
 EPC Tag Data Standard

Jan-2014, Version 1.8 Copyright ©2005- 2014 GS1 AISBL, All Rights Reserved. Page 1 of 225

GDSN Package Measurement Rules

GS1 Standards Document

Version 1 13 2 Dec 2013

EPC Tag Data Standard

GS1 Standard
Version 1.8, Jan-2014

 1

 EPC Tag Data Standard

Jan-2014, Version 1.8 Copyright ©2005- 2014 GS1 AISBL, All Rights Reserved. Page 2 of 225

© 2014 GS1 AISBL

All rights reserved.

GS1 Global Office

Avenue Louise 326, bte 10

B-1050 Brussels, Belgium

Disclaimer
GS1 AISBL (GS1) is providing this document as a free service to interested industries. This
document was developed through a consensus process of interested parties in developing the
Standard. Although efforts have been made to assure that the document is correct, reliable,
and technically accurate, GS1 makes NO WARRANTY, EXPRESS OR IMPLIED, THAT THIS
DOCUMENT IS CORRECT, WILL NOT REQUIRE MODIFICATION AS EXPERIENCE AND
TECHNOLOGY DICTATE, OR WILL BE SUITABLE FOR ANY PURPOSE OR WORKABLE IN
ANY APPLICATION, OR OTHERWISE. Use of this document is with the understanding that
GS1 DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT
LIMITED TO ANY IMPLIED WARRANTY OF NON-INFRINGEMENT OF PATENTS OR
COPYRIGHTS, MERCHANTABILITY AND/OR FITNESS FOR A PARTICULAR PURPOSE,
THAT THE INFORMATION IS ERROR FREE, NOR SHALL GS1 BE LIABLE FOR DAMAGES
OF ANY KIND, INCLUDING DIRECT, INDIRECT, INCIDENTAL, SPECIAL, CONSEQUENTIAL
OR EXEMPLARY DAMAGES, ARISING OUT OF USE OR THE INABILITY TO USE
INFORMATION CONTAINED HEREIN OR FROM ERRORS CONTAINED HEREIN.

 EPC Tag Data Standard

Jan-2014, Version 1.8 Copyright ©2005- 2014 GS1 AISBL, All Rights Reserved. Page 3 of 225

Abstract 2
The EPC Tag Data Standard defines the Electronic Product Code™, and also specifies the 3
memory contents of Gen 2 RFID Tags. In more detail, the Tag Data Standard covers two broad 4
areas: 5

• The specification of the Electronic Product Code, including its representation at various 6
levels of the EPCglobal Architecture and its correspondence to GS1 keys and other existing 7
codes. 8

• The specification of data that is carried on Gen 2 RFID tags, including the EPC, “user 9
memory” data, control information, and tag manufacture information. 10

Audience for this document 11
The target audience for this specification includes: 12

• EPC Middleware vendors 13

• RFID Tag users and encoders 14

• Reader vendors 15

• Application developers 16

• System integrators 17

Differences From EPC Tag Data Standard Version 1.6 18
The EPC Tag Data Standard Version 1.7 is fully backward-compatible with EPC Tag Data 19
Standard Version 1.6. 20

The EPC Tag Data Standard Version 1.7 includes these new or enhanced features: 21

• A new EPC Scheme, the Component and Part Identifier (CPI) scheme, has been added 22
(Sections 6.3.11, 10.12, and 14.5.11). 23

• Various typographical errors have been corrected. 24

Differences From EPC Tag Data Standard Version 1.7 25
The EPC Tag Data Standard Version 1.8 is fully backward-compatible with EPC Tag Data 26
Standard Version 1.7. 27

The EPC Tag Data Standard Version 1.8 includes the following enhacements: 28

• The GIAI EPC Scheme has been allocated an additional Filter Value, “Rail Vehicle” (Section 29
10.6). 30

Status of this document 31
This section describes the status of this document at the time of its publication. Other documents 32
may supersede this document. The latest status of this document series is maintained at GS1. 33
See http://www.gs1.org/gsmp/kc/epcglobal/tds for more information. 34

This version of the EPC Tag Data Standard 1.7 is the Ratified version of the standard and has 35
completed all GSMP steps. 36

Comments on this document should be sent to the GSMP@gs1.org. 37

http://www.gs1.org/gsmp/kc/epcglobal/tds

 EPC Tag Data Standard

Jan-2014, Version 1.8 Copyright ©2005- 2014 GS1 AISBL, All Rights Reserved. Page 4 of 225

Table of Contents

1. Introduction .. 12 38

2. Terminology and Typographical Conventions .. 12 39

3. Overview of Tag Data Standards .. 13 40

4. The Electronic Product Code: A Universal Identifier for Physical Objects 16 41
4.1. The Need for a Universal Identifier: an Example ... 16 42
4.2. Use of Identifiers in a Business Data Context .. 18 43
4.3. Relationship Between EPCs and GS1 Keys .. 19 44
4.4. Use of the EPC in EPCglobal Architecture Framework .. 22 45

5. Common Grammar Elements .. 23 46

6. EPC URI .. 25 47
6.1. Use of the EPC URI .. 25 48
6.2. Assignment of EPCs to Physical Objects ... 26 49
6.3. EPC URI Syntax ... 26 50
6.3.1. Serialized Global Trade Item Number (SGTIN) .. 27 51
6.3.2. Serial Shipping Container Code (SSCC) .. 28 52
6.3.3. Global Location Number With or Without Extension (SGLN) ... 29 53
6.3.4. Global Returnable Asset Identifier (GRAI) ... 30 54
6.3.5. Global Individual Asset Identifier (GIAI).. 30 55
6.3.6. Global Service Relation Number (GSRN) .. 31 56
6.3.7. Global Document Type Identifier (GDTI) .. 31 57
6.3.8. General Identifier (GID) .. 32 58
6.3.9. US Department of Defense Identifier (DOD) .. 33 59
6.3.10. Aerospace and Defense Identifier (ADI) ... 34 60
6.3.11. Component / Part Identifier (CPI) ... 35 61

7. Correspondence Between EPCs and GS1 Keys .. 36 62
7.1. Serialized Global Trade Item Number (SGTIN) .. 37 63
7.1.1. GTIN-12 and GTIN-13 .. 38 64
7.1.2. GTIN-8 and RCN-8 ... 38 65
7.1.3. Company Internal Numbering (GS1 Prefixes 04 and 0001 – 0007) 39 66
7.1.4. Restricted Circulation (GS1 Prefixes 02 and 20 – 29) .. 39 67
7.1.5. Coupon Code Identification for Restricted Distribution (GS1 Prefixes 05, 99, 981, and 982)39 68
7.1.6. Refund Receipt (GS1 Prefix 980) ... 40 69
7.1.7. ISBN, ISMN, and ISSN (GS1 Prefixes 977, 978, or 979) ... 40 70
7.1.7.1. ISBN and ISMN .. 40 71
7.1.7.2. ISSN ... 41 72
7.2. Serial Shipping Container Code (SSCC) .. 41 73
7.3. Global Location Number With or Without Extension (SGLN) ... 42 74

 EPC Tag Data Standard

Jan-2014, Version 1.8 Copyright ©2005- 2014 GS1 AISBL, All Rights Reserved. Page 5 of 225

7.4. Global Returnable Asset Identifier (GRAI) ... 44 75
7.5. Global Individual Asset Identifier (GIAI).. 46 76
7.6. Global Service Relation Number (GSRN) .. 47 77
7.7. Global Document Type Identifier (GDTI) .. 48 78
7.8. Component and Part Identifier (CPI) .. 49 79

