556

An ID List is the default Packed Objects format, because it uses fewer bits than an ID 3557
Map, if the list contains only a small percentage of the data system’s defined ID Values. 3558
However, if the Packed Object includes more than about one-quarter of the defined 3559
entries, then an ID Map requires fewer bits. For example, if a data system has sixteen 3560
entries, then each ID Value (table index) is a four bit quantity, and a list of four ID 3561
Values takes as many bits as would the complete ID Map. An ID Map’s fixed-length 3562
characteristic makes it especially suitable for use in a Directory Packed Object, which 3563
lists all of the Identifiers in all of the Packed Objects in memory (see section I.9). The 3564
overall structure of a Packed Object is the same, whether an IDLPO or an IDMPO, as 3565
shown in Figure I 3-2 and as described in the next subsection. 3566

Figure I 3-2 Packed Object Structure 3567

Optional
Format

Flags

Object Info Section
(IDLPO or IDMPO)

Secondary
ID Section

(if needed)

Aux Format
Section

(if needed)

Data Section
(if needed)

 3568

http://www.autoidcenter.org/�

Copyright ©2005- 2010 EPCglobal®, All Rights Reserved. Page 154 of 210

Packed Objects may be made “editable”, by adding an optional Addendum subsection to 3569
the end of the Object Info section, which includes a pointer to an “Addendum Packed 3570
Object” where additions and/or deletions have been made. One or more such “chains” of 3571
editable “parent” and “child” Packed Objects may be present within the overall sequence 3572
of Packed Objects in memory, but no more than one chain of Directory Packed Objects 3573
may be present. 3574

I.3.2 Descriptions of each section of a Packed Object’s 3575
structure 3576

Each Packed Object consists of several bit-aligned sections (that is, no pad bits between 3577
sections are used), carried in a variable number of octets. All required and optional 3578
Packed Objects formats are encompassed by the following ordered list of Packed Objects 3579
sections. Following this list, each Packed Objects section is introduced, and later sections 3580
of this Annex describe each Packed Objects section in detail. 3581

• Format Flags: A Packed Object may optionally begin with the pattern ‘0000’ which 3582
is reserved to introduce one or more Format Flags, as described in I.4.2. These flags 3583
may indicate use of the non-default ID Map format. If the Format Flags are not 3584
present, then the Packed Object defaults to the ID List format. 3585

• Certain flag patterns indicate an inter-Object pattern (Directory Pointer or 3586
Padding) 3587

• Other flag patterns indicate the Packed Object’s type (Map or. List), and may 3588
indicated the presence of an optional Addendum subsection for editing. 3589

• Object Info: All Packed Objects contain an Object Info Section which includes 3590
Object Length Information and ID Value Information: 3591

• Object Length Information includes an ObjectLength field (indicating the overall 3592
length of the Packed Object in octets) followed by Pad Indicator bit, so that the 3593
number of significant bits in the Packed Object can be determined. 3594

• ID Value Information indicates which Identifiers are present and in what order, 3595
and (if an IDLPO) also includes a leading NumberOfIDs field, indicating how 3596
many ID Values are encoded in the ID List. 3597

The Object Info section is encoded in one of the following formats, as shown in 3598
Figure I 3-3 and Figure I 3-4. 3599

• ID List (IDLPO) Object Info format: 3600

• Object Length (EBV-6) plus Pad Indicator bit 3601

• A single ID List or an ID Lists Section (depending on Format Flags) 3602

• ID Map (IDMPO) Object Info format: 3603

• One or more ID Map sections 3604

• Object Length (EBV-6) plus Pad Indicator bit 3605

http://www.autoidcenter.org/�

Copyright ©2005- 2010 EPCglobal®, All Rights Reserved. Page 155 of 210

For either of these Object Info formats, an Optional Addendum subsection may be 3606
present at the end of the Object Info section. 3607

• Secondary ID Bits: A Packed Object may include a Secondary ID section, if needed 3608
to encode additional bits that are defined for some classes of IDs (these bits complete 3609
the definition of the ID). 3610

• Aux Format Bits: A Data Packed Object may include an Aux Format Section, which 3611
if present encodes one or more bits that are defined to support data compression, but 3612
do not contribute to defining the ID. 3613

• Data Section: A Data Packed Object includes a Data Section, representing the 3614
compressed data associated with each of the identifiers listed within the Packed 3615
Object. This section is omitted in a Directory Packed Object, and in a Packed Object 3616
that uses No-directory compaction (see I.7.1). Depending on the declaration of data 3617
format in the relevant ID table, the Data section will contain either or both of two 3618
subsections: 3619

• Known-Length Numerics subsection: this subsection compacts and 3620
concatenates all of the non-empty data strings that are known a priori to be 3621
numeric. 3622

• AlphaNumeric subsection: this subsection concatenates and compacts all of the 3623
non-empty data strings that are not a priori known to be all-numeric. 3624

Figure I 3-3: IDLPO Object Info Structure 3625

Object Info, in a Default ID List PO Object Info, in a Non-default ID List PO

Object

Length

Number

Of IDs

ID

List

Optional

Addendum

or Object

Length

ID Lists Section

(one or more lists)

Optional

Addendum

 3626

Figure I 3-4: IDMPO Object Info Structure 3627

Object Info, in an ID Map PO

ID Map Section

(one or more maps)

Object

Length

Optional

Addendum

I.4 Format Flags section 3628
The default layout of memory, under the Packed Objects access method, consists of a 3629
leading DSFID, immediately followed by an ID List Packed Object (at the next byte 3630
boundary), then optionally additional ID List Packed Objects (each beginning at the next 3631
byte boundary), and terminated by a zero-valued octet at the next byte boundary 3632
(indicating that no additional Packed Objects are encoded). This section defines the valid 3633
Format Flags patterns that may appear at the expected start of a Packed Object to 3634
override the default layout if desired (for example, by changing the Packed Object’s 3635

http://www.autoidcenter.org/�

Copyright ©2005- 2010 EPCglobal®, All Rights Reserved. Page 156 of 210

format, or by inserting padding patterns to align the next Packed Object on a word or 3636
block boundary). The set of defined patterns are shown in Table I 4-1. 3637

Table I 4-1: Format Flags 3638

Bit Pattern Description Additional Info See Section

0000 0000 Termination Pattern No more packed objects follow I.4.1

LLLLLL xx First octet of an IDLPO For any LLLLLL > 3 I.5

0000 Format Flags starting
pattern

(if the full EBV-6 is non-zero) I.4.2

0000 10NA IDLPO with:
 N = 1: non-default Info

 A = 1: Addendum
Present

If N = 1: allows multiple ID
tables

If A = 1: Addendum ptr(s) at
end of Object Info section

I.4.3

0000 01xx Inter-PO pattern A Directory Pointer, or padding I.4.4

0000 0100 Signifies a padding octet No padding length indicator
follows

 I.4.4

0000 0101 Signifies run-length
padding

An EBV-8 padding length
follows

 I.4.4

0000 0110 RFU I.4.4

0000 0111 Directory pointer Followed by EBV-8 pattern I.4.4

0000 11xx ID Map Packed Object I.4.2

0000 0001
0000 0010
0000 0011

[Invalid] Invalid pattern

I.4.1 Data Terminating Flag Pattern 3639
A pattern of eight or more ‘0’ bits at the expected start of a Packed Object denotes that no 3640
more Packed Objects are present in the remainder of memory. 3641

NOTE: Six successive ‘0’ bits at the expect start of a Packed Object would (if interpreted 3642
as a Packed Object) indicate an ID List Packed Object of length zero. 3643

I.4.2 Format Flag section starting bit patterns 3644
A non-zero EBV-6 with a leading pattern of “0000” is used as a Format Flags section 3645
Indication Pattern. The additional bits following an initial ‘0000’ format Flag Indicating 3646
Pattern are defined as follows: 3647

• A following two-bit pattern of ‘10’ (creating an initial pattern of ‘000010’) indicates 3648
an IDLPO with at least one non-default optional feature (see I.4.3) 3649

http://www.autoidcenter.org/�

Copyright ©2005- 2010 EPCglobal®, All Rights Reserved. Page 157 of 210

• A following two-bit pattern of ‘11’ indicates an IDMPO, which is a Packed Object 3650
using an ID Map format instead of ID List-format The ID Map section (see I.9) 3651
immediately follows this two-bit pattern. 3652

• A following two-bit pattern of ‘01’ signifies an External pattern (Padding pattern or 3653
Pointer) prior to the start of the next Packed Object (see I.4.4) 3654

A leading EBV-6 Object Length of less than four is invalid as a Packed Objects length. 3655
NOTE: the shortest possible Packed Object is an IDLPO, for a data system using 3656
four bits per ID Value, encoding a single ID Value. This Packed Object has a 3657
total of 14 fixed bits. Therefore, a two-octet Packed Object would only contain 3658
two data bits, and is invalid. A three-octet Packed Object would be able to 3659
encode a single data item up to three digits long. In order to preserve “3” as an 3660
invalid length in this scenario, the Packed Objects encoder shall encode a leading 3661
Format Flags section (with all options set to zero, if desired) in order to increase 3662
the object length to four. 3663

 3664

I.4.3 IDLPO Format Flags 3665
The appearance of ‘000010’ at the expected start of a Packed Object is followed by two 3666
additional bits, to form a complete IDLPO Format Flags section of “000010NA”, where: 3667

• If the first additional bit ‘N’ is ‘1’, then a non-default format is employed for the 3668
IDLPO Object Info section. Whereas the default IDLPO format allows for only a 3669
single ID List (utilizing the registration’s default Base ID Table), the optional non-3670
default IDLPO Object Info format supports a sequence of one or more ID Lists, and 3671
each such list begins with identifying information as to which registered table it 3672
represents (see I.5.1). 3673

• If the second additional bit ‘A’ is ‘1’, then an Addendum subsection is present at the 3674
end of the Object Info section (see I.5.6). 3675

I.4.4 Patterns for use between Packed Objects 3676
The appearance of ‘000001’ at the expected start of a Packed Object is used to indicate 3677
either padding or a directory pointer, as follows: 3678

• A following two-bit pattern of ‘11’indicates that a Directory Packed Object Pointer 3679
follows the pattern. The pointer is one or more octets in length, in EBV-8 format. 3680
This pointer may be Null (a value of zero), but if non-zero, indicates the number of 3681
octets from the start of the pointer to the start of a Directory Packed Object (which if 3682
editable, shall be the first in its “chain”). For example, if the Format Flags byte for a 3683
Directory Pointer is encoded at byte offset 1, the Pointer itself occupies bytes 3684
beginning at offset 2, and the Directory starts at byte offset 9, then the Dir Ptr encodes 3685
the value “7” in EBV-8 format. A Directory Packed Object Pointer may appear 3686
before the first Packed Object in memory, or at any other position where a Packed 3687
Object may begin, but may only appear once in a given data carrier memory, and (if 3688
non-null) must be at a lower address than the Directory it points to. The first octet 3689

http://www.autoidcenter.org/�

Copyright ©2005- 2010 EPCglobal®, All Rights Reserved. Page 158 of 210

after this pointer may be padding (as defined immediately below), a new set of 3690
Format Flag patterns, or the start of an ID List Packed Object. 3691

• A following two-bit pattern of ‘00’ indicates that the full eight-bit pattern of 3692
‘00000100’ serves as a padding byte, so that the next Packed Object may begin on a 3693
desired word or block boundary. This pattern may repeat as necessary to achieve the 3694
desired alignment. 3695

• A following two-bit pattern of ‘01’ as a run-length padding indicator, and shall be 3696
immediately followed by an EBV-8 indicating the number of octets from the start of 3697
the EBV-8 itself to the start of the next Packed Object (for example, if the next 3698
Packed Object follows immediately, the EBV-8 has a value of one). This mechanism 3699
eliminates the need to write many words of memory in order to pad out a large 3700
memory block. 3701

• A following two-bit pattern of ‘10’ is Reserved. 3702

I.5 Object Info Information 3703
Each Packed Object’s Object Info section contains both Length Information (the size of 3704
the Packed Object, in bits and in octets), and ID Values Information. A Packed Object 3705
encodes representations of one or more data system Identifiers and (if a Data Packed 3706
Object) also encodes their associated data elements (AI strings, DI strings, etc). The ID 3707
Values information encodes a complete listing of all the Identifiers (AIs, DIs, etc) 3708
encoded in the Packed Object, or (in a Directory Packed Object) all the Identifiers 3709
encoded anywhere in memory. 3710
To conserve encoded and transmitted bits, data system Identifiers (each typically 3711
represented in data systems by either two, three, or four ASCII characters) is represented 3712
within a Packed Object by an ID Value, representing an index denoting an entry in a 3713
registered Base Table of ID Values. A single ID Value may represent a single Object 3714
Identifier, or may represent a commonly-used sequence of Object Identifiers. In some 3715
cases, the ID Value represents a “class” of related Object Identifiers, or an Object 3716
Identifier sequence in which one or more Object Identifiers are optionally encoded; in 3717
these cases, Secondary ID Bits (see I.6) are encoded in order to specify which selection 3718
or option was chosen when the Packed Object was encoded. A “fully-qualified ID 3719
Value” (FQIDV) is an ID Value, plus a particular choice of associated Secondary ID bits 3720
(if any are invoked by the ID Value’s table entry). Only one instance of a particular 3721
fully-qualified ID Value may appear in a data carrier’s Data Packed Objects, but a 3722
particular ID Value may appear more than once, if each time it is “qualified” by different 3723
Secondary ID Bits. If an ID Value does appear more than once, all occurrences shall be 3724
in a single Packed Object (or within a single “chain” of a Packed Object plus its 3725
Addenda). 3726
There are two methods defined for encoding ID Values: an ID List Packed Object uses a 3727
variable-length list of ID Value bit fields, whereas an ID Map Packed Object uses a 3728
fixed-length bit array. Unless a Packed Object’s format is modified by an initial Format 3729
Flags pattern, the Packed Object’s format defaults to that of an ID List Packed Object 3730
(IDLPO), containing a single ID List, whose ID Values correspond to the default Base ID 3731

http://www.autoidcenter.org/�

Copyright ©2005- 2010 EPCglobal®, All Rights Reserved. Page 159 of 210

Table of the registered Data Format. Optional Format Flags can change the format of the 3732
ID Section to either an IDMPO format, or to an IDLPO format encoding an ID Lists 3733
section (which supports multiple ID Tables, including non-default data systems). 3734
Although the ordering of information within the Object Info section varies with the 3735
chosen format (see I.5.1), the Object Info section of every Packed Object shall provide 3736
Length information as defined in I.5.2, and ID Values information (see I.5.3) as defined 3737
in I.5.4, or I.5.5. The Object Info section (of either an IDLPO or an IDMPO) may 3738
conclude with an optional Addendum subsection (see I.5.6). 3739

I.5.1 Object Info formats 3740

I.5.1.1 IDLPO default Object Info format 3741
The default IDLPO Object Info format is used for a Packed Object either without a 3742
leading Format Flags section, or with a Format Flags section indicating an IDLPO with a 3743
possible Addendum and a default Object Info section. The default IDLPO Object Info 3744
section contains a single ID List (optionally followed by an Addendum subsection if so 3745
indicated by the Format Flags). The format of the default IDLPO Object Info section is 3746
shown in Table I 5-1. 3747

Table I 5-1: Default IDLPO Object Info format 3748

Field Name: Length Information NumberOfIDs ID Listing Addendum
subsection

Usage: The number of octets
in this Object, plus a
last-octet pad
indicator

number of ID
Values in this
Object (minus
one)

A single list of ID
Values; value size
depends on
registered Data
Format

Optional
pointer(s) to
other Objects
containing Edit
information

Structure: Variable: see I.5.2 Variable:EBV-3 See I.5.4 See I.5.6

 3749

In a IDLPO’s Object Info section, the NumberOfIDs field is an EBV-3 Extensible Bit 3750
Vector, consisting of one or more repetitions of an Extension Bit followed by 2 value 3751
bits. This EBV-3 encodes one less than the number of ID Values on the associated ID 3752
Listing. For example, an EBV-3 of ‘101 000’ indicates (4 + 0 +1) = 5 IDs values. The 3753
Length Information is as described in I.5.2 for all Packed Objects The next fields are an 3754
ID Listing (see I.5.4) and an optional Addendum subsection (see I.5.6). 3755

I.5.1.2 IDLPO non-default Object Info format 3756
Leading Format Flags may modify the Object Info structure of an IDLPO, so that it may 3757
contain more than one ID Listing, in an ID Lists section (which also allows non-default 3758
ID tables to be employed). The non-default IDLPO Object Info structure is shown in 3759
Table I 5-2. 3760

http://www.autoidcenter.org/�

Copyright ©2005- 2010 EPCglobal®, All Rights Reserved. Page 160 of 210

Table I 5-2: Non-Default IDLPO Object Info format 3761

Field
Name:

Length
Info

ID Lists Section, first List Optional
Additional
ID List(s)

Null App
Indicator
(single
zero bit)

Addendum
Subsection Application

Indicator
Number
of IDs

ID
Listing

Usage: The
number
of octets
in this
Object,
plus a
last-
octet
pad
indicator

Indicates
the selected
ID Table
and the size
of each
entry

Number
Of ID
Values
on the
list
(minus
one)

Listing
of ID
Values,
then
one
F/R
Use bit

Zero or
more
repeated
lists, each
for a
different
ID Table

Optional
pointer(s)
to other
Objects
containing
Edit
information

Structure: see I.5.2 see I.5.3.1 See
I.5.1.1

See
I.5.4
and I
.5.3.2

References
in previous
columns

See
 I.5.3.1

See I.5.6

I.5.1.3 IDMPO Object Info format 3762
Leading Format Flags may define the Object Info structure to be an IDMPO, in which the 3763
Length Information (and optional Addendum subsection) follow an ID Map section (see 3764
I.5.5). This arrangement ensures that the ID Map is in a fixed location for a given 3765
application, of benefit when used as a Directory. The IDMPO Object Info structure is 3766
shown in Table I 5-3. 3767

Table I 5-3: IDMPO Object Info format 3768

Field Name: ID Map section Length Information Addendum

Usage: One or more ID Map
structures, each using a
different ID Table

The number of octets in
this Object, plus a last-
octet pad indicator

Optional
pointer(s) to
other Objects
containing
Edit
information

Structure: see I.9.1 See I.5.2 See I.5.6

I.5.2 Length Information 3769
The format of the Length information, always present in the Object Info section of any 3770
Packed Object, is shown in table I 5-4. 3771

http://www.autoidcenter.org/�

Copyright ©2005- 2010 EPCglobal®, All Rights Reserved. Page 161 of 210

Table I 5-4: Packed Object Length information 3772

Field Name: ObjectLength Pad Indicator

Usage: The number of 8-bit bytes in this Object
This includes the 1st byte of this Packed
Object, including its IDLPO/IDMPO
format flags if present. It excludes
patterns for use between packed objects,
as specified in I.4.4

If ‘1’: the
Object’s last byte
contains at least
1 pad

Structure: Variable: EBV-6 Fixed: 1 bit

The first field, ObjectLength, is an EBV-6 Extensible Bit Vector, consisting of one or 3773
more repetitions of an Extension Bit and 5 value bits. An EBV-6 of ‘000100’ (value of 3774
4) indicates a four-byte Packed Object, An EBV-6 of ‘100001 000000’ (value of 32) 3775
indicates a 32-byte Object, and so on. 3776