8. URIs for EPC Pure Identity Patterns ... 51 80
8.1. Syntax ... 51 81
8.2. Semantics ... 53 82

9. Memory Organization of Gen 2 RFID Tags ... 53 83
9.1. Types of Tag Data .. 53 84
9.2. Gen 2 Tag Memory Map ... 55 85

10. Filter Value ... 60 86
10.1. Use of “Reserved” and “All Others” Filter Values ... 61 87
10.2. Filter Values for SGTIN EPC Tags ... 61 88
10.3. Filter Values for SSCC EPC Tags .. 61 89
10.4. Filter Values for SGLN EPC Tags .. 62 90
10.5. Filter Values for GRAI EPC Tags ... 62 91
10.6. Filter Values for GIAI EPC Tags ... 63 92
10.7. Filter Values for GSRN EPC Tags .. 63 93
10.8. Filter Values for GDTI EPC Tags ... 63 94
10.9. Filter Values for GID EPC Tags .. 64 95
10.10. Filter Values for DOD EPC Tags .. 64 96
10.11. Filter Values for ADI EPC Tags .. 64 97
10.12. Filter Values for CPI EPC Tags .. 65 98

11. Attribute Bits .. 65 99

12. EPC Tag URI and EPC Raw URI .. 66 100
12.1. Structure of the EPC Tag URI and EPC Raw URI ... 67 101
12.2. Control Information ... 68 102
12.2.1. Filter Values .. 68 103
12.2.2. Other Control Information Fields .. 68 104
12.3. EPC Tag URI and EPC Pure Identity URI .. 70 105
12.3.1. EPC Binary Coding Schemes ... 70 106
12.3.2. EPC Pure Identity URI to EPC Tag URI ... 73 107
12.3.3. EPC Tag URI to EPC Pure Identity URI ... 74 108
12.4. Grammar ... 75 109

13. URIs for EPC Patterns ... 76 110
13.1. Syntax ... 77 111
13.2. Semantics ... 79 112

14. EPC Binary Encoding .. 80 113
14.1. Overview of Binary Encoding ... 80 114

 EPC Tag Data Standard

Jan-2014, Version 1.8 Copyright ©2005- 2014 GS1 AISBL, All Rights Reserved. Page 6 of 225

14.2. EPC Binary Headers... 81 115
14.3. Encoding Procedure ... 83 116
14.3.1. “Integer” Encoding Method ... 84 117
14.3.2. “String” Encoding Method ... 84 118
14.3.3. “Partition Table” Encoding Method ... 85 119
14.3.4. “Unpadded Partition Table” Encoding Method ... 86 120
14.3.5. “String Partition Table” Encoding Method... 87 121
14.3.6. “Numeric String” Encoding Method .. 88 122
14.3.7. “6-bit CAGE/DODAAC” Encoding Method.. 88 123
14.3.8. “6-Bit Variable String” Encoding Method .. 89 124
14.3.9. “6-Bit Variable String Partition Table” Encoding Method .. 90 125
14.4. Decoding Procedure ... 91 126
14.4.1. “Integer” Decoding Method ... 92 127
14.4.2. “String” Decoding Method ... 92 128
14.4.3. “Partition Table” Decoding Method ... 93 129
14.4.4. “Unpadded Partition Table” Decoding Method ... 93 130
14.4.5. “String Partition Table” Decoding Method .. 94 131
14.4.6. “Numeric String” Decoding Method .. 95 132
14.4.7. “6-Bit CAGE/DoDAAC” Decoding Method .. 96 133
14.4.8. “6-Bit Variable String” Decoding Method .. 96 134
14.4.9. “6-Bit Variable String Partition Table” Decoding Method .. 97 135
14.5. EPC Binary Coding Tables ... 98 136
14.5.1. Serialized Global Trade Item Number (SGTIN) .. 98 137
14.5.1.1. SGTIN-96 Coding Table ... 99 138
14.5.1.2. SGTIN-198 Coding Table ... 100 139
14.5.2. Serial Shipping Container Code (SSCC) .. 101 140
14.5.2.1. SSCC-96 Coding Table .. 102 141
14.5.3. Global Location Number With or Without Extension (SGLN) .. 102 142
14.5.3.1. SGLN-96 Coding Table .. 103 143
14.5.3.2. SGLN-195 Coding Table .. 104 144
14.5.4. Global Returnable Asset Identifier (GRAI) ... 104 145
14.5.4.1. GRAI-96 Coding Table ... 105 146
14.5.4.2. GRAI-170 Coding Table ... 106 147
14.5.5. Global Individual Asset Identifier (GIAI).. 106 148
14.5.5.1. GIAI-96 Partition Table and Coding Table ... 106 149
14.5.5.2. GIAI-202 Partition Table and Coding Table ... 108 150
14.5.6. Global Service Relation Number (GSRN) .. 109 151
14.5.6.1. GSRN-96 Coding Table .. 110 152
14.5.7. Global Document Type Identifier (GDTI) .. 110 153
14.5.7.1. GDTI-96 Coding Table.. 112 154
14.5.7.2. GDTI-113 Coding Table ... 113 155
14.5.8. General Identifier (GID) .. 113 156
14.5.8.1. GID-96 Coding Table .. 114 157
14.5.9. DoD Identifier .. 114 158
14.5.10. ADI Identifier (ADI) .. 114 159

 EPC Tag Data Standard

Jan-2014, Version 1.8 Copyright ©2005- 2014 GS1 AISBL, All Rights Reserved. Page 7 of 225

14.5.10.1. ADI-var Coding Table ... 115 160
14.5.11. CPI Identifier (CPI) .. 115 161
14.5.11.1. CPI-96 Coding Table .. 117 162
14.5.11.2. CPI-var Coding Table ... 118 163

15. EPC Memory Bank Contents ... 118 164
15.1. Encoding Procedures ... 118 165
15.1.1. EPC Tag URI into Gen 2 EPC Memory Bank .. 118 166
15.1.2. EPC Raw URI into Gen 2 EPC Memory Bank ... 120 167
15.2. Decoding Procedures ... 121 168
15.2.1. Gen 2 EPC Memory Bank into EPC Raw URI ... 121 169
15.2.2. Gen 2 EPC Memory Bank into EPC Tag URI .. 122 170
15.2.3. Gen 2 EPC Memory Bank into Pure Identity EPC URI .. 122 171
15.2.4. Decoding of Control Information ... 123 172

16. Tag Identification (TID) Memory Bank Contents .. 123 173
16.1. Short Tag Identification ... 124 174
16.2. Extended Tag Identification (XTID) .. 125 175
16.2.1. XTID Header ... 126 176
16.2.2. XTID Serialization ... 127 177
16.2.3. Optional Command Support Segment.. 127 178
16.2.4. BlockWrite and BlockErase Segment ... 128 179
16.2.5. User Memory and BlockPermaLock Segment ... 131 180
16.3. Serialized Tag Identification (STID) .. 132 181
16.3.1. STID URI Grammar .. 132 182
16.3.2. Decoding Procedure: TID Bank Contents to STID URI .. 133 183

17. User Memory Bank Contents .. 133 184

18. Conformance ... 135 185
18.1. Conformance of RFID Tag Data ... 135 186
18.1.1. Conformance of Reserved Memory Bank (Bank 00) .. 135 187
18.1.2. Conformance of EPC Memory Bank (Bank 01) .. 135 188
18.1.3. Conformance of TID Memory Bank (Bank 10) ... 136 189
18.1.4. Conformance of User Memory Bank (Bank 11) ... 136 190
18.2. Conformance of Hardware and Software Components.. 136 191
18.2.1. Conformance of Hardware and Software Components That Produce or Consume Gen 2 192

Memory Bank Contents .. 137 193
18.2.2. Conformance of Hardware and Software Components that Produce or Consume URI 194

Forms of the EPC ... 138 195
18.2.3. Conformance of Hardware and Software Components that Translate Between EPC Forms140 196
18.3. Conformance of Human Readable Forms of the EPC and of EPC Memory Bank Contents140 197

Appendix A Character Set for Alphanumeric Serial Numbers .. 141 198

Appendix B Glossary (non-normative) ... 143 199

 EPC Tag Data Standard

Jan-2014, Version 1.8 Copyright ©2005- 2014 GS1 AISBL, All Rights Reserved. Page 8 of 225

Appendix C References ... 148 200

Appendix D Extensible Bit Vectors ... 148 201

Appendix E (non-normative) Examples: EPC Encoding and Decoding 149 202
E.1 Encoding a Serialized Global Trade Item Number (SGTIN) to SGTIN-96 150 203
E.2 Decoding an SGTIN-96 to a Serialized Global Trade Item Number (SGTIN) 152 204
E.3 Summary Examples of All EPC Schemes .. 154 205

Appendix F Packed Objects ID Table for Data Format 9 ... 157 206
F.1 Tabular Format (non-normative) ... 157 207
F.2 Comma-Separated-Value (CSV) Format.. 166 208

Appendix G 6-Bit Alphanumeric Character Set .. 169 209

Appendix H (Intentionally Omitted) .. 171 210

Appendix I Packed Objects Structure ... 171 211
I.1 Overview ... 171 212
I.2 Overview of Packed Objects Documentation ... 171 213
I.3 High-Level Packed Objects Format Design ... 172 214
I.3.1 Overview ... 172 215
I.3.2 Descriptions of each section of a Packed Object’s structure ... 173 216
I.4 Format Flags section .. 175 217
I.4.1 Data Terminating Flag Pattern ... 176 218
I.4.2 Format Flag section starting bit patterns .. 176 219
I.4.3 IDLPO Format Flags ... 176 220
I.4.4 Patterns for use between Packed Objects ... 177 221
I.5 Object Info section ... 177 222
I.5.1 Object Info formats ... 178 223
I.5.1.1 IDLPO default Object Info format ... 178 224
I.5.1.2 IDLPO non-default Object Info format .. 179 225
I.5.1.3 IDMPO Object Info format .. 179 226
I.5.2 Length Information .. 180 227
I.5.3 General description of ID values .. 180 228
I.5.3.1 Application Indicator subsection ... 181 229
I.5.3.2 Full/Restricted Use bits ... 182 230
I.5.4 ID Values representation in an ID Value-list Packed Object .. 183 231
I.5.5 ID Values representation in an ID Map Packed Object .. 183 232
I.5.6 Optional Addendum subsection of the Object Info section... 183 233
I.5.6.1 Addendum “EditingOP” list (only in ID List Packed Objects) .. 184 234
I.5.6.2 Packed Objects containing an Addendum subsection ... 185 235
I.6 Secondary ID Bits section .. 185 236
I.7 Aux Format section ... 186 237
I.7.1 Support for No-Directory compaction methods .. 186 238
I.7.2 Support for the Packed-Object compaction method ... 187 239

 EPC Tag Data Standard

Jan-2014, Version 1.8 Copyright ©2005- 2014 GS1 AISBL, All Rights Reserved. Page 9 of 225

I.8 Data section .. 188 240
I.8.1 Known-length-Numerics subsection of the Data Section ... 188 241
I.8.2 Alphanumeric subsection of the Data section .. 189 242
I.8.2.1 A/N Header Bits .. 189 243
I.8.2.2 Dual-base Character-map encoding ... 189 244
I.8.2.3 Prefix and Suffix Run-Length encoding .. 190 245
I.8.2.4 Encoding into Binary Segments ... 191 246
I.8.2.5 Padding the last Byte .. 191 247
I.9 ID Map and Directory encoding options ... 192 248
I.9.1 ID Map Section structure .. 192 249
I.9.1.1 ID Map and ID Map bit field .. 193 250
I.9.1.2 Data/Directory and AuxMap indicator bits .. 194 251
I.9.1.3 Closing Flags bit(s) ... 194 252
I.9.2 Directory Packed Objects ... 194 253
I.9.2.1 ID Maps in a Directory IDMPO ... 194 254
I.9.2.2 Optional AuxMap Section (Directory IDMPOs only) ... 195 255
I.9.2.3 Usage as a Presence/Absence Directory ... 197 256
I.9.2.4 Usage as an Indexed Directory .. 197 257

Appendix J Packed Objects ID Tables ... 198 258
J.1 Packed Objects Data Format registration file structure .. 198 259
J.1.1 File Header section ... 199 260
J.1.2 Table Header section.. 200 261
J.1.3 ID Table section .. 201 262
J.2 Mandatory and Optional ID Table columns .. 201 263
J.2.1 IDvalue column (Mandatory) .. 201 264
J.2.2 OIDs and IDstring columns (Optional) .. 201 265
J.2.3 FormatString column (Optional) ... 203 266
J.2.4 Interp column (Optional) ... 203 267
J.3 Syntax of OIDs, IDstring, and FormatString Columns .. 204 268
J.3.1 Semantics for OIDs, IDString, and FormatString Columns .. 204 269
J.3.2 Formal Grammar for OIDs, IDString, and FormatString Columns 205 270
J.4 OID input/output representation ... 207 271
J.4.1 “ID Value OID” output representation ... 207 272

Appendix K Packed Objects Encoding tables ... 208 273

Appendix L Encoding Packed Objects (non-normative) ... 214 274

Appendix M Decoding Packed Objects (non-normative) ... 218 275
M.1 Overview ... 218 276
M.2 Decoding Alphanumeric data ... 219 277

Appendix N Acknowledgement of Contributors and Companies Opted-in during the 278
Creation of this Standard (Informative) ... 222 279

 EPC Tag Data Standard

Jan-2014, Version 1.8 Copyright ©2005- 2014 GS1 AISBL, All Rights Reserved. Page 10 of 225

List of Figures 280

Figure 1. Organization of the EPC Tag Data Standard ... 14 281
Figure 2. Example Visibility Data Stream .. 17 282
Figure 3. Illustration of GRAI Identifier Namespace .. 18 283
Figure 4. Illustration of EPC Identifier Namespace ... 19 284
Figure 5. Illustration of Relationship of GS1 Key and EPC Identifier Namespaces 20 285
Figure 6. EPCglobal Architecture Framework and EPC Structures Used at Each Level 23 286
Figure 7. Correspondence between SGTIN EPC URI and GS1 Element String 37 287
Figure 8. Correspondence between SSCC EPC URI and GS1 Element String 41 288
Figure 9. Correspondence between SGLN EPC URI without extension and GS1 Element String..... 43 289
Figure 10. Correspondence between SGLN EPC URI with extension and GS1 Element String.......... 43 290
Figure 11. Correspondence between GRAI EPC URI and GS1 Element String 45 291
Figure 12. Correspondence between GIAI EPC URI and GS1 Element String 46 292
Figure 13. Correspondence between GSRN EPC URI and GS1 Element String 47 293
Figure 14. Correspondence between GDTI EPC URI and GS1 Element String 49 294
Figure 15. Correspondence between CPI EPC URI and GS1 Element String 50 295
Figure 16. Gen 2 Tag Memory Map .. 56 296
Figure 17. Gen 2 Protocol Control (PC) Bits Memory Map ... 59 297
Figure 18. Illustration of EPC Tag URI and EPC Raw URI ... 67 298
Figure 19. Illustration of Filter Value Within EPC Tag URI .. 68 299
 300