The Pad Indicator bit immediately follows the end of the EBV-6 ObjectLength. This bit 3777
is set to ‘0’ if there are no padding bits in the last byte of the Packed Object. If set to ‘1’, 3778
then bitwise padding begins with the least-significant or rightmost ‘1’ bit of the last byte, 3779
and the padding consists of this rightmost ‘1’ bit, plus any ‘0’ bits to the right of that bit. 3780
This method effectively uses a single bit to indicate a three-bit quantity (i.e., the number 3781
of trailing pad bits). When a receiving system wants to determine the total number of bits 3782
(rather than bytes) in a Packed Object, it would examine the ObjectLength field of the 3783
Packed Object (to determine the number of bytes) and multiply the result by eight, and (if 3784
the Pad Indicator bit is set) examine the last byte of the Packed Object and decrement the 3785
bit count by (1 plus the number of ‘0’ bits following the rightmost ‘1’ bit of that final 3786
byte). 3787

I.5.3 General description of ID values 3788
A registered data format defines (at a minimum) a Primary Base ID Table (a detailed 3789
specification for registered ID tables may be found in Annex J). This base table defines 3790
the data system Identifier(s) represented by each row of the table, any Secondary ID Bits 3791
or Aux Format bits invoked by each table entry, and various implicit rules (taken from a 3792
predefined rule set) that decoding systems shall use when interpreting data encoded 3793
according to each entry. When a data item is encoded in a Packed Object, its associated 3794
table entry is identified by the entry’s relative position in the Base Table. This table 3795
position or index is the ID Value that is represented in Packed Objects. 3796

A Base Table containing a given number of entries inherently specifies the number of bits 3797
needed to encode a table index (i.e., an ID Value) in an ID List Packed Object (as the Log 3798
(base 2) of the number of entries). Since current and future data system ID Tables will 3799
vary in unpredictable ways in terms of their numbers of table entries, there is a need to 3800
pre-define an ID Value Size mechanism that allows for future extensibility to 3801
accommodate new tables, while minimizing decoder complexity and minimizing the need 3802
to upgrade decoding software (other than the addition of new tables). Therefore, 3803
regardless of the exact number of Base Table entries defined, each Base Table definition 3804
shall utilize one of the predefined sizes for ID Value encodings defined in Table I 5-5 3805

http://www.autoidcenter.org/�

Copyright ©2005- 2010 EPCglobal®, All Rights Reserved. Page 162 of 210

(any unused entries shall be labeled as reserved, as provided in Annex J). The ID Size 3806
Bit pattern is encoded in a Packed Object only when it uses a non-default Base ID Table. 3807
Some entries in the table indicate a size that is not an integral power of two. When 3808
encoding (into an IDLPO) ID Values from tables that utilize such sizes, each pair of ID 3809
Values is encoded by multiplying the earlier ID of the pair by the base specified in the 3810
fourth column of Table I-5-5 and adding the later ID of the pair, and encoding the result 3811
in the number of bits specified in the fourth column. If there is a trailing single ID Value 3812
for this ID Table, it is encoded in the number of bits specified in the third column of 3813
Table I-5-5. 3814

Table I 5-5: Defined ID Value sizes 3815
ID Size Bit
pattern

Maximum number
of Table Entries

Number of Bits per single or
trailing ID Value, and how
encoded

Number of Bits per pair of
ID Values, and how
encoded

000 Up to 16 4, as 1 Base 16 value 8, as 2 Base 16 values

001 Up to 22 5, as 1 Base 22 value 9, as 2 Base 22 values

010 Up to 32 5, as 1 Base 32 value 10, as 2 Base 32 values

011 Up to 45 6, as 1 Base 45 value 11, as 2 Base 45 values

100 Up to 64 6, as 1 Base 64 value 12, as 2 Base 64 values

101 Up to 90 7, as 1 Base 90 value 13, as 2 Base 90 values

110 Up to 128 7, as 1 Base 128 value 14, as 2 Base 128 values

1110 Up to 256 8, as 1 Base 256 value 16, as 2 Base 256 values

111100 Up to 512 9, as 1 Base 512 value 18, as 2 Base 512 values

111101 Up to 1024 10, as 1 Base 1024 value 20, as 2 Base 1024 values

111110 Up to 2048 11, as 1 Base 2048 value 22, as 2 Base 2048 values

111111 Up to 4096 12, as 1 Base 4096 value 24, as 2 Base 4096 values

 3816

I.5.3.1 Application Indicator subsection 3817
An Application Indicator subsection can be utilized to indicate use of ID Values from a 3818
default or non-default ID Table. This subsection is required in every IDMPO, but is only 3819
required in an IDLPO that uses the non-default format supporting multiple ID Lists. 3820

An Application Indicator consists of the following components: 3821

• A single AppIndicatorPresent bit, which if ‘0’ means that no additional ID List or 3822
Map follows. Note that this bit is always omitted for the first List or Map in an 3823
Object Info section. When this bit is present and ‘0’, then none of the following bit 3824
fields are encoded. 3825

http://www.autoidcenter.org/�

Copyright ©2005- 2010 EPCglobal®, All Rights Reserved. Page 163 of 210

• A single ExternalReg bit that, if ‘1’, indicates use of an ID Table from a registration 3826
other than the memory’s default. If ‘1’, this bit is immediately followed by a 9-bit 3827
representation of a Data Format registered under ISO/IEC 15961. 3828

• An ID Size pattern which denotes a table size (and therefore an ID Map bit length, 3829
when used in an IDMPO), which shall be one of the patterns defined by Table I 5-5. 3830
The table size indicated in this field must be less than or equal to the table size 3831
indicated in the selected ID table. The purpose of this field is so that the decoder can 3832
parse past the ID List or ID Map, even if the ID Table is not available to the decoder. 3833

• a three-bit ID Subset pattern. The registered data format’s Primary Base ID Table, if 3834
used by the current Packed Object, shall always be indicated by an encoded ID Subset 3835
pattern of ‘000’. However, up to seven Alternate Base Tables may also be defined in 3836
the registration (with varying ID Sizes), and a choice from among these can be 3837
indicated by the encoded Subset pattern. This feature can be useful to define smaller 3838
sector-specific or application-specific subsets of a full data system, thus substantially 3839
reducing the size of the encoded ID Map. 3840

I.5.3.2 Full/Restricted Use bits 3841
When contemplating the use of new ID Table registrations, or registrations for external 3842
data systems, application designers may utilize a “restricted use” encoding option that 3843
adds some overhead to a Packed Object but in exchange results in a format that can be 3844
fully decoded by receiving systems not in possession of the new or external ID table. 3845
With the exception of a IDLPO using the default Object Info format, one Full/Restricted 3846
Use bit is encoded immediately after each ID table is represented in the ID Map section 3847
or ID Lists section of a Data or Directory Packed Object. In a Directory Packed object, 3848
this bit shall always be set to '0' and its value ignored. If an encoder wishes to utilize the 3849
“restricted use” option in an IDLPO, it shall preface the IDLPO with a Format Flags 3850
section invoking the non-default Object Info format. 3851
If a “Full/Restricted Use” bit is ‘0’ then the encoding of data strings from the 3852
corresponding registered ID Table makes full use of the ID Table’s IDstring and 3853
FormatString information. If the bit is ‘1’, then this signifies that some encoding 3854
overhead was added to the Secondary ID section and (in the case of Packed-Object 3855
compaction) the Aux Format section, so that a decoder without access to the table can 3856
nonetheless output OIDs and data from the Packed Object according to the scheme 3857
specified in J.4.1. Specifically, a Full/Restricted Use bit set to ‘1’ indicates that: 3858

• for each encoded ID Value, the encoder added an EBV-3 indicator to the Secondary 3859
ID section, to indicate how many Secondary ID bits were invoked by that ID Value. 3860
If the EBV-3 is nonzero, then the Secondary ID bits (as indicated by the table entry) 3861
immediately follow, followed in turn by another EBV-3, until the entire list of ID 3862
Values has been represented. 3863

• the encoder did not take advantage of the information from the referenced table’s 3864
FormatString column. Instead, corresponding to each ID Value, the encoder inserted 3865
an EBV-3 into the Aux Format section, indicating the number of discrete data string 3866
lengths invoked by the ID Value (which could be more than one due to combinations 3867

http://www.autoidcenter.org/�

Copyright ©2005- 2010 EPCglobal®, All Rights Reserved. Page 164 of 210

and/or optional components), followed by the indicated number of string lengths, 3868
each length encoded as though there were no FormatString in the ID table. All data 3869
items were encoded in the A/N subsection of the Data section. 3870

I.5.4 ID Values representation in an ID Value-list Packed Object 3871
Each ID Value is represented within an IDLPO on a list of bit fields; the number of bit 3872
fields on the list is determined from the NumberOfIDs field (see Table I 5-1). Each ID 3873
Value bit field’s length is in the range of four to eleven bits, depending on the size of the 3874
Base Table index it represents. In the optional non-default format for an IDLPO’s Object 3875
Info section, a single Packed Object may contain multiple ID List subsections, each 3876
referencing a different ID Table. In this non-default format, each ID List subsection 3877
consists of an Application Indicator subsection (which terminates the ID Lists, if it begins 3878
with a ‘0’ bit), followed by an EBV-3 NumberOfIDs, an ID List, and a Full/Restricted 3879
Use flag. 3880

I.5.5 ID Values representation in an ID Map Packed Object 3881
Encoding an ID Map can be more efficient than encoding a list of ID Values, when 3882
representing a relatively large number of ID Values (constituting more than about 10 3883
percent of a large Base Table’s entries, or about 25 percent of a small Base Table’s 3884
entries). When encoded in an ID Map, each ID Value is represented by its relative 3885
position within the map (for example, the first ID Map bit represents ID Value “0”, the 3886
third bit represents ID Value “2”, and the last bit represents ID Value ‘n’ (corresponding 3887
to the last entry of a Base Table with (n+1) entries). The value of each bit within an ID 3888
Map indicates whether the corresponding ID Value is present (if the bit is ‘1’) or absent 3889
(if ‘0’). An ID Map is always encoded as part of an ID Map Section structure (see I.9.1). 3890

I.5.6 Optional Addendum subsection of the Object Info section 3891
The Packed Object Addendum feature supports basic editing operations, specifically the 3892
ability to add, delete, or replace individual data items in a previously-written Packed 3893
Object, without a need to rewrite the entire Packed Object. A Packed Object that does 3894
not contain an Addendum subsection cannot be edited in this fashion, and must be 3895
completely rewritten if changes are required. 3896

An Addendum subsection consists of a Reverse Links bit, followed by a Child bit, 3897
followed by either one or two EBV-6 links. Links from a Data Packed Object shall only 3898
go to other Data Packed Objects as addenda; links from a Directory Packed Object shall 3899
only go to other Directory Packed Objects as addenda. The standard Packed Object 3900
structure rules apply, with some restrictions that are described in I.5.6.2. 3901
The Reverse Links bit shall be set identically in every Packed Object of the same “chain.” 3902
The Reverse Links bit is defined as follows: 3903

• If the Reverse Links bit is ‘0’, then each child in this chain of Packed Objects is at a 3904
higher memory location then its parent. The link to a Child is encoded as the number 3905
of octets (plus one) that are in between the last octet of the current Packed Object and 3906
the first octet of the Child. The link to the parent is encoded as the number of octets 3907

http://www.autoidcenter.org/�

Copyright ©2005- 2010 EPCglobal®, All Rights Reserved. Page 165 of 210

(plus one) that are in between the first octet of the parent Packed Object and the first 3908
octet of the current Packed Object. 3909

• If the Reverse Links bit is ‘1’, then each child in this chain of Packed Objects is at a 3910
lower memory location then its parent. The link to a Child is encoded as the number 3911
of octets (plus one) that are in between the first octet of the current Packed Object and 3912
the first octet of the Child. The link to the parent is encoded as the number of octets 3913
(plus one) that are in between the last octet of the current Packed Object and the first 3914
octet of the parent. 3915

The Child bit is defined as follows: 3916

• If the Child bit is a ‘0’, then this Packed Object is an editable “Parentless” Packed 3917
Object (i.e., the first of a chain), and in this case the Child bit is immediately followed 3918
by a single EBV-6 link to the first “child” Packed Object that contains editing 3919
addenda for the parent. 3920

• If the Child bit is a ‘1’, then this Packed Object is an editable “child” of an edited 3921
“parent,” and the bit is immediately followed by one EBV-6 link to the “parent” and a 3922
second EBV-6 line to the next “child” Packed Object that contains editing addenda 3923
for the parent. 3924

A link value of zero is a Null pointer (no child exists), and in a Packed Object whose 3925
Child bit is ‘0’, this indicates that the Packed Object is editable, but has not yet been 3926
edited. A link to the Parent is provided, so that a Directory may indicate the presence and 3927
location of an ID Value in an Addendum Packed Object, while still providing an 3928
interrogator with the ability to efficiently locate the other ID Values that are logically 3929
associated with the original “parent” Packed Object. A link value of zero is invalid as a 3930
pointer towards a Parent. 3931

In order to allow room for a sufficiently-large link, when the future location of the next 3932
“child” is unknown at the time the parent is encoded, it is permissible to use the 3933
“redundant” form of the EBV-6 (for example using “100000 000000” to represent a link 3934
value of zero). 3935

I.5.6.1 Addendum “EditingOP” list (only in ID List Packed Objects) 3936
In an IDLPO only, each Addendum section of a “child” ID List Packed Object contains a 3937
set of “EditingOp” bits encoded immediately after its last EBV-6 link. The number of 3938
such bits is determined from the number of entries on the Addendum Packed Object’s ID 3939
list. For each ID Value on this list, the corresponding EditingOp bit or bits are defined as 3940
follows: 3941

• ‘1’ means that the corresponding Fully-Qualified ID Value (FQIDV) is Replaced. A 3942
Replace operation has the effect that the data originally associated with the FQIDV 3943
matching the FQIDV in this Addendum Packed Object shall be ignored, and logically 3944
replaced by the Aux Format bits and data encoded in this Addendum Packed Object) 3945

• ‘00’ means that the corresponding FQIDV is Deleted but not replaced. In this case, 3946
neither the Aux Format bits nor the data associated with this ID Value are encoded in 3947
the Addendum Packed Object. 3948

http://www.autoidcenter.org/�

Copyright ©2005- 2010 EPCglobal®, All Rights Reserved. Page 166 of 210

• ‘01’ means that the corresponding FQIDV is Added (either this FQIDV was not 3949
previously encoded, or it was previously deleted without replacement). In this case, 3950
the associated Aux Format Bits and data shall be encoded in the Addendum Packed 3951
Object. 3952

NOTE: if an application requests several “edit” operations at once (including some 3953
Delete or Replace operations as well as Adds) then implementations can achieve 3954
more efficient encoding if the Adds share the Addendum overhead, rather than being 3955
implemented in a new Packed Object. 3956

 3957

I.5.6.2 Packed Objects containing an Addendum subsection 3958
A Packed Object containing an Addendum subsection is otherwise identical in structure 3959
to other Packed Objects. However, the following observations apply: 3960

• A “parentless” Packed Object (the first in a chain) may be either an ID List Packed 3961
Object or an ID Map Packed Object (and a parentless IDMPO may be either a Data or 3962
Directory IDMPO). When a “parentless” PO is a directory, only directory IDMPOs 3963
may be used as addenda. A Directory IDMPO’s Map bits shall be updated to 3964
correctly reflect the end state of the chain of additions and deletions to the memory 3965
bank; an Addendum to the Directory is not utilized to perform this maintenance (a 3966
Directory Addendum may only add new structural components, as described later in 3967
this section). In contrast, when the edited parentless object is an ID List Packed 3968
Object or ID Map Packed Object, its ID List or ID Map cannot be updated to reflect 3969
the end state of the aggregate Object (parents plus children). 3970

• Although a “child” may be either an ID List or an ID Map Packed Object, only an 3971
IDLPO can indicate deletions or changes to the current set of fully-qualified ID 3972
Values and associated data that is embodied in the chain. 3973

• When a child is an IDMPO, it shall only be utilized to add (not delete or modify) 3974
structural information, and shall not be used to modify existing information. In a 3975
Directory chain, a child IDMPO may add new ID tables, or may add a new 3976
AuxMap section or subsections, or may extend an existing PO Index Table or 3977
ObjectOffsets list. In a Data chain, an IDMPO shall not be used as an Addendum, 3978
except to add new ID Tables. 3979

• When a child is an IDLPO, its ID list (followed by “EditingOp” bits) lists only 3980
those FQIDVs that have been deleted, added, or replaced, relative to the 3981
cumulative ID list from the prior Objects linked to it. 3982

I.6 Secondary ID Bits section 3983
The Packed Objects design requirements include a requirement that all of the data system 3984
Identifiers (AI’s, DI’s, etc.) encoded in a Packed Object’s can be fully recognized without 3985
expanding the compressed data, even though some ID Values provide only a partially-3986
qualified Identifier. As a result, if any of the ID Values invoke Secondary ID bits, the 3987

http://www.autoidcenter.org/�

Copyright ©2005- 2010 EPCglobal®, All Rights Reserved. Page 167 of 210

Object Info section shall be followed by a Secondary ID Bits section. Examples include 3988
a four-bit field to identify the third digit of a group of related Logistics AIs. 3989

Secondary ID bits can be invoked for several reasons, as needed in order to fully specify 3990
Identifiers. For example, a single ID Table entry’s ID Value may specify a choice 3991
between two similar identifiers (requiring one encoded bit to select one of the two IDs at 3992
the time of encoding), or may specify a combination of required and optional identifiers 3993
(requiring one encoded bit to enable or disable each option). The available mechanisms 3994
are described in Annex J. All resulting Secondary ID bit fields are concatenated in this 3995
Secondary ID Bits section, in the same order as the ID Values that invoked them were 3996
listed within the Packed Object. Note that the Secondary ID Bits section is identically 3997
defined, whether the Packed Object is an IDLPO or an IDMPO, but is not present in a 3998
Directory IDMPO. 3999

I.7 Aux Format section 4000
The Aux Format section of a Data Packed Object encodes auxiliary information for the 4001
decoding process. A Directory Packed Object does not contain an Aux Format section. 4002
In a Data Packed Object, the Aux Format section begins with “Compact-Parameter” bits 4003
as defined in Table I.7-1. 4004

Table I.7-1: Compact-Parameter bit patterns 4005

Bit
Pattern

Compaction method used in this Packed Object Reference

‘1’ “Packed-Object” compaction See I.7.2

‘000’ “Application-Defined”, as defined for the No-Directory
access method

See I.7.1

‘001’ “Compact”, as defined for the No-Directory access method See I.7.1

‘010’ “UTF-8”, as defined for the No-Directory access method See I.7.1

‘011bbbb’ (‘bbbb’ shall be in the range of 4..14): reserved for future
definition

See I.7.1

 4006

If the Compact-Parameter bit pattern is ‘1’, then the remainder of the Aux Format section 4007
is encoded as described in I.7.2; otherwise, the remainder of the Aux Format section is 4008
encoded as described in I.7.1. 4009