List of Tables 301

Table 1. EPC Schemes and Corresponding GS1 Keys ... 22 302
Table 2. EPC Schemes and Where the Pure Identity Form is Defined ... 27 303
Table 3. Kinds of Data on a Gen 2 RFID Tag .. 55 304
Table 4. Gen 2 Memory Map .. 58 305
Table 5. Gen 2 Protocol Control (PC) Bits Memory Map ... 60 306
Table 6. SGTIN Filter Values ... 61 307
Table 7. SSCC Filter Values .. 62 308
Table 8. SGLN Filter Values ... 62 309
Table 9. GRAI Filter Values .. 62 310
Table 10. GIAI Filter Values ... 63 311
Table 11. GSRN Filter Values .. 63 312
Table 12. GDTI Filter Values .. 64 313
Table 13. Attribute Bit Assignments ... 66 314
Table 14. Control Information Fields .. 69 315
Table 15. EPC Binary Coding Schemes and Their Limitations .. 72 316
Table 16. EPC Binary Header Values .. 83 317
Table 17. SGTIN Partition Table .. 99 318
Table 18. SGTIN-96 Coding Table ... 99 319
Table 19. SGTIN-198 Coding Table ... 100 320

 EPC Tag Data Standard

Jan-2014, Version 1.8 Copyright ©2005- 2014 GS1 AISBL, All Rights Reserved. Page 11 of 225

Table 20. SSCC Partition Table ... 101 321
Table 21. SSCC-96 Coding Table .. 102 322
Table 22. SGLN Partition Table ... 103 323
Table 23. SGLN-96 Coding Table .. 103 324
Table 24. SGLN-195 Coding Table .. 104 325
Table 25. GRAI Partition Table .. 105 326
Table 26. GRAI-96 Coding Table ... 105 327
Table 27. GRAI-170 Coding Table ... 106 328
Table 28. GIAI-96 Partition Table ... 107 329
Table 29. GIAI-96 Coding Table ... 107 330
Table 30. GIAI-202 Partition Table ... 108 331
Table 31. GIAI-202 Coding Table ... 109 332
Table 32. GSRN Partition Table ... 110 333
Table 33. GSRN-96 Coding Table ... 110 334
Table 34. GDTI Partition Table ... 111 335
Table 35. GDTI-96 Coding Table ... 112 336
Table 36. GDTI-113 Coding Table ... 113 337
Table 37. GID-96 Coding Table ... 114 338
Table 38. ADI-var Coding Table ... 115 339
Table 39. CPI-96 Partition Table .. 116 340
Table 40. CPI-var Partition Table ... 116 341
Table 41. CPI-96 Coding Table .. 117 342
Table 42. CPI-var Coding Table ... 118 343
Table 43. Recipe to Fill In Gen 2 EPC Memory Bank from EPC Tag URI ... 119 344
Table 44. Recipe to Fill In Gen 2 EPC Memory Bank from EPC Raw URI .. 121 345
Table 45. Short TID format ... 124 346
Table 46. The Extended Tag Identification (XTID) format for the TID memory bank. Note that the 347

table above is fully filled in and that the actual amount of memory used, presence of a 348
segment, and address location of a segment depends on the XTID Header. 126 349

Table 47. The XTID header .. 127 350
Table 48. Optional Command Support XTID Word .. 128 351
Table 49. XTID Block Write and Block Erase Information .. 131 352
Table 50. XTID Block PermaLock and User Memory Information ... 132 353
Table 51. Characters Permitted in Alphanumeric Serial Numbers .. 143 354
Table 52. Characters Permitted in 6-bit Alphanumeric Fields .. 171 355
 356

357

 EPC Tag Data Standard

Jan-2014, Version 1.8 Copyright ©2005- 2014 GS1 AISBL, All Rights Reserved. Page 12 of 225

1. Introduction 358
The EPC Tag Data Standard defines the Electronic Product Code™, and also specifies the 359
memory contents of Gen 2 RFID Tags. In more detail, the Tag Data Standard covers two broad 360
areas: 361

• The specification of the Electronic Product Code, including its representation at various 362
levels of the EPCglobal Architecture and its correspondence to GS1 keys and other existing 363
codes. 364

• The specification of data that is carried on Gen 2 RFID tags, including the EPC, “user 365
memory” data, control information, and tag manufacture information. 366

The Electronic Product Code is a universal identifier for any physical object. It is used in 367
information systems that need to track or otherwise refer to physical objects. A very large subset 368
of applications that use the Electronic Product Code also rely upon RFID Tags as a data carrier. 369
For this reason, a large part of the Tag Data Standard is concerned with the encoding of 370
Electronic Product Codes onto RFID tags, along with defining the standards for other data apart 371
from the EPC that may be stored on a Gen 2 RFID tag. 372

Therefore, the two broad areas covered by the Tag Data Standard (the EPC and RFID) overlap in 373
the parts where the encoding of the EPC onto RFID tags is discussed. Nevertheless, it should 374
always be remembered that the EPC and RFID are not at all synonymous: EPC is an identifier, 375
and RFID is a data carrier. RFID tags contain other data besides EPC identifiers (and in some 376
applications may not carry an EPC identifier at all), and the EPC identifier exists in non-RFID 377
contexts (those non-RFID contexts including the URI form used within information systems, 378
printed human-readable EPC URIs, and EPC identifiers derived from bar code data following the 379
procedures in this standard). 380

2. Terminology and Typographical Conventions 381
Within this specification, the terms SHALL, SHALL NOT, SHOULD, SHOULD NOT, MAY, 382
NEED NOT, CAN, and CANNOT are to be interpreted as specified in Annex G of the ISO/IEC 383
Directives, Part 2, 2001, 4th edition [ISODir2]. When used in this way, these terms will always 384
be shown in ALL CAPS; when these words appear in ordinary typeface they are intended to have 385
their ordinary English meaning. 386

All sections of this document, with the exception of Section 1, are normative, except where 387
explicitly noted as non-normative. 388

The following typographical conventions are used throughout the document: 389

• ALL CAPS type is used for the special terms from [ISODir2] enumerated above. 390

• Monospace type is used for illustrations of identifiers and other character strings that exist 391
within information systems. 392

 Placeholders for changes that need to be made to this document prior to its reaching the final 393
stage of approved EPCglobal specification are prefixed by a rightward-facing arrowhead, as 394
this paragraph is. 395

 EPC Tag Data Standard

Jan-2014, Version 1.8 Copyright ©2005- 2014 GS1 AISBL, All Rights Reserved. Page 13 of 225

The term “Gen 2 RFID Tag” (or just “Gen 2 Tag”) as used in this specification refers to any 396
RFID tag that conforms to the EPCglobal UHF Class 1 Generation 2 Air Interface, Version 1.2.0 397
or later [UHFC1G2], as well as any RFID tag that conforms to another air interface standard that 398
shares the same memory map. The latter includes specifications currently under development 399
within EPCglobal such as the HF Class 1 Generation 2 Air Interface. 400

Bitwise addresses within Gen 2 Tag memory banks are indicated using hexadecimal numerals 401
ending with a subscript “h”; for example, 20h denotes bit address 20 hexadecimal (32 decimal). 402

3. Overview of Tag Data Standards 403
This section provides an overview of the Tag Data Standard and how the parts fit together. 404

The Tag Data Standard covers two broad areas: 405

• The specification of the Electronic Product Code, including its representation at various 406
levels of the EPCglobal Architecture and its correspondence to GS1 keys and other existing 407
codes. 408

• The specification of data that is carried on Gen 2 RFID tags, including the EPC, “user 409
memory” data, control information, and tag manufacture information. 410

The Electronic Product Code is a universal identifier for any physical object. It is used in 411
information systems that need to track or otherwise refer to physical objects. Within computer 412
systems, including electronic documents, databases, and electronic messages, the EPC takes the 413
form of an Internet Uniform Resource Identifier (URI). This is true regardless of whether the 414
EPC was originally read from an RFID tag or some other kind of data carrier. This URI is called 415
the “Pure Identity EPC URI.” The following is an example of a Pure Identity EPC URI: 416
urn:epc:id:sgtin:0614141.112345.400 417