I.7.1 Support for No-Directory compaction methods 4010
If any of the No-Directory compaction methods were selected by the Compact-Parameter 4011
bits, then the Compact-Parameter bits are followed by an byte-alignment padding pattern 4012
consisting of zero or more ‘0’ bits followed by a single ‘1’ bit, so that the next bit after 4013
the ‘1’ is aligned as the most-significant bit of the next byte. 4014

This next byte is defined as the first octet of a “No-Directory Data section”, which is used 4015
in place of the Data section described in I.8. The data strings of this Packed Object are 4016

http://www.autoidcenter.org/�

Copyright ©2005- 2010 EPCglobal®, All Rights Reserved. Page 168 of 210

encoded in the order indicated by the Object Info section of the Packed Object, 4017
compacted exactly as described in Annex D of [ISO15962] (Encoding rules for No-4018
Directory Access-Method), with the following two exceptions: 4019

• The Object-Identifier is not encoded in the “No-Directory Data section”, because it 4020
has already been encoded into the Object Info and Secondary ID sections. 4021

• The Precursor is modified in that only the three Compaction Type Code bits are 4022
significant, and the other bits in the Precursor are set to ‘0’. 4023

Therefore, each of the data strings invoked by the ID Table entry are separately encoded 4024
in a modified data set structure as: 4025

<modified precursor> <length of compacted object> <compacted object octets> 4026
The <compacted object octets> are determined and encoded as described in D.1.1 and 4027
D.1.2 of [ISO15962] and the <length of compacted object> is determined and encoded as 4028
described in D.2 of [ISO15962]. 4029

Following the last data set, a terminating precursor value of zero shall not be encoded 4030
(the decoding system recognizes the end of the data using the encoded ObjectLength of 4031
the Packed Object). 4032

I.7.2 Support for the Packed-Object compaction method 4033
If the Packed-Object compaction method was selected by the Compact-Parameter bits, 4034
then the Compact-Parameter bits are followed by zero or more Aux Format bits, as may 4035
be invoked by the ID Table entries used in this Packed Object. The Aux Format bits are 4036
then immediately followed by a Data section that uses the Packed-Object compaction 4037
method described in I.8. 4038
An ID Table entry that was designed for use with the Packed-Object compaction method 4039
can call for various types of auxiliary information beyond the complete indication of the 4040
ID itself (such as bit fields to indicate a variable data length, to aid the data compaction 4041
process). All such bit fields are concatenated in this portion, in the order called for by the 4042
ID List or Map. Note that the Aux Format section is identically defined, whether the 4043
Packed Object is an IDLPO or an IDMPO. 4044
An ID Table entry invokes Aux Format length bits for all entries that are not specified as 4045
fixed-length in the table (however, these length bits are not actually encoded if they 4046
correspond to the last data item encoded in the A/N subsection of a Packed Object). This 4047
information allows the decoding system to parse the decoded data into strings of the 4048
appropriate lengths. An encoded Aux Format length entry utilizes a variable number of 4049
bits, determined from the specified range between the shortest and longest data strings 4050
allowed for the data item, as follows: 4051

• If a maximum length is specified, and the specified range (defined as the maximum 4052
length minus the minimum length) is less than eight, or greater than 44, then lengths 4053
in this range are encoded in the fewest number of bits that can express lengths within 4054
that range, and an encoded value of zero represents the minimum length specified in 4055
the format string. For example, if the range is specified as from three to six 4056

http://www.autoidcenter.org/�

Copyright ©2005- 2010 EPCglobal®, All Rights Reserved. Page 169 of 210

characters, then lengths are encoded using two bits, and ‘00’ represents a length of 4057
three. 4058

• Otherwise (including the case of an unspecified maximum length), the value (actual 4059
length – specified minimum) is encoded in a variable number of bits, as follows: 4060

• Values from 0 to 14 (representing lengths from 1 to 15, if the specified minimum 4061
length is one character, for example) are encoded in four bits 4062

• Values from 15 to 29 are encoded in eight bits (a prefix of ‘1111’ followed by 4063
four bits representing values from 15 (‘0000’) to 29 (‘1110’) 4064

• Values from 30 to 44 are encoded in twelve bits (a prefix of ‘1111 1111’ followed 4065
by four bits representing values from 30 (‘0000’) to 44 (‘1110’) 4066

• Values greater than 44 are encoded as a twelve-bit prefix of all ‘1’s, followed by 4067
an EBV-6 indication of (value – 44). 4068

• Notes: 4069

• if a range is specified with identical upper and lower bounds (i.e., a range of 4070
zero), this is treated as a fixed length, not a variable length, and no Aux Format 4071
bits are invoked. 4072

• If a range is unspecified, or has unspecified upper or lower bounds, then this is 4073
treated as a default lower bound of one, and/or an unlimited upper bound. 4074

I.8 Data section 4075
A Data section is always present in a Packed Object, except in the case of a Directory 4076
Packed Object or Directory Addendum Packed Object (which encode no data elements), 4077
the case of a Data Addendum Packed Object containing only Delete operations, and the 4078
case of a Packed Object that uses No-directory compaction (see I.7.1). When a Data 4079
section is present, it follows the Object Info section (and the Secondary ID and Aux 4080
Format sections, if present). Depending on the characteristics of the encoded IDs and 4081
data strings, the Data section may include one or both of two subsections in the following 4082
order: a Known-Length Numerics subsection, and an AlphaNumerics subsection. The 4083
following paragraphs provide detailed descriptions of each of these Data Section 4084
subsections. If all of the subsections of the Data section are utilized in a Packed Object, 4085
then the layout of the Data section is as shown in Figure I 8-1. 4086

Figure I 8-1: Maximum Structure of a Packed Objects Data section 4087

Known-Length Numeric
subsection

AlphaNumeric subsection

A/N Header Bits Binary Data Segments

1st
KLN
Binary

2nd
KLN
Binary

… Last
KLN
Binary

Non-
Num
Base

Bit(s)

Prefix
Bit,
Prefix
Run(s)

Suffix
Bit,
Suffix
Run(s)

Char

Map

Ext’d.

Num
Binary

Ext’d

Non-
Num

Binary

Base

10
Binary

Non-
Num
Binary

http://www.autoidcenter.org/�

Copyright ©2005- 2010 EPCglobal®, All Rights Reserved. Page 170 of 210

 4088

I.8.1 Known-length-Numerics subsection of the Data Section 4089
For always-numeric data strings, the ID table may indicate a fixed number of digits (this 4090
fixed-length information is not encoded in the Packed Object) and/or a variable number 4091
of digits (in which case the string’s length was encoded in the Aux Format section, as 4092
described above). When a single data item is specified in the FormatString column 4093
(see J.2.3) as containing a fixed-length numeric string followed by a variable-length 4094
string, the numeric string is encoded in the Known-length-numerics subsection and the 4095
alphanumeric string in the Alphanumeric subsection. 4096

The summation of fixed-length information (derived directly from the ID table) plus 4097
variable-length information (derived from encoded bits as just described) results in a 4098
“known-length entry” for each of the always-numeric strings encoded in the current 4099
Packed Object. Each all-numeric data string in a Packed Object (if described as all-4100
numeric in the ID Table) is encoded by converting the digit string into a single Binary 4101
number (up to 160 bits, representing a binary value between 0 and (1048-1)). Figure K-1 4102
in Annex K shows the number of bits required to represent a given number of digits. If 4103
an all-numeric string contains more than 48 digits, then the first 48 are encoded as one 4104
160-bit group, followed by the next group of up to 48 digits, and so on. Finally, the 4105
Binary values for each all-numeric data string in the Object are themselves concatenated 4106
to form the Known-length-Numerics subsection. 4107

I.8.2 Alphanumeric subsection of the Data section 4108
The Alphanumeric (A/N) subsection, if present, encodes all of the Packed Object’s data 4109
from any data strings that were not already encoded in the Known-length Numerics 4110
subsection. If there are no alphanumeric characters to encode, the entire A/N subsection 4111
is omitted. The Alphanumeric subsection can encode any mix of digits and non-digit 4112
ASCII characters, or eight-bit data. The digit characters within this data are encoded 4113
separately, at an average efficiency of 4.322 bits per digit or better, depending on the 4114
character sequence. The non-digit characters are independently encoded at an average 4115
efficiency that varies between 5.91 bits per character or better (all uppercase letters), to a 4116
worst-case limit of 9 bits per character (if the character mix requires Base 256 encoding 4117
of non-numeric characters). 4118

An Alphanumeric subsection consists of a series of A/N Header bits (see I.8.2.1), 4119
followed by from one to four Binary segments (each segment representing data encoded 4120
in a single numerical Base, such as Base 10 or Base 30, see I.8.2.4), padded if necessary 4121
to complete the final byte (see I 8.2.5). 4122

I.8.2.1 A/N Header Bits 4123
The A/N Header Bits are defined as follows: 4124

• One or two Non-Numeric Base bits, as follows: 4125

• ‘0’ indicates that Base 30 was chosen for the non-numeric Base; 4126

http://www.autoidcenter.org/�

Copyright ©2005- 2010 EPCglobal®, All Rights Reserved. Page 171 of 210

• ‘10’ indicates that Base 74 was chosen for the non-numeric Base; 4127

• ‘11’ indicates that Base 256 was chosen for the non-numeric Base 4128

• Either a single ‘0’ bit (indicating that no Character Map Prefix is encoded), or a ‘1’ 4129
bit followed by one or more “Runs” of six Prefix bits as defined in I.8.2.3. 4130

• Either a single ‘0’ bit (indicating that no Character Map Suffix is encoded), or a ‘1’ 4131
bit followed by one or more “Runs” of six Suffix bits as defined in I.8.2.3. 4132

• A variable-length “Character Map” bit pattern (see I.8.2.2), representing the base of 4133
each of the data characters, if any, that were not accounted for by a Prefix or Suffix. 4134

I.8.2.2 Dual-base Character-map encoding 4135
Compaction of the ordered list of alphanumeric data strings (excluding those data strings 4136
already encoded in the Known-Length Numerics subsection) is achieved by first 4137
concatenating the data characters into a single data string (the individual string lengths 4138
have already been recorded in the Aux Format section). Each of the data characters is 4139
classified as either Base 10 (for numeric digits), Base 30 non-numerics (primarily 4140
uppercase A-Z), Base 74 non-numerics (which includes both uppercase and lowercase 4141
alphas, and other ASCII characters), or Base 256 characters. These character sets are 4142
fully defined in Annex K. All characters from the Base 74 set are also accessible from 4143
Base 30 via the use of an extra “shift” value (as are most of the lower 128 characters in 4144
the Base 256 set). Depending on the relative percentage of “native” Base 30 values vs. 4145
other values in the data string, one of those bases is selected as the more efficient choice 4146
for a non-numeric base. 4147

Next, the precise sequence of numeric and non-numeric characters is recorded and 4148
encoded, using a variable-length bit pattern, called a “character map,” where each ‘0’ 4149
represents a Base 10 value (encoding a digit) and each ‘1’ represents a value for a non-4150
numeric character (in the selected base). Note that, (for example) if Base 30 encoding 4151
was selected, each data character (other than uppercase letters and the space character) 4152
needs to be represented by a pair of base-30 values, and thus each such data character is 4153
represented by a pair of ‘1’ bits in the character map. 4154

I.8.2.3 Prefix and Suffix Run-Length encoding 4155
For improved efficiency in cases where the concatenated sequence includes runs of six or 4156
more values from the same base, provision is made for optional run-length 4157
representations of one or more Prefix or Suffix “Runs” (single-base character sequences), 4158
which can replace the first and/or last portions of the character map. The encoder shall 4159
not create a Run that separates a Shift value from its next (shifted) value, and thus a Run 4160
always represents an integral number of source characters. 4161
An optional Prefix Representation, if present, consists of one or more occurrences of a 4162
Prefix Run. Each Prefix Run consists of one Run Position bit, followed by two Basis 4163
Bits, then followed by three Run Length bits, defined as follows: 4164

• The Run Position bit, if ‘0’, indicates that at least one more Prefix Run is encoded 4165
following this one (representing another set of source characters to the right of the 4166

http://www.autoidcenter.org/�

Copyright ©2005- 2010 EPCglobal®, All Rights Reserved. Page 172 of 210

current set). The Run Position bit, if ‘1’, indicates that the current Prefix Run is the 4167
last (rightmost) Prefix Run of the A/N subsection. 4168

• The first basis bit indicates a choice of numeric vs. non-numeric base, and the second 4169
basis bit, if ‘1’, indicates that the chosen base is extended to include characters from 4170
the “opposite” base. Thus, ‘00’ indicates a run-length-encoded sequence of base 10 4171
values; ‘01’ indicates a sequence that is primarily (but not entirely) digits, encoded in 4172
Base 13; ‘10’ indicates a sequence a sequence of values from the non-numeric base 4173
that was selected earlier in the A/N header, and ‘11’ indicates a sequence of values 4174
primarily from that non-numeric base, but extended to include digit characters as 4175
well. Note an exception: if the non-numeric base that was selected in the A/N header 4176
is Base 256, then the “extended” version is defined to be Base 40. 4177

• The 3-bit Run Length value assumes a minimum useable run of six same-base 4178
characters, and the length value is further divided by 2. Thus, the possible 3-bit Run 4179
Length values of 0, 1, 2, … 7 indicate a Run of 6, 8, 10, … 20 characters from the 4180
same base. Note that a trailing “odd” character value at the end of a same-base 4181
sequence must be represented by adding a bit to the Character Map. 4182

An optional Suffix Representation, if present, is a series of one or more Suffix Runs, each 4183
identical in format to the Prefix Run just described. Consistent with that description, note 4184
that the Run Position bit, if ‘1’, indicates that the current Suffix Run is the last 4185
(rightmost) Suffix Run of the A/N subsection, and thus any preceding Suffix Runs 4186
represented source characters to the left of this final Suffix Run. 4187

I.8.2.4 Encoding into Binary Segments 4188
Immediately after the last bit of the Character Map, up to four binary numbers are 4189
encoded, each representing all of the characters that were encoded in a single base 4190
system. First, a base-13 bit sequence is encoded (if one or more Prefix or Suffix Runs 4191
called for base-13 encoding). If present, this bit sequence directly represents the binary 4192
number resulting from encoding the combined sequence of all Prefix and Suffix 4193
characters (in that order) classified as Base 13 (ignoring any intervening characters not 4194
thus classified) as a single value, or in other words, applying a base 13 to Binary 4195
conversion. The number of bits to encode in this sequence is directly determined from 4196
the number of base-13 values being represented, as called for by the sum of the Prefix 4197
and Suffix Run lengths for base 13 sequences. The number of bits, for a given number of 4198
Base 13 values, is determined from the Figure in Annex K. Next, an Extended-4199
NonNumeric Base segment (either Base-40 or Base 84) is similarly encoded (if any 4200
Prefix or Suffix Runs called for Extended-NonNumeric encoding). 4201
Next, a Base-10 Binary segment is encoded that directly represents the binary number 4202
resulting from encoding the sequence of the digits in the Prefix and/or character map 4203
and/or Suffix (ignoring any intervening non-digit characters) as a single value, or in other 4204
words, applying a base 10 to Binary conversion. The number of bits to encode in this 4205
sequence is directly determined from the number of digits being represented, as shown in 4206
Annex K. 4207

Immediately after the last bit of the Base-10 bit sequence (if any), a non-numeric (Base 4208
30, Base 74, or Base 256) bit sequence is encoded (if the character map indicates at least 4209

http://www.autoidcenter.org/�

Copyright ©2005- 2010 EPCglobal®, All Rights Reserved. Page 173 of 210

one non-numeric character). This bit sequence represents the binary number resulting 4210
from a base-30 to Binary conversion (or a Base-74 to Binary conversion, or a direct 4211
transfer of Base-256 values) of the sequence of non-digit characters in the data (ignoring 4212
any intervening digits). Again, the number of encoded bits is directly determined from 4213
the number of non-numeric values being represented, as shown in Annex K. Note that if 4214
Base 256 was selected as the non-Numeric base, then the encoder is free to classify and 4215
encode each digit either as Base 10 or as Base 256 (Base 10 will be more efficient, unless 4216
outweighed by the ability to take advantage of a long Prefix or Suffix). 4217

Note that an Alphanumeric subsection ends with several variable-length bit fields (the 4218
character map, and one or more Binary sections (representing the numeric and non-4219
numeric Binary values). Note further that none of the lengths of these three variable-4220
length bit fields are explicitly encoded (although one or two Extended-Base Binary 4221
segments may also be present, these have known lengths, determined from Prefix and/or 4222
Suffix runs). In order to determine the boundaries between these three variable-length 4223
fields, the decoder needs to implement a procedure, using knowledge of the remaining 4224
number of data bits, in order to correctly parse the Alphanumeric subsection. An 4225
example of such a procedure is described in Annex M. 4226

I.8.2.5 Padding the last Byte 4227
The last (least-significant) bit of the final Binary segment is also the last significant bit of 4228
the Packed Object. If there are any remaining bit positions in the last byte to be filled 4229
with pad bits, then the most significant pad bit shall be set to ‘1’, and any remaining less-4230
significant pad bits shall be set to ‘0’. The decoder can determine the total number of 4231
non-pad bits in a Packed Object by examining the Length Section of the Packed Object 4232
(and if the Pad Indicator bit of that section is ‘1’, by also examining the last byte of the 4233
Packed Object). 4234

I.9 ID Map and Directory encoding options 4235
An ID Map can be more efficient than a list of ID Values, when encoding a relatively 4236
large number of ID Values. Additionally, an ID Map representation is advantageous for 4237
use in a Directory Packed Object. The ID Map itself (the first major subsection of every 4238
ID Map section) is structured identically whether in a Data or Directory IDMPO, but a 4239
Directory IDMPO’s ID Map section contains additional optional subsections. The 4240
structure of an ID Map section, containing one or more ID Maps, is described in section 4241
I.9.1, explained in terms of its usage in a Data IDMPO; subsequent sections explain the 4242
added structural elements in a Directory IDMPO. 4243

I.9.1 ID Map Section structure 4244
An IDMPO represents ID Values using a structure called an ID Map section, containing 4245
one or more ID Maps. Each ID Value encoded in a Data IDMPO is represented as a ‘1’ 4246
bit within an ID Map bit field, whose fixed length is equal to the number of entries in the 4247
corresponding Base Table. Conversely, each ‘0’ in the ID Map Field indicates the 4248
absence of the corresponding ID Value. Since the total number of ‘1’ bits within the ID 4249
Map Field equals the number of ID Values being represented, no explicit NumberOfIDs 4250

http://www.autoidcenter.org/�

Copyright ©2005- 2010 EPCglobal®, All Rights Reserved. Page 174 of 210

field is encoded. In order to implement the range of functionality made possible by this 4251
representation, the ID Map Section contains elements other than the ID Map itself. If 4252
present, the optional ID Map Section immediately follows the leading pattern indicating 4253
an IDMPO (as was described in I.4.2), and contains the following elements in the order 4254
listed below: 4255

• An Application Indicator subsection (see I.5.3.1) 4256

• an ID Map bit field (whose length is determined from the ID Size in the Application 4257
Indicator) 4258

• a Full/Restricted Use bit (see I.5.3.2) 4259

• (the above sequence forms an ID Map, which may optionally repeat multiple times) 4260

• a Data/Directory indicator bit, 4261

• an optional AuxMap section (never present in a Data IDMPO), and 4262

• Closing Flag(s), consisting of an “Addendum Flag” bit. If ‘1’, then an Addendum 4263
subsection is present at the end of the Object Info section (after the Object Length 4264
Information). 4265

These elements, shown in Figure I 9-1 as a maximum structure (every element is 4266
present), are described in each of the next subsections. 4267

Figure I 9-1: ID Map section 4268

First ID Map Optional additional
ID Map(s)

Null App
Indicator
(single
zero bit)

Data/
Directory
Indicator
Bit

(If
directory)
Optional
AuxMap
Section

Closing
Flag Bit(s)

App
Indicator

ID
Map
Bit
Field
(ends
with
F/R
bit)

App
Indicator

ID Map
Field
(ends
with
F/R bit)

See
I.5.3.1

See
I.9.1.1
and
I.5.3.2

As
previous

As
previous

See
 I.5.3.1

 See
Figure I 9-
2

Addendum

Flag Bit

 4269

When an ID Map section is encoded, it is always followed by an Object Length and Pad 4270
Indicator, and optionally followed by an Addendum subsection (all as have been 4271
previously defined), and then may be followed by any of the other sections defined for 4272
Packed Objects, except that a Directory IDMPO shall not include a Data section. 4273

http://www.autoidcenter.org/�

Copyright ©2005- 2010 EPCglobal®, All Rights Reserved. Page 175 of 210

I.9.1.1 ID Map and ID Map bit field 4274
An ID Map usually consists of an Application Indicator followed by an ID Map bit field, 4275
ending with a Full/Restricted Use bit. An ID Map bit field consists of a single 4276
“MapPresent” flag bit, then (if MapPresent is ‘1’) a number of bits equal to the length 4277
determined from the ID Size pattern within the Application Indicator, plus one (the 4278
Full/Restricted Use bit). The ID Map bit field indicates the presence/absence of encoded 4279
data items corresponding to entries in a specific registered Primary or Alternate Base 4280
Table. The choice of base table is indicated by the encoded combination of DSFID and 4281
Application Indicator pattern that precedes the ID Map bit field. The MSB of the ID Map 4282
bit field corresponds to ID Value 0 in the base table, the next bit corresponds to ID Value 4283
1, and so on. 4284

In a Data Packed Object’s ID Map bit field, each ‘1’ bit indicates that this Packed Object 4285
contains an encoded occurrence of the data item corresponding to an entry in the 4286
registered Base Table associated with this ID Map. Note that the valid encoded entry 4287
may be found either in the first (“parentless”) Packed Object of the chain (the one 4288
containing the ID Map) or in an Addendum IDLPO of that chain. Note further that one 4289
or more data entries may be encoded in an IDMPO, but marked “invalid” (by a Delete 4290
entry in an Addendum IDLPO). 4291
An ID Map shall not correspond to a Secondary ID Table instead of a Base ID Table. 4292
Note that data items encoded in a “parentless” Data IDMPO shall appear in the same 4293
relative order in which they are listed in the associated Base Table. However, additional 4294
“out of order” data items may be added to an existing data IDMPO by appending an 4295
Addendum IDLPO to the Object. 4296

An ID Map cannot indicate a specific number of instances (greater than one) of the same 4297
ID Value, and this would seemingly imply that only one data instance using a given ID 4298
Value can be encoded in a Data IDMPO. However, the ID Map method needs to support 4299
the case where more two or more encoded data items are from the same identifier “class” 4300
(and thus share the same ID Value). The following mechanisms address this need: 4301

• Another data item of the same class can be encoded in an Addendum IDLPO of the 4302
IDMPO. Multiple occurrences of the same ID Value can appear on an ID List, each 4303
associated with different encoded values of the Secondary ID bits. 4304

• A series of two or more encoded instances of the same “class” can be efficiently 4305
indicated by a single instance of an ID Value (or equivalently by a single ID Map bit), 4306
if the corresponding Base Table entry defines a “Repeat” Bit (see J.2.2). 4307

An ID Map section may contain multiple ID Maps; a null Application Indicator section 4308
(with its AppIndicatorPresent bit set to ‘0’) terminates the list of ID Maps. 4309

I.9.1.2 Data/Directory and AuxMap indicator bits 4310
A Data/Directory indicator bit is always encoded immediately following the last ID Map. 4311
By definition, a Data IDMPO has its Data/Directory bit set to ‘0’, and a Directory 4312
IDMPO has its Data/Directory bit set to ‘1’. If the Data/Directory bit is set to ‘1’, it is 4313
immediately followed by an AuxMap indicator bit which, if ‘1’, indicates that an optional 4314
AuxMap section immediately follows. 4315

http://www.autoidcenter.org/�

Copyright ©2005- 2010 EPCglobal®, All Rights Reserved. Page 176 of 210

I.9.1.3 Closing Flags bit(s) 4316
The ID Map section ends with a single Closing Flag: 4317

• The final bit of the Closing Flags is an Addendum Flag Bit which, if ‘1’, indicates 4318
that there is an optional Addendum subsection encoded at the end of the Object Info 4319
section of the Packed Object. If present, the Addendum subsection is as described in 4320
Section I .5.6. 4321

I.9.2 Directory Packed Objects 4322
A “Directory Packed Object” is an IDMPO whose Directory bit is set to ‘1’. Its only 4323
inherent difference from a Data IDMPO is that it does not contain any encoded data 4324
items. However, additional mechanisms and usage considerations apply only to a 4325
Directory Packed Object, and these are described in the following subsections. 4326

I.9.2.1 ID Maps in a Directory IDMPO 4327
Although the structure of an ID Map is identical whether in a Data or Directory IDMPO, 4328
the semantics of the structure are somewhat different. In a Directory Packed Object’s ID 4329
Map bit field, each ‘1’ bit indicates that a Data Packed Object in the same data carrier 4330
memory bank contains a valid data item associated with the corresponding entry in the 4331
specified Base Table for this ID Map. Optionally, a Directory Packed Object may further 4332
indicate which Packed Object contains each data item (see the description of the optional 4333
AuxMap section below). 4334
Note that, in contrast to a Data IDMPO, there is no required correlation between the order 4335
of bits in a Directory’s ID Map and the order in which these data items are subsequently 4336
encoded in memory within a sequence of Data Packed Objects. 4337

I.9.2.2 Optional AuxMap Section (Directory IDMPOs only) 4338
An AuxMap Section optionally allows a Directory IDMPO’s ID Map to indicate not only 4339
presence/absence of all the data items in this memory bank of the tag, but also which 4340
Packed Object encodes each data item. If the AuxMap indicator bit is ‘1’, then an 4341
AuxMap section shall be encoded immediately after this bit. If encoded, the AuxMap 4342
section shall contain one PO Index Field for each of the ID Maps that precede this 4343
section. After the last PO Index Field, the AuxMap Section may optionally encode an 4344
ObjectOffsets list, where each ObjectOffset generally indicates the number of bytes from 4345
the start of the previous Packed Object to the start of the next Packed Object. This 4346
AuxMap structure is shown (for an example IDMPO with two ID Maps) in Figure I 9-2. 4347

Figure I 9-2: Optional AuxMap section structure 4348

PO Index Field
for first ID Map

PO Index Field
for second ID Map

Object
Offsets

Present
bit

Optional ObjectOffsets subsection

POindex
Length

POindex
Table

POindex
Length

POindex
Table

Object
Offsets

Object1
offset

Object2
offset

… ObjectN
offset

http://www.autoidcenter.org/�

Copyright ©2005- 2010 EPCglobal®, All Rights Reserved. Page 177 of 210

Multiplier (EBV6) (EBV6) (EBV6)

 4349
Each PO Index Field has the following structure and semantics: 4350

• A three-bit POindexLength field, indicating the number of index bits encoded for 4351
each entry in the PO Index Table that immediately follows this field (unless the 4352
POindex length is ‘000’, which means that no PO Index Table follows). 4353

• A PO Index Table, consisting of an array of bits, one bit (or group of bits, depending 4354
on the POIndexLength) for every bit in the corresponding ID Map of this directory 4355
packed object. A PO Index Table entry (i.e., a “PO Index”) indicates (by relative 4356
order) which Packed Object contains the data item indicated by the corresponding ‘1’ 4357
bit in the ID Map. If an ID Map bit is '0', the corresponding PO Index Table entry is 4358
present but its contents are ignored. 4359

• Every Packed Object is assigned an index value in sequence, without regard as to 4360
whether it is a “parentless” Packed Object or a “child” of another Packed Object, or 4361
whether it is a Data or Directory Packed Object. 4362

• If the PO Index is within the first PO Index Table (for the associated ID Map) of the 4363
Directory “chain”, then: 4364

• a PO Index of zero refers to the first Packed Object in memory, 4365

• a value of one refers to the next Packed Object in memory, and so on 4366

• a value of m, where m is the largest value that can be encoded in the PO Index 4367
(given the number of bits per index that was set in the POindexLength), indicates 4368
a Packed Object whose relative index (position in memory) is m or higher. This 4369
definition allows Packed Objects higher than m to be indexed in an Addendum 4370
Directory Packed Object, as described immediately below. If no Addendum 4371
exists, then the precise position is either m or some indeterminate position greater 4372
than m. 4373

• If the PO Index is not within the first PO Index Table of the directory chain for the 4374
associated ID Map (i.e., it is in an Addendum IDMPO), then: 4375

• a PO Index of zero indicates that a prior PO Index Table of the chain provided the 4376
index information, 4377

• a PO Index of n (n > 0) refers to the nth Packed Object above the highest index 4378
value available in the immediate parent directory PO; e.g., if the maximum index 4379
value in the immediate parent directory PO refers to PO number “3 or greater,” 4380
then a PO index of 1 in this addendum refers to PO number 4. 4381

• A PO Index of m (as defined above) similarly indicates a Packed Object whose 4382
position is the mth position, or higher, than the limit of the previous table in the 4383
chain. 4384

• If the valid instance of an ID Value is in an Addendum Packed Object, an 4385
implementation may choose to set a PO Index to point directly to that Addendum, or 4386
may instead continue to point to the Packed Object in the chain that originally 4387

http://www.autoidcenter.org/�

Copyright ©2005- 2010 EPCglobal®, All Rights Reserved. Page 178 of 210

contained the ID Value. 4388
NOTE: The first approach sometimes leads to faster searching; the second sometimes 4389
leads to faster directory updates. 4390

After the last PO Index Field, the AuxMap section ends with (at minimum) a single 4391
“ObjectOffsets Present” bit. A‘0’ value of this bit indicates that no ObjectOffsets 4392
subsection is encoded. If instead this bit is a ‘1’, it is immediately followed by an 4393
ObjectOffsets subsection, which holds a list of EBV-6 “offsets” (the number of octets 4394
between the start of a Packed Object and the start of the next Packed Object). If present, 4395
the ObjectOffsets subsection consists of an ObjectOffsetsMultiplier followed by an 4396
Object Offsets list, defined as follows: 4397

• An EBV-6 ObjectOffsetsMultiplier, whose value, when multiplied by 6, sets the total 4398
number of bits reserved for the entire ObjectOffsets list. The value of this multiplier 4399
should be selected to ideally result in sufficient storage to hold the offsets for the 4400
maximum number of Packed Objects that can be indexed by this Directory Packed 4401
Object’s PO Index Table (given the value in the POIndexLength field, and given 4402
some estimated average size for those Packed Objects). 4403

• a fixed-sized field containing a list of EBV-6 ObjectOffsets. The size of this field is 4404
exactly the number of bits as calculated from the ObjectOffsetsMultiplier. The first 4405
ObjectOffset represents the start of the second Packed Object in memory, relative to 4406
the first octet of memory (there would be little benefit in reserving extra space to 4407
store the offset of the first Packed Object). Each succeeding ObjectOffset indicates 4408
the start of the next Packed Object (relative to the previous ObjectOffset on the list), 4409
and the final ObjectOffset on the list points to the all-zero termination pattern where 4410
the next Packed Object may be written. An invalid offset of zero (EBV-6 pattern 4411
“000000”) shall be used to terminate the ObjectOffset list. If the reserved storage 4412
space is fully occupied, it need not include this terminating pattern. 4413

• In applications where the average Packed Object Length is difficult to predict, the 4414
reserved ObjectOffset storage space may sometimes prove to be insufficient. In this 4415
case, an Addendum Packed Object can be appended to the Directory Packed Object. 4416
This Addendum Directory Packed Object may contain null subsections for all but its 4417
ObjectOffsets subsection. Alternately, if it is anticipated that the capacity of the PO 4418
Index Table will also eventually be exceeded, then the Addendum Packed Object may 4419
also contain one or more non-null PO Index fields. Note that in a given instance of an 4420
AuxMap section, either a PO Index Table or an ObjectOffsets subsection may be the 4421
first to exceed its capacity. Therefore, the first position referenced by an 4422
ObjectOffsets list in an Addendum Packed Object need not coincide with the first 4423
position referenced by the PO Index Table of that same Addendum. Specifically, in 4424
an Addendum Packed Object, the first ObjectOffset listed is an offset referenced to 4425
the last ObjectOffset on the list of the “parent” Directory Packed Object. 4426

I.9.2.3 Usage as a Presence/Absence Directory 4427
In many applications, an Interrogator may choose to read the entire contents of any data 4428
carrier containing one or more “target” data items of interest. In such applications, the 4429
positional information of those data items within the memory is not needed during the 4430

http://www.autoidcenter.org/�

Copyright ©2005- 2010 EPCglobal®, All Rights Reserved. Page 179 of 210

initial reading operations; only a presence/absence indication is needed at this processing 4431
stage. An ID Map can form a particularly-efficient Presence/Absence directory for 4432
denoting the contents of a data carrier in such applications. A full directory structure 4433
encodes the offset or address (memory location) of every data element within the data 4434
carrier, which requires the writing of a large number of bits (typically 32 bits or more per 4435
data item). Inevitably, such an approach also requires reading a large number of bits over 4436
the air, just to determine whether an identifier of interest is present on a particular tag. In 4437
contrast, when only presence/absence information is needed, using an ID Map conveys 4438
the same information using only one bit per data item defined in the data system. The 4439
entire ID Map can be typically represented in 128 bits or less, and stays the same size as 4440
more data items are written to the tag. 4441
A “Presence/Absence Directory” Packed Object is defined as a Directory IDMPO that 4442
does not contain a PO Index, and therefore provides no encoded information as to where 4443
individual data items reside within the data carrier. A Presence/Absence Directory can be 4444
converted to an “Indexed Directory” Packed Object (see I.9.2.4) by adding a PO Index in 4445
an Addendum Packed Object, as a “child” of the Presence/Absence Packed Object. 4446

I.9.2.4 Usage as an Indexed Directory 4447
In many applications involving large memories, an Interrogator may choose to read a 4448
Directory section covering the entire memory’s contents, and then issue subsequent 4449
Reads to fetch the “target” data items of interest. In such applications, the positional 4450
information of those data items within the memory is important, but if many data items 4451
are added to a large memory over time, the directory itself can grow to an undesirable 4452
size. 4453

An ID Map, used in conjunction with an AuxMap containing a PO Index, can form a 4454
particularly-efficient “Indexed Directory” for denoting the contents of an RFID tag, and 4455
their approximate locations as well. Unlike a full tag directory structure, which encodes 4456
the offset or address (memory location) of every data element within the data carrier, an 4457
Indexed Directory encodes a small relative position or index indicating which Packed 4458
Object contains each data element. An application designer may choose to also encode 4459
the locations of each Packed Object in an optional ObjectOffsets subsection as described 4460
above, so that a decoding system, upon reading the Indexed Directory alone, can 4461
calculate the start addresses of all Packed Objects in memory. 4462
The utility of an ID Map used in this way is enhanced by the rule of most data systems 4463
that a given identifier may only appear once within a single data carrier. This rule, when 4464
an Indexed Directory is utilized with Packed Object encoding of the data in subsequent 4465
objects, can provide nearly-complete random access to reading data using relatively few 4466
directory bits. As an example, an ID Map directory (one bit per defined ID) can be 4467
associated with an additional AuxMap “PO Index” array (using, for example, three bits 4468
per defined ID). Using this arrangement, an interrogator would read the Directory 4469
Packed Object, and examine its ID Map to determine if the desired data item were present 4470
on the tag. If so, it would examine the 3 “PO Index” bits corresponding to that data item, 4471
to determine which of the first 8 Packed Objects on the tag contain the desired data item. 4472
If an optional ObjectOffsets subsection was encoded, then the Interrogator can calculate 4473

http://www.autoidcenter.org/�

Copyright ©2005- 2010 EPCglobal®, All Rights Reserved. Page 180 of 210

the starting address of the desired Packed Object directly; otherwise, the interrogator may 4474
perform successive read operations in order to fetch the desired Packed Object. 4475

Appendix J Packed Objects ID Tables 4476

J.1 Packed Objects Data Format registration file structure 4477
A Packed Objects registered Data Format file consists of a series of “Keyword lines” and 4478
one or more ID Tables. Blank lines may occur anywhere within a Data Format File, and 4479
are ignored. Also, any line may end with extra blank columns, which are also ignored. 4480

• A Keyword line consists of a Keyword (which always starts with “K-“) followed by 4481
an equals sign and a character string, which assigns a value to that Keyword. Zero or 4482
more space characters may be present on either side of the equals sign. Some 4483
Keyword lines shall appear only once, at the top of the registration file, and others 4484
may appear multiple times, once for each ID Table in the file. 4485

• An ID Table lists a series of ID Values (as defined in I.5.3). Each row of an ID Table 4486
contains a single ID Value (in a required “IDvalue” column), and additional columns 4487
may associate Object IDs (OIDs), ID strings, Format strings, and other information 4488
with that ID Value. A registration file always includes a single “Primary” Base ID 4489
Table, zero or more “Alternate” Base ID Tables, and may also include one or more 4490
Secondary ID Tables (that are referenced by one or more Base ID Table entries). 4491

To illustrate the file format, a hypothetical data system registration is shown in Figure J-4492
1. In this hypothetical data system, each ID Value is associated with one or more OIDs 4493
and corresponding ID strings. The following subsections explain the syntax shown in the 4494
Figure. 4495

4496

http://www.autoidcenter.org/�

Copyright ©2005- 2010 EPCglobal®, All Rights Reserved. Page 181 of 210

Figure J- 1:Hypothetical Data Format registration file 4497
K-Text = Hypothetical Data Format
100

K-Version = 1.0

K-TableID = F100B0

K-RootOID = urn:oid:1.0.12345.100

K-IDsize = 16

IDvalue OIDs IDstring Explanation FormatString

0 99 1Z Legacy ID “1Z”
corresponds to OID 99,
is assigned IDval 0

14n

1 9%x30-33 7%x42-45 An OID in the range
90..93,

Corresponding to ID
7B..7E

1*8an

2 (10)(20)(25)(37) (A)(B)(C)(D) a commonly-used set of
IDs

(1n)(2n)(3n)(4n)