A very large subset of applications that use the Electronic Product Code also rely upon RFID 418
Tags as a data carrier. RFID is often a very appropriate data carrier technology to use for 419
applications involving visibility of physical objects, because RFID permits data to be physically 420
attached to an object such that reading the data is minimally invasive to material handling 421
processes. For this reason, a large part of the Tag Data Standard is concerned with the encoding 422
of Electronic Product Codes onto RFID tags, along with defining the standards for other data 423
apart from the EPC that may be stored on a Gen 2 RFID tag. Owing to memory limitations of 424
RFID tags, the EPC is not stored in URI form on the tag, but is instead encoded into a compact 425
binary representation. This is called the “EPC Binary Encoding.” 426

Therefore, the two broad areas covered by the Tag Data Standard (the EPC and RFID) overlap in 427
the parts where the encoding of the EPC onto RFID tags is discussed. Nevertheless, it should 428
always be remembered that the EPC and RFID are not at all synonymous: EPC is an identifier, 429
and RFID is a data carrier. RFID tags contain other data besides EPC identifiers (and in some 430
applications may not carry an EPC identifier at all), and the EPC identifier exists in non-RFID 431
contexts (those non-RFID contexts currently including the URI form used within information 432
systems, printed human-readable EPC URIs, and EPC identifiers derived from bar code data 433
following the procedures in this standard). 434

The term “Electronic Product Code” (or “EPC”) is used when referring to the EPC regardless of 435
the concrete form used to represent it. The term “Pure Identity EPC URI” is used to refer 436

 EPC Tag Data Standard

Jan-2014, Version 1.8 Copyright ©2005- 2014 GS1 AISBL, All Rights Reserved. Page 14 of 225

specifically to the text form the EPC takes within computer systems, including electronic 437
documents, databases, and electronic messages. The term “EPC Binary Encoding” is used 438
specifically to refer to the form the EPC takes within the memory of RFID tags. 439

The following diagram illustrates the parts of the Tag Data Standard and how they fit together. 440
(The colors in the diagram refer to the types of data that may be stored on RFID tags, explained 441
further in Section 9.1.) 442

 443
Figure 1. Organization of the EPC Tag Data Standard 444

EPC “pure identity”
URI (Section 6)

EPC “tag URI”
(Section 12)

EPC Bank
contents
(Section
 14.5.10)

Gen 2 RFID Tag (specified in [UHFC1G2])

TID Bank
contents

(Section 16)

User Memory
Bank contents
(Section 17)

GS1 keys
(specified in
[GS1GS10.0]

)

Reserved Bank
contents

(specified in
[UHFC1G2])

Filter Values
(Section 10)

Attribute Bits
(Section 11)

EPC binary encoding
(Section 14)

Correspondence
specified in

Section 6.3.10

Independent of RFID

RFID-Specific

= Business Data

= Control Info

= Tag Manufacture Info

Key

GS1 AIs
(specified in
[GS1GS10.0]

)

+ Other Data

= Biz Data + Control

 EPC Tag Data Standard

Jan-2014, Version 1.8 Copyright ©2005- 2014 GS1 AISBL, All Rights Reserved. Page 15 of 225

The first few sections define those aspects of the Electronic Product Code that are independent 445
from RFID. 446

Section 4 provides an overview of the Electronic Product Code (EPC) and how it relates to other 447
EPCglobal standards and the GS1 General Specifications. 448

Section 6 specifies the Pure Identity EPC URI form of the EPC. This is a textual form of the 449
EPC, and is recommended for use in business applications and business documents as a universal 450
identifier for any physical object for which visibility information is kept. In particular, this form 451
is what is used as the “what” dimension of visibility data in the EPC Information Services 452
(EPCIS) specification, and is also available as an output from the Application Level Events 453
(ALE) interface. 454

Section 7 specifies the correspondence between Pure Identity EPC URIs as defined in Section 6 455
and bar code element strings as defined in the GS1 General Specifications. 456

Section 7.8 specifies the Pure Identity Pattern URI, which is a syntax for representing sets of 457
related EPCs, such as all EPCs for a given trade item regardless of serial number. 458

The remaining sections address topics that are specific to RFID, including RFID-specific forms 459
of the EPC as well as other data apart from the EPC that may be stored on Gen 2 RFID tags. 460

Section 9 provides general information about the memory structure of Gen 2 RFID Tags. 461

Sections 10 and 11 specify “control” information that is stored in the EPC memory bank of 462
Gen 2 tags along with a binary-encoded form of the EPC (EPC Binary Encoding). Control 463
information is used by RFID data capture applications to guide the data capture process by 464
providing hints about what kind of object the tag is affixed to. Control information is not part of 465
the EPC, and does comprise any part of the unique identity of a tagged object. There are two 466
kinds of control information specified: the “filter value” (Section 10) that makes it easier to read 467
desired tags in an environment where there may be other tags present, such as reading a pallet tag 468
in the presence of a large number of item-level tags, and “attribute bits” (Section 11) that provide 469
additional special attribute information such as alerting to the presence of hazardous material. 470
The same “attribute bits” are available regardless of what kind of EPC is used, whereas the 471
available “filter values” are different depending on the type of EPC (and with certain types of 472
EPCs, no filter value is available at all). 473

Section 12 specifies the “tag” Uniform Resource Identifiers, which is a compact string 474
representation for the entire data content of the EPC memory bank of Gen 2 RFID Tags. This 475
data content includes the EPC together with “control” information as defined in Sections 10 476
and 11. In the “tag” URI, the EPC content of the EPC memory bank is represented in a form 477
similar to the Pure Identity EPC URI. Unlike the Pure Identity EPC URI, however, the “tag” 478
URI also includes the control information content of the EPC memory bank. The “tag” URI 479
form is recommended for use in capture applications that need to read control information in 480
order to capture data correctly, or that need to write the full contents of the EPC memory bank. 481
“Tag” URIs are used in the Application Level Events (ALE) interface, both as an input (when 482
writing tags) and as an output (when reading tags). 483

Section 13 specifies the EPC Tag Pattern URI, which is a syntax for representing sets of related 484
RFID tags based on their EPC content, such as all tags containing EPCs for a given range of 485
serial numbers for a given trade item. 486

 EPC Tag Data Standard

Jan-2014, Version 1.8 Copyright ©2005- 2014 GS1 AISBL, All Rights Reserved. Page 16 of 225

Sections 14 and 14.5.10 specify the contents of the EPC memory bank of a Gen 2 RFID tag at 487
the bit level. Section 14 specifies how to translate between the the “tag” URI and the EPC 488
Binary Encoding. The binary encoding is a bit-level representation of what is actually stored on 489
the tag, and is also what is carried via the Low Level Reader Protocol (LLRP) interface. 490
Section 14.5.10 specifies how this binary encoding is combined with attribute bits and other 491
control information in the EPC memory bank. 492

Section 16 specifies the binary encoding of the TID memory bank of Gen 2 RFID Tags. 493

Section 17 specifies the binary encoding of the User memory bank of Gen 2 RFID Tags. 494

4. The Electronic Product Code: A Universal Identifier for 495
Physical Objects 496

The Electronic Product Code is designed to facilitiate business processes and applications that 497
need to manipulate visibility data – data about observations of physical objects. The EPC is a 498
universal identifier that provides a unique identity for any physical object. The EPC is designed 499
to be unique across all physical objects in the world, over all time, and across all categories of 500
physical objects. It is expressly intended for use by business applications that need to track all 501
categories of physical objects, whatever they may be. 502

By contrast, seven GS1 identification keys defined in the GS1 General Specifications 503
[GS1GS10.0] can identify categories of objects (GTIN), unique objects (SSCC, GLN, GIAI, 504
GSRN), or a hybrid (GRAI, GDTI) that may identify either categories or unique objects 505
depending on the absence or presence of a serial number. (Two other keys, GINC and GSIN, 506
identify logical groupings, not physical objects.) The GTIN, as the only category identification 507
key, requires a separate serial number to uniquely identify an object but that serial number is not 508
considered part of the identification key. 509