3 26/27 1A/2B Either 1A or 2B is
encoded, but not both

10n / 20n

4 (30) [31] (2A) [3B] 2A is always encoded,
optionally followed by 3B

(11n) [1*20n]

5 (40/41/42) (53) [55] (4A/4B/4C) (5D) [5E] One of A/B/C is
encoded, then D, and
optionally E

(1n/2n/3n) (4n) [5n]

6 (60/61/(64)[66]) (6A /6B / (6C) [6D]) Selections, one of which
includes an Option

(1n / 2n / (3n][4n])

K-TableEnd = F100B0

 4498

J.1.1 File Header section 4499
Keyword lines in the File Header (the first portion of every registration file) may occur in 4500
any order, and are as follows: 4501

• (Mandatory) K-Version = nn.nn, which the registering body assigns, to ensure that 4502
any future revisions to their registration are clearly labeled. 4503

• (Optional) K-Interpretation = string, where the “string” argument shall be one of 4504
the following: “ISO-646”, “UTF-8”, “ECI-nnnnnn” (where nnnnnn is a registered six-4505
digit ECI number), ISO-8859-nn, or “UNSPECIFIED”. The Default interpretation is 4506
“UNSPECIFIED”. This keyword line allows non-default interpretations to be placed 4507
on the octets of data strings that are decoded from Packed Objects. 4508

• (Optional) K-ISO15434=nn, where “nn” represents a Format Indicator (a two-digit 4509
numeric identifier) as defined in ISO/IEC 15434. This keyword line allows receiving 4510

http://www.autoidcenter.org/�

Copyright ©2005- 2010 EPCglobal®, All Rights Reserved. Page 182 of 210

systems to optionally represent a decoded Packed Object as a fully-compliant 4511
ISO/IEC 15434 message. There is no default value for this keyword line. 4512

• (Optional) K-AppPunc = nn, where nn represents (in decimal) the octet value of an 4513
ASCII character that is commonly used for punctuation in this application. If this 4514
keyword line is not present, the default Application Punctuation character is the 4515
hyphen. 4516

In addition, comments may be included using the optional Keyword assignment line “K-4517
text = string”, and may appear zero or more times within a File Header or Table Header, 4518
but not in an ID Table body. 4519

J.1.2 Table Header section 4520
One or more Table Header sections (each introducing an ID Table) follow the File 4521
Header section. Each Table Header begins with a K-TableID keyword line, followed by a 4522
series of additional required and optional Keyword lines (which may occur in any order), 4523
as follows: 4524

• (Mandatory) K-TableID = FnnXnn, where Fnn represents the ISO-assigned Data 4525
Format number (where 'nn' represents one or more decimal digits), and Xnn (where 4526
'X' is either 'B' or 'S') is a registrant-assigned Table ID for each ID Table in the file. 4527
The first ID Table shall always be the Primary Base ID Table of the registration, with 4528
a Table ID of “B0”. As many as seven additional “Alternate” Base ID Tables may be 4529
included, with higher sequential “Bnn” Table IDs. Secondary ID Tables may be 4530
included, with sequential Table IDs of the form “Snn”. 4531

• (Mandatory) K-IDsize = nn. For a base ID table, the value nn shall be one of the 4532
values from the “Maximum number of Table Entries” column of Table I 5-5. For a 4533
secondary ID table, the value nn shall be a power of two (even if not present in Table 4534
I 5-5. 4535

• (Optional) K-RootOID = urn:oid:i.j.k.ff where: 4536

• I, j, and k are the leading arcs of the OID (as many arcs as required) and 4537

• ff is the last arc of the Root OID (typically, the registered Data Format number) 4538
If the K-RootOID keyword is not present, then the default Root OID is: 4539

• urn:oid:1.0.15961.ff, where “ff” is the registered Data Format number 4540

• Other optional Keyword lines: in order to override the file-level defaults (to set 4541
different values for a particular table), a Table Header may invoke one or more of the 4542
Optional Keyword lines listed in for the File Header section. 4543

The end of the Table Header section is the first non-blank line that does not begin with a 4544
Keyword. This first non-blank line shall list the titles for every column in the ID Table 4545
that immediately follows this line; column titles are case-sensitive. 4546

An Alternate Base ID Table, if present, is identical in format to the Primary Base ID 4547
Table (but usually represents a smaller choice of identifiers, targeted for a specific 4548
application). 4549

http://www.autoidcenter.org/�

Copyright ©2005- 2010 EPCglobal®, All Rights Reserved. Page 183 of 210

A Secondary ID Table can be invoked by a keyword in a Base Table’s OIDs column. A 4550
Secondary ID Table is equivalent to a single Selection list (see J.3) for a single ID Value 4551
of a Base ID Table (except that a Secondary table uses K-Idsize to explicitly define the 4552
number of Secondary ID bits per ID); the IDvalue column of a Secondary table lists the 4553
value of the corresponding Secondary ID bits pattern for each row in the Secondary 4554
Table. An OIDs entry in a Secondary ID Table shall not itself contain a Selection list nor 4555
invoke another Secondary ID Table. 4556

J.1.3 ID Table section 4557
Each ID table consists of a series of one or more rows, each row including a mandatory 4558
“IDvalue” column, several defined Optional columns (such as “OIDs”, “IDstring”, and 4559
“FormatString”), and any number of Informative columns (such as the “Explanation” 4560
column in the hypothetical example shown above). 4561
Each ID Table ends with a required Keyword line of the form: 4562

• K-TableEnd = FnnXnn, where FnnXnn shall match the preceding K-TableID 4563
keyword line that introduced the table. 4564

The syntax and requirements of all Mandatory and Optional columns shall be as 4565
described J.2. 4566

J.2 Mandatory and Optional ID Table columns 4567
Each ID Table in a Packed Objects registration shall include an IDvalue column, and may 4568
include other columns that are defined in this specification as Optional, and/or 4569
Informative columns (whose column heading is not defined in this specification). 4570

J.2.1 IDvalue column (Mandatory) 4571
Each ID Table in a Packed Objects registration shall include an IDvalue column. The ID 4572
Values on successive rows shall increase monotonically. However, the table may 4573
terminate before reaching the full number of rows indicated by the Keyword line 4574
containing K-IDsize. In this case, a receiving system will assume that all remaining ID 4575
Values are reserved for future assignment (as if the OIDs column contained the keyword 4576
“K-RFA”). If a registered Base ID Table does not include the optional OIDs column 4577
described below, then the IDvalue shall be used as the last arc of the OID. 4578

J.2.2 OIDs and IDstring columns (Optional) 4579
A Packed Objects registration always assigns a final OID arc to each identifier (either a 4580
number assigned in the “OIDs” column as will be described below, or if that column is 4581
absent, the IDvalue is assigned as the default final arc). The OIDs column is required 4582
rather than optional, if a single IDvalue is intended to represent either a combination of 4583
OIDs or a choice between OIDs (one or more Secondary ID bits are invoked by any entry 4584
that presents a choice of OIDs). 4585

A Packed Objects registration may include an IDString column, which if present assigns 4586
an ASCII-string name for each OID. If no name is provided, systems must refer to the 4587

http://www.autoidcenter.org/�

Copyright ©2005- 2010 EPCglobal®, All Rights Reserved. Page 184 of 210

identifier by its OID (see J.4). However, many registrations will be based on data 4588
systems that do have an ASCII representation for each defined Identifier, and receiving 4589
systems may optionally output a representation based on those strings. If so, the ID 4590
Table may contain a column indicating the IDstring that corresponds to each OID. An 4591
empty IDstring cell means that there is no corresponding ASCII string associated with the 4592
OID. A non-empty IDstring shall provide a name for every OID invoked by the OIDs 4593
column of that row (or a single name, if no OIDs column is present). Therefore, the 4594
sequence of combination and selection operations in an IDstring shall exactly match 4595
those in the row’s OIDs column. 4596
A non-empty OIDs cell may contain either a keyword, an ASCII string representing (in 4597
decimal) a single OID value, or a compound string (in ABNF notation) that a defines a 4598
choice and/or a combination of OIDs. The detailed syntax for compound OID strings in 4599
this column (which also applies to the IDstring column) is as defined in section J.3. 4600
Instead of containing a simple or compound OID representation, an OIDs entry may 4601
contain one of the following Keywords: 4602

• K-Verbatim = OIDddBnn, where “dd” represents the chosen penultimate arc of the 4603
OID, and “Bnn” indicates one of the Base 10, Base 40, or Base 74 encoding tables. 4604
This entry invokes a number of Secondary ID bits that serve two purposes: 4605

• They encode an ASCII identifier “name” that might not have existed at the time 4606
the table was registered. The name is encoded in the Secondary ID bits section as 4607
a series of Base-n values representing the ASCII characters of the name, preceded 4608
by a four-bit field indicating the number of Base-n values that follow (zero is 4609
permissible, in order to support RFA entries as described below). 4610

• The cumulative value of these Secondary ID bits, considered as a single unsigned 4611
binary integer and converted to decimal, is the final “arc” of the OID for this 4612
“verbatim-encoded’ identifier. 4613

• K-Secondary = Snn, where “Snn” represents the Table ID of a Secondary ID Table 4614
in the same registration file. This is equivalent to a Base ID Table row OID entry that 4615
contains a single Selection list (with no other components at the top level), but instead 4616
of listing these components in the Base ID Table, each component is listed as a 4617
separate row in the Secondary ID Table, where each may be assigned a unique OID, 4618
ID string, and FormatString. 4619

• K-Proprietary=OIDddPnn, where nn represents a fixed number of Secondary ID 4620
bits that encode an optional Enterprise Identifier indicating who wrote the proprietary 4621
data (an entry of K-Proprietary=OIDddP0 indicates an “anonymous” proprietary 4622
data item). 4623

• K-RFA = OIDddBnn, where “Bnn” is as defined above for Verbatim encoding, 4624
except that “B0” is a valid assignment (meaning that no Secondary ID bits are 4625
invoked). This keyword represents a Reserved for Future Assignment entry, with an 4626
option for Verbatim encoding of the Identifier “name” once a name is assigned by the 4627
entity who registered this Data Format. Encoders may use this entry, with a four-bit 4628
“verbatim” length of zero, until an Identifier “name” is assigned. A specific 4629

http://www.autoidcenter.org/�

Copyright ©2005- 2010 EPCglobal®, All Rights Reserved. Page 185 of 210

FormatString may be assigned to K-RFA entries, or the default a/n encoding may be 4630
utilized. 4631

Finally, any OIDs entry may end with a single “R” character (preceded by one or more 4632
space characters), to indicate that a “Repeat” bit shall be encoded as the last Secondary 4633
ID bit invoked by the entry. If ‘1’, this bit indicates that another instance of this class of 4634
identifier is also encoded (that is, this bit acts as if a repeat of the ID Value were encoded 4635
on an ID list). If ‘1’, then this bit is followed by another series of Secondary ID bits, to 4636
represent the particulars of this additional instance of the ID Value. 4637

An IDstring column shall not contain any of the above-listed Keyword entries, and an 4638
IDstring entry shall be empty when the corresponding OIDs entry contains a Keyword. 4639

J.2.3 FormatString column (Optional) 4640
An ID Table may optionally define the data characteristics of the data associated with a 4641
particular identifier, in order to facilitate data compaction. If present, the FormatString 4642
entry specifies whether a data item is all-numeric or alphanumeric (i.e., may contain 4643
characters other than the decimal digits), and specifies either a fixed length or a variable 4644
length. If no FormatString entry is present, then the default data characteristic is 4645
alphanumeric. If no FormatString entry is present, or if the entry does not specify a 4646
length, then any length >=1 is permitted. Unless a single fixed length is specified, the 4647
length of each encoded data item is encoded in the Aux Format section of the Packed 4648
Object, as specified in I.7. 4649

If a given IDstring entry defines more than a single identifier, then the corresponding 4650
FormatString column shall show a format string for each such identifier, using the same 4651
sequence of punctuation characters (disregarding concatenation) as was used in the 4652
corresponding IDstring. 4653

The format string for a single identifier shall be one of the following: 4654

• A length qualifier followed by “n” (for always-numeric data); 4655

• A length qualifier followed by “an” (for data that may contain non-digits); or 4656

• A fixed-length qualifier, followed by “n”, followed by one or more space characters, 4657
followed by a variable-length qualifier, followed by “an”. 4658

A length qualifier shall be either null (that is, no qualifier present, indicating that any 4659
length >= 1 is legal), a single decimal number (indicating a fixed length) or a length 4660
range of the form “i*j”, where “I” represents the minimum allowed length of the data 4661
item, “j” represents the maximum allowed length, and i <= j. In the latter case, if “j” is 4662
omitted, it means the maximum length is unlimited. 4663

Data corresponding to an “n” in the FormatString are encoded in the KLN subsection; 4664
data corresponding to an “an” in the FormatString are encoded in the A/N subsection. 4665

When a given instance of the data item is encoded in a Packed Object, its length is 4666
encoded in the Aux Format section as specified in I.7.2. The minimum value of the range 4667
is not itself encoded, but is specified in the ID Table’s FormatString column. 4668

Example: 4669

http://www.autoidcenter.org/�

Copyright ©2005- 2010 EPCglobal®, All Rights Reserved. Page 186 of 210

A FormatString entry of “3*6n” indicates an all-numeric data item whose length 4670
is always between three and six digits inclusive. A given length is encoded in two 4671
bits, where ‘00’ would indicate a string of digits whose length is “3”, and ‘11’ 4672
would indicate a string length of six digits. 4673

J.2.4 Interp column (Optional) 4674
Some registrations may wish to specify information needed for output representations of 4675
the Packed Object’s contents, other than the default OID representation of the arcs of 4676
each encoded identifier. If this information is invariant for a particular table, the 4677
registration file may include keyword lines as previously defined. If the interpretation 4678
varies from row to row within a table, then an Interp column may be added to the ID 4679
Table. This column entry, if present, may contain one or more of the following keyword 4680
assignments (separated by semicolons), as were previously defined (see J.1.1 and J.1.2): 4681

• K-RootOID = urn:oid:i.j.k.l… 4682

• K-Interpretation = string 4683

• K-ISO15434=nn 4684
If used, these override (for a particular Identifier) the default file-level values and/or 4685
those specified in the Table Header section. 4686

J.3 Syntax of OIDs, IDstring, and FormatString Columns 4687
In a given ID Table entry, the OIDs, IDString, and FormatString column may indicate 4688
one or more mechanisms described in this section. J.3.1 specifies the formal grammar for 4689
these columns, and the meaning is described below. In the descriptions below, the word 4690
“Identifier” means either an OID final arc (in the context of the OIDs column) or an 4691
IDString name (in the context of the IDstring column). If both columns are present, only 4692
the OIDs column actually invokes Secondary ID bits. 4693

• A Single component resolving to a single Identifier, in which case no additional 4694
Secondary ID bits are invoked. 4695

• (For OIDs and IDString columns only) A single component resolving to one of a 4696
series of closely-related Identifiers, where the Identifier’s string representation varies 4697
only at one or more character positions. This is indicated using the Concatenation 4698
operator ‘%’ to introduce a range of ASCII characters at a specified position. For 4699
example, an OID whose final arc is defined as “391n”, where the fourth digit ‘n’ can 4700
be any digit from ‘0’ to ‘6’ (ASCII characters 30hex to 36hex inclusive) is represented 4701
by the component 391%x30-36 (note that no spaces are allowed) A Concatenation 4702
invokes the minimum number of Secondary ID digits needed to indicate the specified 4703
range. When both an OIDs column and an IDstring column are populated for a given 4704
row, both shall contain the same number of concatations, with the same ranges (so 4705
that the numbers and values of Secondary ID bits invoked are consistent). However, 4706
the minimum value listed for the two ranges can differ, so that (for example) the 4707
OID’s digit can range from 0 to 3, while the corresponding IDstring character can 4708
range from “B” to “E” if so desired. Note that the use of Concatenation inherently 4709

http://www.autoidcenter.org/�

Copyright ©2005- 2010 EPCglobal®, All Rights Reserved. Page 187 of 210

constrains the relationship between OID and IDString, and so Concatenation may not 4710
be useable under all circumstances (the Selection operation described below usually 4711
provides an alternative). 4712

• A Combination of two or more identifier components in an ordered sequence, 4713
indicated by surrounding each component of the sequence with parentheses. For 4714
example, an IDstring entry (A)(%x30-37B)(2C) indicates that the associated ID 4715
Value represents a sequence of the following three identifiers: 4716

• Identifier “A”, then 4717

• An identifier within the range “0B” to “7B” (invoking three Secondary ID bits to 4718
represent the choice of leading character), then 4719

• Identifier “2C 4720
Note that a Combination does not itself invoke any Secondary ID bits (unless one or 4721
more of its components do). 4722

• An Optional component is indicated by surrounding the component in brackets, 4723
which may viewed as a “conditional combination.” For example the entry (A) 4724
[B][C][D] indicates that the ID Value represents identifier A, optionally followed by 4725
B, C, and/or D. A list of Options invokes one Secondary ID bit for each component 4726
in brackets, wherein a ‘1’ indicates that the optional component was encoded. 4727

• A Selection between several mutually-exclusive components is indicated by 4728
separating the components by forward slash characters. For example, the IDstring 4729
entry (A/B/C/(D)(E)) indicates that the fully-qualified ID Value represents a single 4730
choice from a list of four choices (the fourth of which is a Combination). A Selection 4731
invokes the minimum number of Secondary ID bits needed to indicate a choice from 4732
a list of the specified number of components. 4733

In general, a “compound” OIDs or IDstring entry may contain any or all of the above 4734
operations. However, to ensure that a single left-to-right parsing of an OIDs entry results 4735
in a deterministic set of Secondary ID bits (which are encoded in the same left-to-right 4736
order in which they are invoked by the OIDs entry), the following restrictions are 4737
applied: 4738

• A given Identifier may only appear once in an OIDs entry. For example, the entry 4739
(A)(B/A) is invalid 4740

• A OIDs entry may contain at most a single Selection list 4741

• There is no restriction on the number of Combinations (because they invoke no 4742
Secondary ID bits) 4743

• There is no restriction on the total number of Concatenations in an OIDs entry, but no 4744
single Component may contain more than two Concatenation operators. 4745

• An Optional component may be a component of a Selection list, but an Optional 4746
component may not be a compound component, and therefore shall not include a 4747
Selection list nor a Combination nor Concatenation. 4748

http://www.autoidcenter.org/�

Copyright ©2005- 2010 EPCglobal®, All Rights Reserved. Page 188 of 210

• A OIDs or IDstring entry may not include the characters ‘(‘, ‘)’, ‘[‘, ‘]’, ‘%’, ‘-‘, or 4749
‘/’, unless used as an Operator as described above. If one of these characters is part 4750
of a defined data system Identifier “name”, then it shall be represented as a single 4751
literal Concatenated character. 4752

J.3.1 Formal Grammar for OIDs, IDString, and FormatString 4753
Columns 4754

In each ID Table entry, the contents of the OIDs, IDString, and FormatString columns 4755
shall conform to the following grammar for Expr, unless the column is empty or (in the 4756
case of the OIDs column) it contains a keyword as specified in J.2.2. All three columns 4757
share the same grammar, except that the syntax for COMPONENT is different for each 4758
column as specified below. In a given ID Table Entry, the contents of the OIDs, 4759
IDString, and FormatString column (except if empty) shall have identical parse trees 4760
according to this grammar, except that the COMPONENTs may be different. Space 4761
characters are permitted (and ignored) anywhere in an Expr, except that in the interior of 4762
a COMPONENT spaces are only permitted where explicitly specified below. 4763
Expr ::= SelectionExpr | “(” SelectionExpr “)” | SelectionSubexpr 4764
 4765
SelectionExpr ::= SelectionSubexpr (“/” SelectionSubexpr)+ 4766
 4767
SelectionSubexpr ::= COMPONENT | ComboExpr 4768
 4769
ComboExpr ::= ComboSubexpr+ 4770
 4771
ComboSubexpr ::= “(” COMPONENT “)” | “[" COMPONENT “]” 4772

For the OIDs column, COMPONENT shall conform to the following grammar: 4773
COMPONENT_OIDs ::= (COMPONENT_OIDs_Char | Concat)+ 4774
 4775
COMPONENT_OIDs_Char ::= (“0”..“9”)+ 4776

For the IDString column, COMPONENT shall conform to the following grammar: 4777
COMPONENT_IDString ::= UnquotedIDString | QuotedIDString 4778
 4779
UnquotedIDString ::= (UnQuotedIDStringChar | Concat)+ 4780
 4781
UnquotedIDStringChar ::= 4782
 “0”..“9” | “A”..“Z” | “a”..“z” | “_” 4783
 4784
QuotedIDString ::= QUOTE QuotedIDStringConstituent+ QUOTE 4785
 4786
QuotedIDStringConstituent ::= 4787
 “ ” | “!” | “#”..“~” | (QUOTE QUOTE) 4788

QUOTE refers to ASCII character 34 (decimal), the double quote character. 4789

When the QuotedIDString form for COMPONENT_IDString is used, the 4790
beginning and ending QUOTE characters shall not be considered part of the IDString. 4791

http://www.autoidcenter.org/�

Copyright ©2005- 2010 EPCglobal®, All Rights Reserved. Page 189 of 210

Between the beginning and ending QUOTE, all ASCII characters in the range 32 4792
(decimal) through 126 (decimal), inclusive, are allowed, except that two QUOTE 4793
characters in a row shall denote a single double-quote character to be included in the 4794
IDString. 4795

In the QuotedIDString form, a % character does not denote the concatenation 4796
operator, but instead is just a percent character included literally in the IDString. To use 4797
the concatenation operator, the UnquotedIDString form must be used. In that case, 4798
a degenerate concatenation operator (where the start character equals the end character) 4799
may be used to include a character into the IDString that is not one of the characters 4800
listed for UnquotedIDStringChar. 4801

For the FormatString column, COMPONENT shall conform to the following grammar: 4802
COMPONENT_FormatString ::= Range? (“an” | “n”) 4803
 | FixedRange “n” “ ”+ VarRange “an” 4804
 4805
Range ::= FixedRange | VarRange 4806
 4807
FixedRange ::= Number 4808
 4809
VarRange ::= Number “*” Number? 4810
 4811
Number ::= (“0”..“9”)+ 4812

The syntax for COMPONENT for the OIDs and IDString columns make reference to 4813
Concat, whose syntax is specified as follows: 4814
Concat ::= “%” “x” HexChar HexChar “-” HexChar HexChar 4815
 4816
HexChar ::= (“0”..“9” | “A”..“F”) 4817

The hex value following the hyphen shall be greater than or equal to the hex value 4818
preceding the hyphen. In the OIDs column, each hex value shall be in the range 30hex to 4819
39hex, inclusive. In the IDString column, each hex value shall be in the range 20hex to 4820
7Ehex, inclusive. 4821

J.4 OID input/output representation 4822
The default method for representing the contents of a Packed Object to a receiving 4823
system is as a series of name/value pairs, where the name is an OID, and the value is the 4824
decoded data string associated with that OID. Unless otherwise specified by a K-4825
RootOID keyword line, the default root OID is urn:oid:1.0.15961.ff, where ff is the 4826
Data Format encoded in the DSFID. The final arc of the OID is (by default) the IDvalue, 4827
but this is typically overridden by an entry in the OIDs column. Note that an encoded 4828
Application Indicator (see I.5.3.1) may change ff from the value indicated by the DSFID. 4829
If supported by information in the ID Table’s IDstring column, a receiving system may 4830
translate the OID output into various alternative formats, based on the IDString 4831
representation of the OIDs. One such format, as described in ISO/IEC 15434, requires as 4832

http://www.autoidcenter.org/�

Copyright ©2005- 2010 EPCglobal®, All Rights Reserved. Page 190 of 210

additional information a two-digit Format identifier; a table registration may provide this 4833
information using the K-ISO15434 keyword as described above. 4834

The combination of the K-RootOID keyword and the OIDs column provides the 4835
registering entity an ability to assign OIDs to data system identifiers without regard to 4836
how they are actually encoded, and therefore the same OID assignment can apply 4837
regardless of the access method. 4838

J.4.1 “ID Value OID” output representation 4839
If the receiving system does not have access to the relevant ID Table (possibly because it 4840
is newly-registered), the Packed Objects decoder will not have sufficient information to 4841
convert the IDvalue (plus Secondary ID bits) to the intended OID. In order to ease the 4842
introduction of new or external tables, encoders have an option to follow “restricted use” 4843
rules (see I.5.3.2). 4844
When a receiving system has decoded a Packed Object encoded following “restricted 4845
use” rules, but does not have access to the indicated ID Table, it shall construct an “ID 4846
Value OID” in the following format: 4847

urn:oid:1.0.15961.300.ff.bb.idval.secbits 4848
where 1.0.15961.300 is a Root OID with a reserved Data Format of “300” that is never 4849
encoded in a DSFID, but is used to distinguish an “ID Value OID” from a true OID (as 4850
would have been used if the ID Table were available). The reserved value of 300 is 4851
followed by the encoded table’s Data Format (ff) (which may be different from the 4852
DSFID’s default), the table ID (bb) (always ‘0’, unless otherwise indicated via an 4853
encoded Application Indicator), the encoded ID value, and the decimal representation of 4854
the invoked Secondary ID bits. This process creates a unique OID for each unique fully-4855
qualified ID Value. For example, using the hypothetical ID Table shown in Annex L (but 4856
assuming, for illustration purposes, that the table’s specified Root OID is 4857
urn:oid:1.0.12345.9, then an “AMOUNT” ID with a fourth digit of ‘2’ has a true OID 4858
of: 4859

urn:oid:1.0.12345.9.3912 4860

and an “ID Value OID” of 4861
urn:oid:1.0.15961.300.9.0.51.2 4862

When a single ID Value represents multiple component identifiers via combinations or 4863
optional components, their multiple OIDs and data strings shall be represented separately, 4864
each using the same “ID Value OID” (up through and including the Secondary ID bits 4865
arc), but adding as a final arc the component number (starting with “1” for the first 4866
component decoded under that IDvalue). 4867
If the decoding system encounters a Packed Object that references an ID Table that is 4868
unavailable to the decoder, but the encoder chose not to set the “Restricted Use” bit in the 4869
Application Indicator, then the decoder shall either discard the Packed Object, or relay 4870
the entire Packed Object to the receiving system as a single undecoded binary entity, a 4871
sequence of octets of the length specified in the ObjectLength field of the Packed Object. 4872
The OID for an undecoded Packed Object shall be urn:oid:1.0.15961.301.ff.n, where 4873

http://www.autoidcenter.org/�

Copyright ©2005- 2010 EPCglobal®, All Rights Reserved. Page 191 of 210

“301” is a Data Format reserved to indicate an undecoded Packed Object, “ff” shall be 4874
the Data Format encoded in the DSFID at the start of memory, and an optional final arc 4875
‘n’ may be incremented sequentially to distinguish between multiple undecoded Packed 4876
Objects in the same data carrier memory. 4877

Appendix K Packed Objects Encoding tables 4878
Packed Objects primarily utilize two encoding bases: 4879

• Base 10, which encodes each of the digits ‘0’ through ‘9’ in one Base 10 value 4880

• Base 30, which encodes the capital letters and selectable punctuation in one Base-30 4881
value, and encodes punctuation and control characters from the remainder of the 4882
ASCII character set in two base-30 values (using a Shift mechanism) 4883

For situations where a high percentage of the input data’s non-numeric characters would 4884
require pairs of base-30 values, two alternative bases, Base 74 and Base 256, are also 4885
defined: 4886

• The values in the Base 74 set correspond to the invariant subset of ISO 646 (which 4887
includes the GS1 character set), but with the digits eliminated, and with the addition 4888
of GS and <space> (GS is supported for uses other than as a data delimiter). 4889

• The values in the Base 256 set may convey octets with no graphical-character 4890
interpretation, or “extended ASCII values” as defined in ISO 8859-6, or UTF-8 (the 4891
interpretation may be set in the registered ID Table for an application). The 4892
characters ‘0’ through ‘9’ (ASCII values 48 through 57) are supported, and an 4893
encoder may therefore encode the digits either by using a prefix or suffix (in Base 4894
256) or by using a character map (in Base 10). Note that in GS1 data, FNC1 is 4895
represented by ASCII <GS> (octet value 29dec). 4896

Finally, there are situations where compaction efficiency can be enhanced by run-length 4897
encoding of base indicators, rather than by character map bits, when a long run of 4898
characters can be classified into a single base. To facilitate that classification, additional 4899
“extension” bases are added, only for use in Prefix and Suffix Runs. 4900

• In order to support run-length encoding of a primarily-numeric string with a few 4901
interspersed letters, a Base 13 is defined, per Table B-2 4902

• Two of these extension bases (Base 40 and Base 84) are simply defined, in that they 4903
extend the corresponding non-numeric bases (Base 30 and Base 74, respectively) to 4904
also include the ten decimal digits. The additional entries, for characters ‘0’ through 4905
‘9’, are added as the next ten sequential values (values 30 through 39 for Base 40, and 4906
values 74 through 83 for Base 84). 4907

• The “extended” version of Base 256 is defined as Base 40. This allows an encoder 4908
the option of encoding a few ASCII control or upper-ASCII characters in Base 256, 4909
while using a Prefix and/or Suffix to more efficiently encode the remaining non-4910
numeric characters. 4911

The number of bits required to encode various numbers of Base 10, Base 16, Base 30, 4912
Base 40, Base 74, and Base 84 characters are shown in Figure B-1. In all cases, a limit is 4913

http://www.autoidcenter.org/�

Copyright ©2005- 2010 EPCglobal®, All Rights Reserved. Page 192 of 210

placed on the size of a single input group, selected so as to output a group no larger than 4914
20 octets. 4915

Figure K-1: Required number of bits for a given number of Base ‘N’ values 4916
/* Base10 encoding accepts up to 48 input values per group: */ 4917
static const unsigned char bitsForNumBase10[] = { 4918
/* 0 - 9 */ 0, 4, 7, 10, 14, 17, 20, 24, 27, 30, 4919
/* 10 - 19 */ 34, 37, 40, 44, 47, 50, 54, 57, 60, 64, 4920
/* 20 - 29 */ 67, 70, 74, 77, 80, 84, 87, 90, 94, 97, 4921
/* 30 - 39 */ 100, 103, 107, 110, 113, 117, 120, 123, 127, 130, 4922
/* 40 - 48 */ 133, 137, 140, 143, 147, 150, 153, 157, 160}; 4923
 4924
/* Base13 encoding accepts up to 43 input values per group: */ 4925
static const unsigned char bitsForNumBase13[] = { 4926
/* 0 - 9 */ 0, 4, 8, 12, 15, 19, 23, 26, 30, 34, 4927
/* 10 - 19 */ 38, 41, 45, 49, 52, 56, 60, 63, 67, 71, 4928
/* 20 - 29 */ 75, 78, 82, 86, 89, 93, 97, 100, 104, 108, 4929
/* 30 - 39 */ 112, 115, 119, 123, 126, 130, 134, 137, 141, 145, 4930
/* 40 - 43 */ 149, 152, 156, 160 }; 4931
 4932
/* Base30 encoding accepts up to 32 input values per group: */ 4933
static const unsigned char bitsForNumBase30[] = { 4934
/* 0 - 9 */ 0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 4935
/* 10 - 19 */ 50, 54, 59, 64, 69, 74, 79, 84, 89, 94, 4936
/* 20 - 29 */ 99, 104, 108, 113, 118, 123, 128, 133, 138, 143, 4937
/* 30 - 32 */ 148, 153, 158}; 4938
 4939
/* Base40 encoding accepts up to 30 input values per group: */ 4940
static const unsigned char bitsForNumBase40[] = { 4941
/* 0 - 9 */ 0, 6, 11, 16, 22, 27, 32, 38, 43, 48, 4942
/* 10 - 19 */ 54, 59, 64, 70, 75, 80, 86, 91, 96, 102, 4943
/* 20 - 29 */ 107, 112, 118, 123, 128, 134, 139, 144, 150, 155, 4944
/* 30 */ 160 }; 4945
 4946
/* Base74 encoding accepts up to 25 input values per group: */ 4947
static const unsigned char bitsForNumBase74[] = { 4948
/* 0 - 9 */ 0, 7, 13, 19, 25, 32, 38, 44, 50, 56, 4949
/* 10 - 19 */ 63, 69, 75, 81, 87, 94, 100, 106, 112, 118, 4950
/* 20 - 25 */ 125, 131, 137, 143, 150, 156 }; 4951
 4952
/* Base84 encoding accepts up to 25 input values per group: */ 4953
static const unsigned char bitsForNumBase84[] = { 4954
/* 0 - 9 */ 0, 7, 13, 20, 26, 32, 39, 45, 52, 58, 4955
/* 10 - 19 */ 64, 71, 77, 84, 90, 96, 103, 109, 116, 122, 4956
/* 20 - 25 */ 128, 135, 141, 148, 154, 160 }; 4957

http://www.autoidcenter.org/�

Copyright ©2005- 2010 EPCglobal®, All Rights Reserved. Page 193 of 210

Table K-1: Base 30 Character set 4958
Val Basic set Shift 1 set Shift 2 set

 Char Decimal Char Decimal Char Decimal
0 A-Punc1 N/A NUL 0 space 32
1 A 65 SOH 1 ! 33
2 B 66 STX 2 “ 34
3 C 67 ETX 3 # 35
4 D 68 EOT 4 $ 36
5 E 69 ENQ 5 % 37
6 F 70 ACK 6 & 38
7 G 71 BEL 7 ‘ 39
8 H 72 BS 8 (40
9 I 73 HT 9) 41

10 J 74 LF 10 * 42
11 K 75 VT 11 + 43
12 L 76 FF 12 , 44
13 M 77 CR 13 - 45
14 N 78 SO 14 . 46
15 O 79 SI 15 / 47
16 P 80 DLE 16 : 58
17 Q 81 ETB 23 ; 59
18 R 82 ESC 27 < 60
19 S 83 FS 28 = 61
20 T 84 GS 29 > 62
21 U 85 RS 30 ? 63
22 V 86 US 31 @ 64
23 W 87 invalid N/A \ 92
24 X 88 invalid N/A ^ 94
25 Y 89 invalid N/A _ 95
26 Z 90 [91 ‘ 96
27 Shift 1 N/A] 93 | 124
28 Shift 2 N/A { 123 ~ 126
29 P-Punc2 N/A } 125 invalid N/A

 4959
Note 1: Application-Specified Punctuation character (Value 0 of the Basic set) is defined by default as 4960
the ASCII hyphen character (45dec), but may be redefined by a registered Data Format 4961
Note 2: Programmable Punctuation character (Value 29 of the Basic set): the first appearance of P-Punc 4962
in the alphanumeric data for a packed object, whether that first appearance is compacted into the Base 30 4963
segment or the Base 40 segment, acts as a <Shift 2>, and also “programs” the character to be represented 4964
by second and subsequent appearances of P-Punc (in either segment) for the remainder of the alphanumeric 4965
data in that packed object. The Base 30 or Base 40 value immediately following that first appearance is 4966
interpreted using the Shift 2 column (Punctuation), and assigned to subsequent instances of P-Punc for the 4967
packed object. 4968

Table K-2: Base 13 Character set 4969

http://www.autoidcenter.org/�

Copyright ©2005- 2010 EPCglobal®, All Rights Reserved. Page 194 of 210

Value Basic set Shift 1 set Shift 2 set Shift 3 set
 Char Decimal Char Decimal Char Decimal Char Decimal

0 0 48 A 65 N 78 space 32
1 1 49 B 66 O 79 $ 36
2 2 50 C 67 P 80 % 37
3 3 51 D 68 Q 81 & 38
4 4 52 E 69 R 82 * 42
5 5 53 F 70 S 83 + 43
6 6 54 G 71 T 84 , 44
7 7 55 H 72 U 85 - 45
8 8 56 I 73 V 86 . 46
9 9 57 J 74 W 87 / 47
10 Shift1 N/A K 75 X 88 ? 63
11 Shift2 N/A L 76 Y 89 _ 95
12 Shift3 N/A M 77 Z 90 <GS> 29

 4970
 4971

Table K-3: Base 40 Character set 4972
Val Basic set Shift 1 set Shift 2 set

 Char Decimal Char Decimal Char Decimal
0 See Table K-1
… …
29 See Table K-1
30 0 48
31 1 49
32 2 50
33 3 51
34 4 52
35 5 53
36 6 54
37 7 55
38 8 56
39 9 57

 4973

Table K-4: Base 74 Character Set 4974

Val Char Decimal Val Char Decimal Val Char Decimal

0 GS 29 25 F 70 50 d 100

1 ! 33 26 G 71 51 e 101

2 " 34 27 H 72 52 f 102

3 % 37 28 I 73 53 g 103

http://www.autoidcenter.org/�

Copyright ©2005- 2010 EPCglobal®, All Rights Reserved. Page 195 of 210

4 & 38 29 J 74 54 h 104

5 ' 39 30 K 75 55 i 105

6 (40 31 L 76 56 j 106

7) 41 32 M 77 57 k 107

8 * 42 33 N 78 58 l 108

9 + 43 34 O 79 59 m 109

10 , 44 35 P 80 60 n 110

11 - 45 36 Q 81 61 o 111

12 . 46 37 R 82 62 p 112

13 / 47 38 S 83 63 q 113

14 : 58 39 T 84 64 r 114

15 ; 59 40 U 85 65 s 115

16 < 60 41 V 86 66 t 116

17 = 61 42 W 87 67 u 117

18 > 62 43 X 88 68 v 118

19 ? 63 44 Y 89 69 w 119

20 A 65 45 Z 90 70 x 120

21 B 66 46 _ 95 71 y 121

22 C 67 47 a 97 72 z 122

23 D 68 48 b 98 73 Space 32

24 E 69 49 c 99

 4975

4976

http://www.autoidcenter.org/�

Copyright ©2005- 2010 EPCglobal®, All Rights Reserved. Page 196 of 210

 4977

Table K-5: Base 84 Character Set 4978

Val Char Decimal Val Char Decimal Val Char Decimal

0 FNC1 N/A 25 F 50 d

1-73 See Table K-4

74 0 48 78 4 52 82 8 56

75 1 49 79 5 53 83 9 57

76 2 50 80 6 54

77 3 51 81 7 55

Appendix L Encoding Packed Objects (non-normative) 4979
In order to illustrate a number of the techniques that can be invoked when encoding a 4980
Packed Object, the following sample input data consists of data elements from the GS1 4981
Application Identifier (AI) data system. This data represents: 4982