There is a well-defined correspondence between EPCs and GS1 keys. This allows any physical 510
object that is already identified by a GS1 key (or GS1 key + serial number combination) to be 511
used in an EPC context where any category of physical object may be observed. Likewise, it 512
allows EPC data captured in a broad visibility context to be correlated with other business data 513
that is specific to the category of object involved and which uses GS1 keys. 514

The remainder of this section elaborates on these points. 515

4.1. The Need for a Universal Identifier: an Example 516
The following example illustrates how visibility data arises, and the role the EPC plays as a 517
unique identifier for any physical object. In this example, there is a storage room in a hospital 518
that holds radioactive samples, among other things. The hospital safety officer needs to track 519
what things have been in the storage room and for how long, in order to ensure that exposure is 520
kept within acceptable limits. Each physical object that might enter the storage room is given a 521
unique Electronic Product Code, which is encoded onto an RFID Tag affixed to the object. An 522
RFID reader positioned at the storage room door generates visibility data as objects enter and 523
exit the room, as illustrated below. 524

 EPC Tag Data Standard

Jan-2014, Version 1.8 Copyright ©2005- 2014 GS1 AISBL, All Rights Reserved. Page 17 of 225

 525
Figure 2. Example Visibility Data Stream 526

As the illustration shows, the data stream of interest to the safety officer is a series of events, 527
each identifying a specific physical object and when it entered or exited the room. The unique 528
EPC for each object is an identifier that may be used to drive the business process. In this 529
example, the EPC (in Pure Identity EPC URI form) would be a primary key of a database that 530
tracks the accumulated exposure for each physical object; each entry/exit event pair for a given 531
object would be used to update the accumulated exposure database. 532

This example illustrates how the EPC is a single, universal identifier for any physical object. 533
The items being tracked here include all kinds of things: trade items, reusable transports, fixed 534
assets, service relations, documents, among others that might occur. By using the EPC, the 535
application can use a single identifier to refer to any physical object, and it is not necessary to 536
make a special case for each category of thing. 537

Visibility Data Stream at Storage Room Entrance
Time In /

Out
EPC Comment

8:23am In urn:epc:id:sgtin:0614141.012345.62852 10cc Syringe
#62852 (trade item)

8:52am In urn:epc:id:grai:0614141.54321.2528 Pharma Tote #2528
(reusable transport)

8:59am In urn:epc:id:sgtin:0614141.012345.1542 10cc Syringe #1542
(trade item)

9:02am Out urn:epc:id:giai:0614141.17320508 Infusion Pump #52
(fixed asset)

9:32am In urn:epc:id:gsrn:0614141.0000010253 Nurse Jones
(service relation)

9:42am Out urn:epc:id:gsrn:0614141.0000010253 Nurse Jones
(service relation)

9:52am In urn:epc:id:gdti:0614141.00001.1618034 Patient Smith’s
chart (document)

RFID Reader

Hospital

Storage Room

 EPC Tag Data Standard

Jan-2014, Version 1.8 Copyright ©2005- 2014 GS1 AISBL, All Rights Reserved. Page 18 of 225

4.2. Use of Identifiers in a Business Data Context 538
Generally speaking, an identifier is a member of set (or “namespace”) of strings (names), such 539
that each identifier is associated with a specific thing or concept in the real world. Identifiers are 540
used within information systems to refer to the real world thing or concept in question. An 541
identifier may occur in an electronic record or file, in a database, in an electronic message, or any 542
other data context. In any given context, the producer and consumer must agree on which 543
namespace of identifiers is to be used; within that context, any identifier belonging to that 544
namespace may be used. 545

The keys defined in the GS1 General Specifications [GS1GS10.0] are each a namespace of 546
identifiers for a particular category of real-world entity. For example, the Global Returnable 547
Asset Identifier (GRAI) is a key that is used to identify returnable assets, such as plastic totes and 548
pallet skids. The set of GRAI codes can be thought of as identifiers for the members of the set 549
“all returnable assets.” A GRAI code may be used in a context where only returnable assets are 550
expected; e.g., in a rental agreement from a moving services company that rents returnable 551
plastic crates to customers to pack during a move. This is illustrated below. 552

 553
Figure 3. Illustration of GRAI Identifier Namespace 554

The upper part of the figure illustrates the GRAI identifier namespace. The lower part of the 555
figure shows how a GRAI might be used in the context of a rental agreement, where only a 556
GRAI is expected. 557

GRAI = 0614141000234AB23 (100 liter tote #AB23)

GRAI = 0614141000517XY67 (500 liter tote #XY67)

GRAI = 0614141000234AB24 (100 liter tote #AB24)

GRAIs: All
returnable assets

<RentalRecord>
 <Items>
 <grai>0614141000234AB23</grai>
 <grai>0614141000517XY67</grai>
 …

Establishes the context as returnable assets

Therefore, any GRAI could go here
(and nothing else)

 EPC Tag Data Standard

Jan-2014, Version 1.8 Copyright ©2005- 2014 GS1 AISBL, All Rights Reserved. Page 19 of 225

 558
Figure 4. Illustration of EPC Identifier Namespace 559

In contrast, the EPC namespace is a space of identifiers for any physical object. The set of EPCs 560
can be thought of as identifiers for the members of the set “all physical objects.” EPCs are used 561
in contexts where any type of physical object may appear, such as in the set of observations 562
arising in the hospital storage room example above. Note that the EPC URI as illustrated in 563
Figure 4 includes strings such as sgtin, grai, and so on as part of the EPC URI identifier. 564
This is in contrast to GS1 Keys, where no such indication is part of the key itself (instead, this is 565
indicated outside of the key, such as in the XML element name <grai> in the example in 566
Figure 3, or in the Application Identifier (AI) that accompanies a GS1 Key in a GS1 Element 567
String). 568

4.3. Relationship Between EPCs and GS1 Keys 569
There is a well-defined relationship between EPCs and GS1 keys. For each GS1 key that 570
denotes an individual physical object (as opposed to a class), there is a corresponding EPC. This 571
correspondence is formally defined by conversion rules specified in Section 7, which define how 572
to map a GS1 key to the corresponding EPC value and vice versa. The well-defined 573
correspondence between GS1 keys and EPCs allows for seamless migration of data between GS1 574
key and EPC contexts as necessary. 575

EPCs:
All physical objects

EPC = urn:epc:id:sgtin:0614141.012345.62852
(10cc Syringe #62852 – trade item)

EPC = urn:epc:id:grai:0614141.54321.2528
(Pharma Tote #2528 – reusable asset)

<EPCISDocument>
 <ObjectEvent>
 <epcList>

 <epc>urn:epc:id:sgtin:0614141.012345.62852</epc>
 <epc>urn:epc:id:grai:0614141.54321.2528</epc>
 …

Establishes the context as all physical objects

Therefore, any EPC could go here

 EPC Tag Data Standard

Jan-2014, Version 1.8 Copyright ©2005- 2014 GS1 AISBL, All Rights Reserved. Page 20 of 225

 576
Figure 5. Illustration of Relationship of GS1 Key and EPC Identifier Namespaces 577

Not every GS1 key corresponds to an EPC, nor vice versa. Specifically: 578

• A Global Trade Item Number (GTIN) by itself does not correspond to an EPC, because a 579
GTIN identifies a class of trade items, not an individual trade item. The combination of a 580

GIAIs: All fixed assets

SSCCs: All logistics loads

EPCs: all physical
objects

GTINs: All trade item
classes (not individuals)

+ all serial numbers

GRAIs: All
reusable asset

classes and
individuals

+ all serial numbers

(Not shown: SGLN, GDTI, GSRN,
GID, and USDoD identifiers)

 EPC Tag Data Standard

Jan-2014, Version 1.8 Copyright ©2005- 2014 GS1 AISBL, All Rights Reserved. Page 21 of 225