• An Expiration date (AI 17) of October 31, 2006 4983

• An Amount Payable (AI 391n) of 1234.56 Euros (“978” is the ISO Country Code 4984
which will indicate that the amount payable is in Euros) 4985

• A Lot Number (AI 10) of 1A23B456CD, and 4986

The application will present the above input to the encoder as a list of OID/Value pairs. 4987
The resulting input data, represented below as a single data string (wherein each AI is 4988
shown in parentheses) is: 4989
(17)061031(3912)978123456(10)1A23B456CD 4990
The example will use a hypothetical ID Table based on GS1 Application Identifiers. In 4991
this hypothetical table, each ID Value is a seven-bit index into the Base ID Table; the 4992
entries relevant to this example are shown in Table L-1. 4993

Encoding is performed in the following steps: 4994

• Three AI’s are to be encoded, using Table L-1. 4995

• As shown in the table’s IDstring column, the combination of AI 17 and AI 10 is 4996
efficiently supported (because it is commonly seen in applications), and thus the 4997
encoder re-orders the input so that 17 and 10 are adjacent and in the order indicated in 4998
the IDString column: 4999

• (17)061031(10)1A23B456CD(3912)978123456 5000
Now, this AI pair can be assigned a single ID Value of 125 (decimal). The 5001
FormatString column for this entry shows that the encoded data will always consist of 5002
a fixed-length 6-digit string, followed by a variable-length alphanumeric string. 5003

http://www.autoidcenter.org/�

Copyright ©2005- 2010 EPCglobal®, All Rights Reserved. Page 197 of 210

• Also as shown in Table L-1, AI 391n has an ID Value of 51(decimal). The IDstring 5004
entry for this AI shows that the AI string is formed by concatenating “391” with a 5005
suffix consisting of a single character in the range 30hex to 39hex (i.e., a decimal digit). 5006
Since that is a range of ten possibilities, a four-bit number will need to be encoded in 5007
the Secondary ID section to indicate which suffix character was chosen. The 5008
FormatString column for this entry shows that its data is variable-length numeric; the 5009
variable length information will require four bits to be encoded in the Aux Format 5010
section. 5011

• Since only a small percentage of the 128-entry ID Table is utilized in this Packed 5012
Object, the encoder chooses an ID List format, rather than an ID Map format. As this 5013
is the default format, no Format Flags section is required. 5014

• This results in the following Object Info section: 5015

• EBV-6 (ObjectLength): the value is TBD at this stage of the encoding process 5016

• Pad Indicator bit: TBD at this stage 5017

• EBV-3 (numberOfIDs) of 001 (meaning two ID Values will follow) 5018

• An ID List, including: 5019

• First ID Value: 125 (dec) in 7 bits, representing AI 17 followed by AI 10 5020

• Second ID Value: 51(decimal) in 7 bits, representing AI 391n 5021

• A Secondary ID section is encoded as ‘0010’, indicating the trailing ‘2’ of the 391n 5022
AI. In the GS1 definition of this AI, a fourth AI digit of ‘2’ means that two digits 5023
follow the implied decimal point, but that information is not needed in order to 5024
encode or decode the Packed Object. 5025

• Next, an Aux Format section is encoded. An initial ‘1’ bit is encoded, invoking the 5026
Packed-Object compaction method. Of the three AIs, only AI (391n) requires 5027
encoded Aux Format information: a four-bit pattern of ‘0101’ (representing “six” 5028
variable-length digits – as “one” is the first allowed choice, a pattern of “0101” 5029
denotes “six”). 5030

• Next, the encoder encodes the first data item, for AI 17, which is defined as a fixed-5031
length six-digit data item. The six digits of the source data string are “061031”, 5032
which are converted to a sequence of six Base-10 values by subtracting 30hex from 5033
each character of the string (the resulting values are denoted as values v5 through v0 5034
in the formula below). These are then converted to a single Binary value, using the 5035
following formula: 5036

• 105 * v5 + 104 * v4+ 103 * v3+ 102 * v2+ 101 * v1+ 100 * v0 5037
According to Figure K-1, a six-digit number is always encoded into 20 bits 5038
(regardless of any leading zero’s in the input), resulting in a Binary string of: 5039

“0000 11101110 01100111” 5040

http://www.autoidcenter.org/�

Copyright ©2005- 2010 EPCglobal®, All Rights Reserved. Page 198 of 210

• The next data item is for AI 10, but since the table indicates that this AI’s data is 5041
alphanumeric, encoding into the Packed Object is deferred until after all of the 5042
known-length numeric data is encoded. 5043

• Next, the encoder finds that one of the three AI’s, AI 391n, is defined by Table D-1 as 5044
all-numeric, whose length of 9 (in this example) was encoded as (9 – 4 = 5) into four 5045
bits within the Aux Format subsection. Thus, a Known-Length-Numeric subsection 5046
is encoded for this data item, consisting of a binary value bit-pattern encoding 9 5047
digits. Using Figure K-1 in Annex K, the encoder determines that 30 bits need to be 5048
encoded in order to represent a 9-digit number as a binary value. In this example, the 5049
binary value equivalent of “978123456” is the 30-bit binary sequence: 5050
“111010010011001111101011000000” 5051

• At this point, encoding of the Known-Length Numeric subsection of the Data Section 5052
is complete. 5053

Note that, so far, the total number of encoded bits is (3 + 6 + 1 + 7 + 7 + 4 + 5 + 20 + 30) 5054
or 83 bits, representing the IDLPO Length Section (assuming that a single EBV-6 vector 5055
remains sufficient to encode the Packed Object’s length), two 7-bit ID Values, the 5056
Secondary ID and Aux Format sections, and two Known-Length-Numeric compacted 5057
binary fields. 5058

At this stage, only one non-numeric AI data string (for AI 10) remains to be encoded in 5059
the Alphanumeric subsection. The 10-character source data string is “1A23B456CD”. 5060
This string contains no characters requiring a base-30 Shift out of the basic Base-30 5061
character set, and so Base-30 is selected for the non-numeric base (and so the first bit of 5062
the Alphanumeric subsection is set to ‘0’ accordingly). The data string has no substrings 5063
with six or more successive characters from the same base, and so the next two bits are 5064
set to ‘00’ (indicating that neither a Prefix nor a Suffix is run-length encoded). Thus, a 5065
full 10-bit Character Map needs to be encoded next. Its specific bit pattern is 5066
‘0100100011’, indicating the specific sequence of digits and non-digits in the source data 5067
string “1A23B456CD”. 5068

Up to this point, the Alphanumeric subsection contains the 13-bit sequence ‘0 00 5069
0100100011’. From Annex K, it can be determined that lengths of the two final bit 5070
sequences (encoding the Base-10 and Base-30 components of the source data string) are 5071
20 bits (for the six digits) and 20 bits (for the four uppercase letters using Base 30). The 5072
six digits of the source data string “1A23B456CD” are “123456”, which encodes to a 20-5073
bit sequence of: 5074

“00011110001001000000” 5075
which is appended to the end of the 13-bit sequence cited at the start of this paragraph. 5076

The four non-digits of the source data string are “ABCD”, which are converted (using 5077
Table K-1) to a sequence of four Base-30 values 1, 2, 3, and 4 (denoted as values v3 5078
through v0 in the formula below. These are then converted to a single Binary value, using 5079
the following formula: 5080

303 * v3 + 302 * v2 + 301 * v1 + 300 * v0 5081

http://www.autoidcenter.org/�

Copyright ©2005- 2010 EPCglobal®, All Rights Reserved. Page 199 of 210

In this example, the formula calculates as (27000 * 1 + 900 * 2 + 30 * 3 + 1 * 4) which is 5082
equal to 070DE (hexadecimal) encoded as the 20-bit sequence 5083
“00000111000011011110” which is appended to the end of the previous 20-bit sequence. 5084
Thus, the AlphaNumeric section contains a total of (13 + 20 + 20) or 53 bits, appended 5085
immediately after the previous 83 bits, for a grand total of 136 significant bits in the 5086
Packed Object. 5087

The final encoding step is to calculate the full length of the Packed Object (to encode the 5088
EBV-6 within the Length Section) and to pad-out the last byte (if necessary). Dividing 5089
136 by eight shows that a total of 17 bytes are required to hold the Packed Object, and 5090
that no pad bits are required in the last byte. Thus, the EBV-6 portion of the Length 5091
Section is “010001”, where this EBV-6 value indicates 17 bytes in the Object. Following 5092
that, the Pad Indicator bit is set to ‘0’ indicating that no padding bits are present in the 5093
last data byte. 5094
The complete encoding process may be summarized as follows: 5095

Original input: (17)061031(3912)978123456(10)1A23B456CD 5096
Re-ordered as: (17)061031(10)1A23B456CD(3912)978123456 5097

 5098
FORMAT FLAGS SECTION: (empty) 5099

OBJECT INFO SECTION: 5100
 ebvObjectLen: 010001 5101

 paddingPresent: 0 5102
 ebvNumIDs: 001 5103

 IDvals: 1111101 0110011 5104
SECONDARY ID SECTION: 5105

 IDbits: 0010 5106
AUX FORMAT SECTION: 5107

 auxFormatbits: 1 0101 5108
DATA SECTION: 5109

 KLnumeric: 0000 11101110 01100111 111010 01001100 11111010 11000000 5110
 ANheader: 0 5111

 ANprefix: 0 5112
 ANsuffix: 0 5113

 ANmap: 01 00100011 5114
 ANdigitVal: 0001 11100010 01000000 5115

 ANnonDigitsVal: 0000 01110000 11011110 5116
 Padding: none 5117

http://www.autoidcenter.org/�

Copyright ©2005- 2010 EPCglobal®, All Rights Reserved. Page 200 of 210

 5118
Total Bits in Packed Object: 136; when byte aligned: 136 5119

Output as: 44 7E B3 2A 87 73 3F 49 9F 58 01 23 1E 24 00 70 DE 5120
Table L-1 shows the relevant subset of a hypothetical ID Table for a hypothetical ISO-5121
registered Data Format 99. 5122

Table L-1: hypothetical Base ID Table, for representing GS1 Application Identifiers 5123
K-Version = 1.0

K-TableID = F99B0

K-RootOID = urn:oid:1.0.15961.9

K-IDsize = 128

IDvalue OIDs Data Title FormatString

3 10 BATCH/LOT 1*20an

8 17 USE BY OR EXPIRY 6n

51 391 %x30-39 AMOUNT – 391n 4*18n

125 (17) (10) EXPIRY + BATCH/LOT (6n) (1*20an)

K-TableEnd = F99B0

 5124

Appendix M Decoding Packed Objects (non-normative) 5125

M.1 Overview 5126
The decode process begins by decoding the first byte of the memory as a DSFID. If the 5127
leading two bits indicate the Packed Objects access method, then the remainder of this 5128
Annex applies. From the remainder of the DSFID octet or octets, determine the Data 5129
Format, which shall be applied as the default Data Format for all of the Packed Objects in 5130
this memory. From the Data Format, determine the default ID Table which shall be used 5131
to process the ID Values in each Packed Object. 5132
Typically, the decoder takes a first pass through the initial ID Values list, as described 5133
earlier, in order to complete the list of identifiers. If the decoder finds any identifiers of 5134
interest in a Packed Object (or if it has been asked to report back all the data strings from 5135
a tag’s memory), then it will need to record the implied fixed lengths (from the ID table) 5136
and the encoded variable lengths (from the Aux Format subsection), in order to parse the 5137
Packed Object’s compressed data. The decoder, when recording any variable-length bit 5138
patterns, must first convert them to variable string lengths per the table (for example, a 5139
three-bit pattern may indicate a variable string length in the range of two to nine). 5140

http://www.autoidcenter.org/�

Copyright ©2005- 2010 EPCglobal®, All Rights Reserved. Page 201 of 210

Starting at the first byte-aligned position after the end of the DSFID, parse the remaining 5141
memory contents until the end of encoded data, repeating the remainder of this section 5142
until a Terminating Pattern is reached. 5143
Determine from the leading bit pattern (see I.4) which one of the following conditions 5144
applies: 5145

a) there are no further Packed Objects in Memory (if the leading 8-bit pattern is 5146
all zeroes, this indicates the Terminating Pattern) 5147

b) one or more Padding bytes are present. If padding is present, skip the padding 5148
bytes, which are as described in Annex I, and examine the first non-pad byte. 5149

c) a Directory Pointer is encoded. If present, record the offset indicated by the 5150
following bytes, and then continue examining from the next byte in memory 5151

d) a Format Flags section is present, in which case process this section according 5152
to the format described in Annex I 5153

e) a default-format Packed Object begins at this location 5154

If the Packed Object had a Format Flags section, then this section may indicate that the 5155
Packed Object is of the ID Map format, otherwise it is of the ID List format. According 5156
to the indicated format, parse the Object Information section to determine the Object 5157
Length and ID information contained in the Packed Object. See Annex I for the details 5158
of the two formats. Regardless of the format, this step results in a known Object length 5159
(in bits) and an ordered list of the ID Values encoded in the Packed Object. From the 5160
governing ID Table, determine the list of characteristics for each ID (such as the presence 5161
and number of Secondary ID bits). 5162

Parse the Secondary ID section of the Object, based on the number of Secondary ID bits 5163
invoked by each ID Value in sequence. From this information, create a list of the fully-5164
qualified ID Values (FQIDVs) that are encoded in the Packed Object. 5165
Parse the Aux Format section of the Object, based on the number of Aux Format bits 5166
invoked by each FQIDV in sequence. 5167
Parse the Data section of the Packed Object: 5168

a) If one or more of the FQIDVs indicate all-numeric data, then the Packed 5169
Object’s Data section contains a Known-Length Numeric subsection, wherein 5170
the digit strings of these all-numeric items have been encoded as a series of 5171
binary quantities. Using the known length of each of these all-numeric data 5172
items, parse the correct numbers of bits for each data item, and convert each 5173
set of bits to a string of decimal digits. 5174

b) If (after parsing the preceding sections) one or more of the FQIDVs indicate 5175
alphanumeric data, then the Packed Object’s Data section contains an 5176
AlphaNumeric subsection, wherein the character strings of these 5177
alphanumeric items have been concatenated and encoded into the structure 5178
defined in Annex I. Decode this data using the “Decoding Alphanumeric 5179
data” procedure outlined below. 5180

http://www.autoidcenter.org/�

Copyright ©2005- 2010 EPCglobal®, All Rights Reserved. Page 202 of 210

For each FQIDV in the decoded sequence: 5181
a) convert the FQIDV to an OID, by appending the OID string defined in the 5182

registered format’s ID Table to the root OID string defined in that ID Table 5183
(or to the default Root OID, if none is defined in the table) 5184

b) Complete the OID/Value pair by parsing out the next sequence of decoded 5185
characters. The length of this sequence is determined directly from the ID 5186
Table (if the FQIDV is specified as fixed length) or from a corresponding 5187
entry encoded within the Aux Format section. 5188

M.2 Decoding Alphanumeric data 5189
Within the Alphanumeric subsection of a Packed Object, the total number of data 5190
characters is not encoded, nor is the bit length of the character map, nor are the bit 5191
lengths of the succeeding Binary sections (representing the numeric and non-numeric 5192
Binary values). As a result, the decoder must follow a specific procedure in order to 5193
correctly parse the AlphaNumeric section. 5194
When decoding the A/N subsection using this procedure, the decoder will first count the 5195
number of non-bitmapped values in each base (as indicated by the various Prefix and 5196
Suffix Runs), and (from that count) will determine the number of bits required to encoded 5197
these numbers of values in these bases. The procedure can then calculate, from the 5198
remaining number of bits, the number of explicitly-encoded character map bits. After 5199
separately decoding the various binary fields (one field for each base that was used), the 5200
decoder “re-interleaves” the decoded ASCII characters in the correct order. 5201
The A/N subsection decoding procedure is as follows: 5202

• Determine the total number of non-pad bits in the Packed Object, as described in 5203
section I.8.2 5204

• Keep a count of the total number of bits parsed thus far, as each of the subsections 5205
prior to the Alphanumeric subsection is processed 5206

• Parse the initial Header bits of the Alphanumeric subsection, up to but not including 5207
the Character Map, and add this number to previous value of TotalBitsParsed. 5208

• Initialize a DigitsCount to the total number of base-10 values indicated by the Prefix 5209
and Suffix (which may be zero) 5210

• Initialize an ExtDigitsCount to the total number of base-13 values indicated by the 5211
Prefix and Suffix (which may be zero) 5212

• Initialize a NonDigitsCount to the total number of base-30, base 74, or base-256 5213
values indicated by the Prefix and Suffix (which may be zero) 5214

• Initialize an ExtNonDigitsCount to the total number of base-40 or base 84 values 5215
indicated by the Prefix and Suffix (which may be zero) 5216

• Calculate Extended-base Bit Counts: Using the tables in Annex K, calculate two 5217
numbers: 5218

http://www.autoidcenter.org/�

Copyright ©2005- 2010 EPCglobal®, All Rights Reserved. Page 203 of 210

• ExtDigitBits, the number of bits required to encode the number of base-13 values 5219
indicated by ExtDigitsCount, and 5220

• ExtNonDigitBits, the number of bits required to encode the number of base-40 (or 5221
base-84) values indicated by ExtNonDigitsCount 5222

• Add ExtDigitBits and ExtNonDigitBits to TotalBitsParsed 5223

• Create a PrefixCharacterMap bit string, a sequence of zero or more quad-base 5224
character-map pairs, as indicated by the Prefix bits just parsed. Use quad-base bit 5225
pairs defined as follows: 5226

• ‘00’ indicates a base 10 value; 5227

• ‘01’ indicates a character encoded in Base 13; 5228

• ‘10’ indicates the non-numeric base that was selected earlier in the A/N header, 5229
and 5230

• ‘11’ indicates the Extended version of the non-numeric base that was selected 5231
earlier 5232

• Create a SuffixCharacterMap bit string, a sequence of zero or more quad-base 5233
character-map pairs, as indicated by the Suffix bits just parsed. 5234

• Initialize the FinalCharacterMap bit string and the MainCharacterMap bit string to an 5235
empty string 5236

• Calculate running Bit Counts: Using the tables in Annex B, calculate two numbers: 5237

• DigitBits, the number of bits required to encode the number of base-10 values 5238
currently indicated by DigitsCount, and 5239

• NonDigitBits, the number of bits required to encode the number of base-30 (or 5240
base 74 or base-256) values currently indicated by NonDigitsCount 5241

• set AlnumBits equal to the sum of DigitBits plus NonDigitBits 5242

• if the sum of TotalBitsParsed and AlnumBits equals the total number of non-pad bits 5243
in the Packed Object, then no more bits remain to be parsed from the character map, 5244
and so the remaining bit patterns, representing Binary values, are ready to be 5245
converted back to extended base values and/or base 10/base 30/base 74/base-256 5246
values (skip to the Final Decoding steps below). Otherwise, get the next encoded bit 5247
from the encoded Character map, convert the bit to a quad-base bit-pair by converting 5248
each ‘0’ to ‘00’ and each ‘1’ to ‘10’, append the pair to the end of the 5249
MainCharacterMap bit string, and: 5250