GTIN and a unique serial number, however, does correspond to an EPC. This combination is 581
called a Serialized Global Trade Item Number, or SGTIN. The GS1 General Specifications 582
do not define the SGTIN as a GS1 key. 583

• In the GS1 General Specifications, the Global Returnable Asset Identifier (GRAI) can be 584
used to identify either a class of returnable assets, or an individual returnable asset, 585
depending on whether the optional serial number is included. Only the form that includes a 586
serial number, and thus identifies an individual, has a corresponding EPC. The same is true 587
for the Global Document Type Identifier (GDTI). 588

• There is an EPC corresponding to each Global Location Number (GLN), and there is also an 589
EPC corresponding to each combination of a GLN with an extension component. 590
Collectively, these EPCs are referred to as SGLNs.1 591

• EPCs include identifiers for which there is no corresponding GS1 key. These include the 592
General Identifier and the US Department of Defense identifier. 593

The following table summarizes the EPC schemes defined in this specification and their 594
correspondence to GS1 Keys. 595

EPC Scheme Tag Encodings Corresponding GS1 Key Typical Use
sgtin sgtin-96

sgtin-198
GTIN key (plus added serial
number)

Trade item

sscc sscc-96 SSCC Pallet load or other
logistics unit load

sgln sgln-96
sgln-195

GLN key (with or without
additional extension)

Location

grai grai-96
grai-170

GRAI (serial number
mandatory)

Returnable/reusable
asset

giai giai-96
giai-202

GIAI Fixed asset

gdti gdti-96
gdti-113

GDTI (serial number
mandatory)

Document

gsrn gsrn-96 GSRN Service relation
(e.g., loyalty card)

gid gid-96 [none] Unspecified

usdod usdod-96 [none] US Dept of Defense
supply chain

1 Note that in this context, the letter “S” does not stand for “serialized” as it does in SGTIN. See Section 6.3.3 for an
explanation.

 EPC Tag Data Standard

Jan-2014, Version 1.8 Copyright ©2005- 2014 GS1 AISBL, All Rights Reserved. Page 22 of 225

EPC Scheme Tag Encodings Corresponding GS1 Key Typical Use
adi adi-var [none] Aerospace and

defense – aircraft
and other parts and
items

cpi cpi-96
cpi-var

[none] Technical industries
(e.g. automotive) -
components and
parts

Table 1. EPC Schemes and Corresponding GS1 Keys 596

4.4. Use of the EPC in EPCglobal Architecture Framework 597
The EPCglobal Architecture Framework [EPCAF] is a collection of hardware, software, and data 598
standards, together with shared network services that can be operated by EPCglobal, its delegates 599
or third party providers in the marketplace, all in service of a common goal of enhancing 600
business flows and computer applications through the use of Electronic Product Codes (EPCs). 601
The EPCglobal Architecture Framework includes software standards at various levels of 602
abstraction, from low-level interfaces to RFID reader devices all the way up to the business 603
application level. 604

The EPC and related structures specified herein are intended for use at different levels within the 605
EPCglobal architecture framework. Specifically: 606

• Pure Identity EPC URI The primary representation of an Electronic Product Code is as an 607
Internet Uniform Resource Identifier (URI) called the Pure Identity EPC URI. The Pure 608
Identity EPC URI is the preferred way to denote a specific physical object within business 609
applications. The pure identity URI may also be used at the data capture level when the EPC 610
is to be read from an RFID tag or other data carrier, in a situation where the additional 611
“control” information present on an RFID tag is not needed. 612

• EPC Tag URI The EPC memory bank of a Gen 2 RFID Tag contains the EPC plus 613
additional “control information” that is used to guide the process of data capture from RFID 614
tags. The EPC Tag URI is a URI string that denotes a specific EPC together with specific 615
settings for the control information found in the EPC memory bank. In other words, the EPC 616
Tag URI is a text equivalent of the entire EPC memory bank contents. The EPC Tag URI is 617
typically used at the data capture level when reading from an RFID tag in a situation where 618
the control information is of interest to the capturing application. It is also used when writing 619
the EPC memory bank of an RFID tag, in order to fully specify the contents to be written. 620

• Binary Encoding The EPC memory bank of a Gen 2 RFID Tag actually contains a 621
compressed encoding of the EPC and additional “control information” in a compact binary 622
form. There is a 1-to-1 translation between EPC Tag URIs and the binary contents of a Gen 623
2 RFID Tag. Normally, the binary encoding is only encountered at a very low level of 624
software or hardware, and is translated to the EPC Tag URI or Pure Identity EPC URI form 625
before being presented to application logic. 626

 EPC Tag Data Standard

Jan-2014, Version 1.8 Copyright ©2005- 2014 GS1 AISBL, All Rights Reserved. Page 23 of 225

Note that the Pure Identity EPC URI is independent of RFID, while the EPC Tag URI and the 627
Binary Encoding are specific to Gen 2 RFID Tags because they include RFID-specific “control 628
information” in addition to the unique EPC identifier. 629

The figure below illustrates where these structures normally occur in relation to the layers of the 630
EPCglobal Architecture Framework. 631

 632
Figure 6. EPCglobal Architecture Framework and EPC Structures Used at Each Level 633

5. Common Grammar Elements 634
The syntax of various URI forms defined herein is specified via BNF grammars. The following 635
grammar elements are used throughout this specification. 636
NumericComponent ::= ZeroComponent | NonZeroComponent 637
ZeroComponent ::= “0” 638
NonZeroComponent ::= NonZeroDigit Digit* 639

RFID
Reader

Business
Application

Data Capture
(RFID-

specific)

Business
Application

(RFID-
independent)

Filtering &
Collection

Capturing
Application

ALE

EPCIS

Reader Protocol
(LLRP)

Gen 2
RFID Tag

Pure Identity EPC URI
urn:epc:id:sgtin:0614141.112345.400

Pure Identity EPC URI (read only)
urn:epc:id:sgtin:0614141.112345.400

or

EPC Tag URI (read / write)
urn:epc:tag:sgtin-96:3.0614141.112345.400

Binary Encoding
00110000011101000…

Gen 2 Air Interface

Filtering &
Collection

RFID
Reader

“Smart reader”

Binary Encoding
00110000011101000…

Binary Encoding
00110000011101000…

 EPC Tag Data Standard

Jan-2014, Version 1.8 Copyright ©2005- 2014 GS1 AISBL, All Rights Reserved. Page 24 of 225

PaddedNumericComponent ::= Digit+ 640
PaddedNumericComponentOrEmpty ::= Digit* 641
Digit ::= “0” | NonZeroDigit 642
NonZeroDigit ::= “1” | “2” | “3” | “4” 643
 | “5” | “6” | “7” | “8” | “9” 644
UpperAlpha ::= “A” | “B” | “C” | “D” | “E” | “F” | “G” 645
 | “H” | “I” | “J” | “K” | “L” | “M” | “N” 646
 | “O” | “P” | “Q” | “R” | “S” | “T” | “U” 647
 | “V” | “W” | “X” | “Y” | “Z” 648
LowerAlpha ::= “a” | “b” | “c” | “d” | “e” | “f” | “g” 649
 | “h” | “i” | “j” | “k” | “l” | “m” | “n” 650
 | “o” | “p” | “q” | “r” | “s” | “t” | “u” 651
 | “v” | “w” | “x” | “y” | “z” 652
OtherChar ::= “!” | “’” | “(“ | “)“ | “*” | “+” | “,” | “-” 653
 | “.” | “:” | “;” | “=” | “_” 654
UpperHexChar ::= Digit | “A” | “B” | “C” | “D” | “E” | “F” 655
HexComponent ::= UpperHexChar+ 656
HexComponentOrEmpty ::= UpperHexChar* 657
Escape ::= “%” HexChar HexChar 658
HexChar ::= UpperHexChar | “a” | “b” | “c” | “d” | “e” | “f” 659
GS3A3Char ::= Digit | UpperAlpha | LowerAlpha | OtherChar 660
 | Escape 661
GS3A3Component ::= GS3A3Char+ 662
CPRefChar ::= Digit | UpperAlpha | “-” | “%2F” | “%23” 663
CPRefComponent ::= CPRefChar+ 664