• If the encoded map bit was ‘0’, increment DigitsCount, 5251

• Else if ‘1’, increment NonDigitsCount 5252

• Loop back to the Calculate running Bit Counts step above and continue 5253

• Final Decoding steps: once the encoded Character Map bits havSe been fully parsed: 5254

http://www.autoidcenter.org/�

Copyright ©2005- 2010 EPCglobal®, All Rights Reserved. Page 204 of 210

• Fetch the next set of zero or more bits, whose length is indicated by ExtDigitBits. 5255
Convert this number of bits from Binary values to a series of base 13 values, and 5256
store the resulting array of values as ExtDigitVals. 5257

• Fetch the next set of zero or more bits, whose length is indicated by 5258
ExtNonDigitBits. Convert this number of bits from Binary values to a series of 5259
base 40 or base 84 values (depending on the selection indicated in the A/N 5260
Header), and store the resulting array of values as ExtNonDigitVals. 5261

• Fetch the next set of bits, whose length is indicated by DigitBits. Convert this 5262
number of bits from Binary values to a series of base 10 values, and store the 5263
resulting array of values as DigitVals. 5264

• Fetch the final set of bits, whose length is indicated by NonDigitBits. Convert 5265
this number of bits from Binary values to a series of base 30 or base 74 or base 5266
256 values (depending on the value of the first bits of the Alphanumeric 5267
subsection), and store the resulting array of values as NonDigitVals. 5268

• Create the FinalCharacterMap bit string by copying to it, in this order, the 5269
previously-created PrefixCharacterMap bit string, then the MainCharacterMap 5270
string , and finally append the previously-created SuffixCharacterMap bit string to 5271
the end of the FinalCharacterMap string. 5272

• Create an interleaved character string, representing the concatenated data strings 5273
from all of the non-numeric data strings of the Packed Object, by parsing through 5274
the FinalCharacterMap, and: 5275

• For each ‘00’ bit-pair encountered in the FinalCharacterMap, copy the next 5276
value from DigitVals to InterleavedString (add 48 to each value to convert to 5277
ASCII); 5278

• For each ‘01’ bit-pair encountered in the FinalCharacterMap, fetch the next 5279
value from ExtDigitVals, and use Table K-2 to convert that value to ASCII 5280
(or, if the value is a Base 13 shift, then increment past the next ‘01’ pair in the 5281
FinalCharacterMap, and use that Base 13 shift value plus the next Base 13 5282
value from ExtDigitVals to convert the pair of values to ASCII). Store the 5283
result to InterleavedString; 5284

• For each ‘10’ bit-pair encountered in the FinalCharacterMap, get the next 5285
character from NonDigitVals, convert its base value to an ASCII value using 5286
Annex K, and store the resulting ASCII value into InterleavedString. Fetch 5287
and process an additional Base 30 value for every Base 30 Shift values 5288
encountered, to create and store a single ASCII character. 5289

• For each ‘11’ bit-pair encountered in the FinalCharacterMap, get the next 5290
character from ExtNonDigitVals, convert its base value to an ASCII value 5291
using Annex K, and store the resulting ASCII value into InterleavedString, 5292
processing any Shifts as previously described. 5293

Once the full FinalCharacterMap has been parsed, the InterleavedString is completely 5294
populated. Starting from the first AlphaNumeric entry on the ID list, copy characters 5295

http://www.autoidcenter.org/�

Copyright ©2005- 2010 EPCglobal®, All Rights Reserved. Page 205 of 210

from the InterleavedString to each such entry, ending each copy operation after the 5296
number of characters indicated by the corresponding Aux Format length bits, or at the 5297
end of the InterleavedString, whichever comes first. 5298
 5299

Appendix N Acknowledgement of Contributors and 5300
Companies Opted-in during the Creation of this 5301
Standard (Informative) 5302

 5303

Disclaimer 5304
Whilst every effort has been made to ensure that this document and the 5305
information contained herein are correct, EPCglobal and any other party involved 5306
in the creation of the document hereby state that the document is provided on an 5307
“as is” basis without warranty, either expressed or implied, including but not 5308
limited to any warranty that the use of the information herein with not infringe any 5309
rights, of accuracy or fitness for purpose, and hereby disclaim any liability, direct 5310
or indirect, for damages or loss relating to the use of the document. 5311

 5312
Below is a list of active participants and contributors in the development of TDS 5313
1.5. This list does not acknowledge those who only monitored the process or 5314
those who chose not to have their name listed here. Active participants status 5315
was granted to those who generated emails, submitted comments during 5316
reviews, attended face-to-face meetings, participated in WG ballots, and 5317
attended conference calls that were associated with the development of this 5318
standard. 5319

 5320
Company Name of Participant Role

Symbol Technologies Inc, a
Motorola Co.

Rick Schuessler Co-Chair, User Memory Editor

Ahold NV Vijay Sundhar Initial Co-Chair

Ken Traub Consulting LLC Ken Traub Overall Editor

Impinj, Inc. Theron Stanford TID Editor

Kimberly-Clark Corporation John Anderla Initial Editor

GS1 EPCglobal, Inc. Mark Frey SAG Facilitator, ISO Liaison

GS1 Netherlands Sylvia Stein Facilitator

Intermec Technologies Corporation Sprague Ackley

 GS1 Germany Craig Alan Repec

 Reva Systems Corporation Scott Barvick

http://www.autoidcenter.org/�

Copyright ©2005- 2010 EPCglobal®, All Rights Reserved. Page 206 of 210

GS1 Spain Sergi Cardona

 Lockheed Martin Denton Clark

 NXP Semiconductors Henk Dannenberg

 GS1 Canada Kevin Dean

 GS1 US Ray Delnicki

 Target Corporation Roberto DeVet

 Procter & Gamble Company John Duker

 Nestle S. A. Vera Feuerstein

 Reva Systems Corporation Jeff Fischer

 7 id (Formerly EOSS) Gerhard Gangl

 GS1 Switzerland Heinz Graf

 GS1 Global Office Scott Gray

 Michelin Marc Hammer

 Q.E.D. Systems Craig Harmon

 Intermec Technologies Corporation Barba Hickman

 GS1 US Bernie Hogan

 Supply Insight, Inc. Robert Hotaling

 Paxar John Kessler

 Michelin Pat King

 Track Tracer AS Steinar Kjærnsrød

 Metro Bastian Konigs

 GS1 Hungary Peter Kurucz

 Sandlab Corp. Kay Labinsky

 Goodyear Tire & Rubber Company Steve Lederer

 Auto-ID Labs - Cambridge Dr. Mark Harrison

 Pfizer, Inc. Tim Marsh

 Away (formerly Cyclone) Dale Moberg

 WalMart Stores, Inc. Ron Moser

 Kraft Foods, Inc. Doug Naal

 NXP Semiconductors Elista Polizveva

 Cisc Semiconductor Josef Preishuber-Pfluegl

 France Telecom Orange Matt Robshaw

 Supply Insight, Inc. Felix Rodriguez

http://www.autoidcenter.org/�

Copyright ©2005- 2010 EPCglobal®, All Rights Reserved. Page 207 of 210

Intelleflex Corporation Lauren Schlicht

 GS1 Australia Sue Schmid

 INRIA Loic Schmidt

 GS1 Austria GmbH Eugen Sehorz

 Lockheed Martin Ryad Semichi

 GS1 Japan Yuko Shimizu

 Department of Homeland Security Rajiv Singh

 Schering-Plough Corp. Mike Smith

 EPCglobal North America Michele Southall

 EM Microelectronic Marin Sa Jim Springer

 Target Corporation Joe Spritzer

 GS1 Hong Kong KK Suen

 CHEP International, Inc Jim Sykes

 Intermec Technologies Corporation Phyllis Turner-Brim

 GS1 China Yi Wang

 GS1 UK David Weatherby

 GS1 France Lionel Willig

 Auto-ID Labs-ICU Jong Woo Sung

 GS1 China Ruoyan Yan

 Supply Insight, Inc. Graham Yarbrough

 5321
5322

http://www.autoidcenter.org/�

Copyright ©2005- 2010 EPCglobal®, All Rights Reserved. Page 208 of 210

The following list in alphabetical order contains all companies that were opted-in 5323
to the Tag Data and Translation Standard Working Group and have signed the 5324
EPCglobal IP Policy as of March 24, 2010. 5325

 Company Name

7iD (formerly EOSS GmbH)

Afilias Limited

AFNIC

Ahold NV

Allixon Co., Ltd

AMOS Technologies Inc.

AT4 Wireless (formerly Cetecom Spain)

Atmel GmBH

Auto-ID Labs - Adelaide

Auto-ID Labs - Cambridge

Auto-ID Labs - Fudan University

Auto-ID Labs - ICU

Auto-ID Labs - Japan

Auto-ID Labs - MIT

Auto-ID Labs - University of St Gallen

AXWAY/formerly Cyclone

Benedicta

Chang Jung Christian University Rfid Research Center

Cheng-Loong Corporation

CHEP International, Inc

Cisc Semiconductor Design and Consulting Gmbh

Department of Homeland Security

DHL Logistics GmbH (Deutsche Post)

ECO, Inc.

EM Microelectronic Marin Sa

EPCglobal Inc.

ETRI - Electronics & Telecommunication Research Institute

Evtek Univerisity Of Applied Science

Feng Chia University, Department of Information Engineering and Computer Science

France Telecom Orange

Fujitsu Limited

http://www.autoidcenter.org/�

Copyright ©2005- 2010 EPCglobal®, All Rights Reserved. Page 209 of 210

Glaxo Smith Kline

Goodyear Tire & Rubber Company

GS1 Australia

GS1 Austria GmbH

GS1 Brasil

GS1 Canada

GS1 China

GS1 EPCglobal, Inc.

GS1 France

GS1 Germany

GS1 Global Office

GS1 Hong Kong

GS1 Hungary

GS1 Japan

GS1 Netherlands

GS1 South Korea

GS1 Spain

GS1 Sweden AB

GS1 Switzerland

GS1 Taiwan

GS1 UK

GS1 US

iControl, Inc.

Impinj, Inc.

Innovision Research & Technology plc

INRIA

Intelleflex Corporation

Intermec Technologies Corporation

Johnson & Johnson

Ken Traub Consulting LLC

Kimberly-Clark Corporation

KL-NET (Korea Logistics Network Corp.)

Kraft Foods, Inc.

LIT (Institute of Logistics Information Technology)

Lockheed Martin - Savi Technology Division

http://www.autoidcenter.org/�

Copyright ©2005- 2010 EPCglobal®, All Rights Reserved. Page 210 of 210

Lockheed Martin, Corp.

MetaBiz

METRO AG

Michelin

Microelectronics Technology, Inc.

MITSUI & CO., LTD.

MOE RFID Project Office

National Taiwan University of Science & Technology, college of electrical Engine

NEC Corporation

Nestle S. A.

NXP Semiconductors

Packaging Corporation of America

Paxar

Pfizer, Inc.

PowerID Ltd

Printronix

Procter & Gamble Company

Q.E.D. Systems

RetailTech

Sandlab Corp.

Schering-Plough Corp.

Supply Insight, Inc.

Symbol Technologies Inc, a Motorola Co.

Target Corporation

The Boeing Company

Tibco Software, Inc

Toppan Printing Co., Ltd

TraceTracker AS

Tranz Technologies Inc

VeriSign

WalMart Stores, Inc.

Yuen Foong Yu Paper (Yeon Tech)

Zebra Technologies Corporation

 5326

 5327

http://www.autoidcenter.org/�

	1 0BIntroduction
	2 1BTerminology and Typographical Conventions
	3 2BOverview of Tag Data Standards
	4 3BThe Electronic Product Code: A Universal Identifier for Physical Objects
	4.1 17BThe Need for a Universal Identifier: an Example
	4.2 18BUse of Identifiers in a Business Data Context
	4.3 19BRelationship Between EPCs and GS1 Keys
	4.4 20BUse of the EPC in EPCglobal Architecture Framework

	5 4BCommon Grammar Elements
	6 5BEPC URI
	6.1 21BUse of the EPC URI
	6.2 22BAssignment of EPCs to Physical Objects
	6.3 23BEPC URI Syntax
	6.3.1 61BSerialized Global Trade Item Number (SGTIN)
	6.3.2 62BSerial Shipping Container Code (SSCC)
	6.3.3 63BSerialized Global Location Number (SGLN)
	6.3.4 64BGlobal Returnable Asset Identifier (GRAI)
	6.3.5 65BGlobal Individual Asset Identifier (GIAI)
	6.3.6 66BGlobal Service Relation Number (GSRN)
	6.3.7 67BGlobal Document Type Identifier (GDTI)
	6.3.8 68BGeneral Identifier (GID)
	6.3.9 69BUS Department of Defense Identifier (DOD)

	7 6BCorrespondence Between EPCs and GS1 Keys
	7.1 24BSerialized Global Trade Item Number (SGTIN)
	7.1.1 70BGTIN-12 and GTIN-13
	7.1.2 71BGTIN-8 and RCN-8
	7.1.3 72B Company Internal Numbering (GS1 Prefixes 04 and 0001 – 0007)
	7.1.4 73BRestricted Circulation (GS1 Prefixes 02 and 20 – 29)
	7.1.5 74BCoupon Code Identification for Restricted Distribution (GS1 Prefixes 05, 99, 981, and 982)
	7.1.6 75BRefund Receipt (GS1 Prefix 980)
	7.1.7 76BISBN, ISMN, and ISSN (GS1 Prefixes 977, 978, or 979)

	7.2 25BSerial Shipping Container Code (SSCC)
	7.3 26BSerialized Global Location Number (SGLN)
	7.4 27BGlobal Returnable Asset Identifier (GRAI)
	7.5 28BGlobal Individual Asset Identifier (GIAI)
	7.6 29BGlobal Service Relation Number (GSRN)
	7.7 30BGlobal Document Type Identifier (GDTI)

	8 7BURIs for EPC Pure Identity Patterns
	8.1 31BSyntax
	8.2 32BSemantics

	9 8BMemory Organization of Gen 2 RFID Tags
	9.1 33BTypes of Tag Data
	9.2 34BGen 2 Tag Memory Map

	10 9BFilter Value
	10.1 35BUse of “Reserved” and “All Others” Filter Values
	10.2 36BFilter Values for SGTIN EPC Tags
	10.3 37BFilter Values for SSCC EPC Tags
	10.4 38BFilter Values for SGLN EPC Tags
	10.5 39BFilter Values for GRAI EPC Tags
	10.6 40BFilter Values for GIAI EPC Tags
	10.7 41BFilter Values for GSRN EPC Tags
	10.8 42BFilter Values for GDTI EPC Tags
	10.9 43BFilter Values for GID EPC Tags
	10.10 44BFilter Values for DOD EPC Tags

	11 10BAttribute Bits
	12 11BEPC Tag URI and EPC Raw URI
	12.1 45BStructure of the EPC Tag URI and EPC Raw URI
	12.2 46BControl Information
	12.2.1 77BFilter Values
	12.2.2 78BOther Control Information Fields

	12.3 47BEPC Tag URI and EPC Pure Identity URI
	12.3.1 79BEPC Binary Coding Schemes
	12.3.2 80BEPC Pure Identity URI to EPC Tag URI
	12.3.3 81BEPC Tag URI to EPC Pure Identity URI

	12.4 48BGrammar

	13 12BURIs for EPC Patterns
	13.1 49BSyntax
	13.2 50BSemantics

	14 13BEPC Binary Encoding
	14.1 51BOverview of Binary Encoding
	14.2 52BEPC Binary Headers
	14.3 53BEncoding Procedure
	14.3.1 82B“Integer” Encoding Method
	14.3.2 83B“String” Encoding Method
	14.3.3 84B“Partition Table” Encoding Method
	14.3.4 85B“Unpadded Partition Table” Encoding Method
	14.3.5 “String Partition Table” Encoding Method
	14.3.6 “Numeric String” Encoding Method

	14.4 54BDecoding Procedure
	14.4.1 88B“Integer” Decoding Method
	14.4.2 89B“String” Decoding Method
	14.4.3 90B“Partition Table” Decoding Method
	14.4.4 91B“Unpadded Partition Table” Decoding Method
	14.4.5 “String Partition Table” Decoding Method
	14.4.6 “Numeric String” Decoding Method

	14.5 55BEPC Binary Coding Tables
	14.5.1 94BSerialized Global Trade Identification Number (SGTIN)
	14.5.1.1 116BSGTIN-96 Coding Table
	14.5.1.2 117BSGTIN-198 Coding Table

	14.5.2 95BSerial Shipping Container Code (SSCC)
	14.5.2.1 118BSSCC-96 Coding Table

	14.5.3 96BSerialized Global Location Number (SGLN)
	14.5.3.1 119BSGLN-96 Coding Table
	14.5.3.2 120BSGLN-195 Coding Table

	14.5.4 97BGlobal Returnable Asset Identifier (GRAI)
	14.5.4.1 121BGRAI-96 Coding Table
	14.5.4.2 122BGRAI-170 Coding Table

	14.5.5 98BGlobal Individual Asset Identifier (GIAI)
	14.5.5.1 123BGIAI-96 Partition Table and Coding Table
	14.5.5.2 124BGIAI-202 Partition Table and Coding Table

	14.5.6 99BGlobal Service Relation Number (GSRN)
	14.5.6.1 125BGSRN-96 Coding Table

	14.5.7 100BGlobal Document Type Identifier (GDTI)
	14.5.7.1 126BGDTI-96 Coding Table
	14.5.7.2 127BGDTI-113 Coding Table

	14.5.8 101BGeneral Identifier (GID)
	14.5.8.1 128BGID-96 Coding Table

	14.5.9 102BDoD Identifier

	15 14BEPC Memory Bank Contents
	15.1 56BEncoding Procedures
	15.1.1 103BEPC Tag URI into Gen 2 EPC Memory Bank
	15.1.2 104BEPC Raw URI into Gen 2 EPC Memory Bank

	15.2 57BDecoding Procedures
	15.2.1 105BGen 2 EPC Memory Bank into EPC Raw URI
	15.2.2 106BGen 2 EPC Memory Bank into EPC Tag URI
	15.2.3 107BGen 2 EPC Memory Bank into Pure Identity EPC URI
	15.2.4 108BDecoding of Control Information

	16 15BTag Identification (TID) Memory Bank Contents
	16.1 58BShort Tag Identification
	16.2 59BExtended Tag Identification (XTID)
	16.2.1 109BXTID Header
	16.2.2 110BXTID Serialization
	16.2.3 111BOptional Command Support Segment
	16.2.4 112BBlockWrite and BlockErase Segment
	16.2.5 113BUser Memory and BlockPermaLock Segment

	16.3 60BSerialized Tag Identification (STID)
	16.3.1 114BSTID URI Grammar
	16.3.2 115BDecoding Procedure: TID Bank Contents to STID URI

	17 16BUser Memory Bank Contents