The syntactic construct GS3A3Component is used to represent fields of GS1 codes that permit 665
alphanumeric and other characters as specified in Figure 7.12-1 of the GS1 General 666
Specifications (see Appendix A). Owing to restrictions on URN syntax as defined by 667
[RFC2141], not all characters permitted in the GS1 General Specifications may be represented 668
directly in a URN. Specifically, the characters “ (double quote), % (percent), & (ampersand), / 669
(forward slash), < (less than), > (greater than), and ? (question mark) are permitted in the GS1 670
General Specifications but may not be included directly in a URN. To represent one of these 671
characters in a URN, escape notation must be used in which the character is represented by a 672
percent sign, followed by two hexadecimal digits that give the ASCII character code for the 673
character. 674

The syntactic construct CPRefComponent is used to represent fields that permit upper-case 675
alphanumeric and the characters hyphen, forward slash, and pound / number sign. Owing to 676
restrictions on URN syntax as defined by [RFC2141], not all of these characters may be 677
represented directly in a URN. Specifically, the characters # (pound / number sign) and / 678

 EPC Tag Data Standard

Jan-2014, Version 1.8 Copyright ©2005- 2014 GS1 AISBL, All Rights Reserved. Page 25 of 225

(forward slash) may not be included directly in a URN. To represent one of these characters in a 679
URN, escape notation must be used in which the character is represented by a percent sign, 680
followed by two hexadecimal digits that give the ASCII character code for the character. 681

6. EPC URI 682
This section specifies the “pure identity URI” form of the EPC, or simply the “EPC URI.” The 683
EPC URI is the preferred way within an information system to denote a specific physical object. 684

The EPC URI is a string having the following form: 685
urn:epc:id:scheme:component1.component2.… 686

where scheme names an EPC scheme, and component1, component2, and following parts 687
are the remainder of the EPC whose precise form depends on which EPC scheme is used. The 688
available EPC schemes are specified below in Table 2 in Section 6.3. 689

An example of a specific EPC URI is the following, where the scheme is sgtin: 690
urn:epc:id:sgtin:0614141.112345.400 691

Each EPC scheme provides a namespace of identifiers that can be used to identify physical 692
objects of a particular type. Collectively, the EPC URIs from all schemes are unique identifiers 693
for any type of physical object. 694

6.1. Use of the EPC URI 695
The EPC URI is the preferred way within an information system to denote a specific physical 696
object. 697

The structure of the EPC URI guarantees worldwide uniqueness of the EPC across all types of 698
physical objects and applications. In order to preserve worldwide uniqueness, each EPC URI 699
must be used in its entirety when a unique identifier is called for, and not broken into constituent 700
parts nor the urn:epc:id: prefix abbreviated or dropped. 701

When asking the question “do these two data structures refer to the same physical object?”, 702
where each data structure uses an EPC URI to refer to a physical object, the question may be 703
answered simply by comparing the full EPC URI strings as specified in [RFC3986], Section 6.2. 704
In most cases, the “simple string comparison” method sufficies, though if a URI contains 705
percent-encoding triplets the hexadecimal digits may require case normalization as described in 706
[RFC3986], Section 6.2.2.1. The construction of the EPC URI guarantees uniqueness across all 707
categories of objects, provided that the URI is used in its entirety. 708

In other situations, applications may wish to exploit the internal structure of an EPC URI for 709
purposes of filtering, selection, or distribution. For example, an application may wish to query a 710
database for all records pertaining to instances of a specific product identified by a GTIN. This 711
amounts to querying for all EPCs whose GS1 Company Prefix and item reference components 712
match a given value, disregarding the serial number component. Another example is found in 713
the Object Name Service (ONS) [ONS1.0.1], which uses the first component of an EPC to 714
delegate a query to a “local ONS” operated by an individual company. This allows the ONS 715
system to scale in a way that would be quite difficult if all ONS records were stored in a flat 716
database maintained by a single organization. 717

 EPC Tag Data Standard

Jan-2014, Version 1.8 Copyright ©2005- 2014 GS1 AISBL, All Rights Reserved. Page 26 of 225

While the internal structure of the EPC may be exploited for filtering, selection, and distribution 718
as illustrated above, it is essential that the EPC URI be used in its entirety when used as a unique 719
identifier. 720

6.2. Assignment of EPCs to Physical Objects 721
The act of allocating a new EPC and associating it with a specific physical object is called 722
“commissioning.” It is the responsibility of applications and business processes that commission 723
EPCs to ensure that the same EPC is never assigned to two different physical objects; that is, to 724
ensure that commissioned EPCs are unique. Typically, commissioning applications will make 725
use of databases that record which EPCs have already been commissioned and which are still 726
available. For example, in an application that commissions SGTINs by assigning serial numbers 727
sequentially, such a database might record the last serial number used for each base GTIN. 728

Because visibility data and other business data that refers to EPCs may continue to exist long 729
after a physical object ceases to exist, an EPC is ideally never reused to refer to a different 730
physical object, even if the reuse takes place after the original object ceases to exist. There are 731
certain situations, however, in which this is not possible; some of these are noted below. 732
Therefore, applications that process historical data using EPCs should be prepared for the 733
possibility that an EPC may be reused over time to refer to different physical objects, unless the 734
application is known to operate in an environment where such reuse is prevented. 735

Seven of the EPC schemes specified herein correspond to GS1 keys, and so EPCs from those 736
schemes are used to identify physical objects that have a corresponding GS1 key. When 737
assigning these types of EPCs to physical objects, all relevant GS1 rules must be followed in 738
addition to the rules specified herein. This includes the GS1 General Specifications 739
[GS1GS10.0], the GTIN Allocation Rules, and so on. In particular, an EPC of this kind may 740
only be commissioned by the licensee of the GS1 Company Prefix that is part of the EPC, or has 741
been delegated the authority to do so by the GS1 Company Prefix licensee. 742

6.3. EPC URI Syntax 743
This section specifies the syntax of an EPC URI. 744

The formal grammar for the EPC URI is as follows: 745
EPC-URI ::= SGTIN-URI | SSCC-URI | SGLN-URI 746
 | GRAI-URI | GIAI-URI | GSRN-URI | GDTI-URI 747
 | GID-URI | DOD-URI | ADI-URI | CPI-URI 748

where the various alternatives on the right hand side are specified in the sections that follow. 749

Each EPC URI scheme is specified in one of the following subsections, as follows: 750

EPC Scheme Specified In Corresponding GS1 Key Typical Use
sgtin Section 6.3.1 GTIN (with added serial

number)
Trade item

sscc Section 6.3.2 SSCC Logistics unit

 EPC Tag Data Standard

Jan-2014, Version 1.8 Copyright ©2005- 2014 GS1 AISBL, All Rights Reserved. Page 27 of 225

EPC Scheme Specified In Corresponding GS1 Key Typical Use
sgln Section 6.3.3 GLN (with or without

additional extension)
Location2

grai Section 6.3.4 GRAI (serial number
mandatory)

Returnable asset

giai Section 6.3.5 GIAI Fixed asset

gdti Section 6.3.6 GDTI (serial number
mandatory)

Document

gsrn Section 6.3.7 GSRN Service relation
(e.g., loyalty card)

gid Section 6.3.8 [none] Unspecified

usdod Section 6.3.9 [none] US Dept of Defense
supply chain

adi Section 6.3.10 [none] Aerospace and
Defense sector for
unique identification
of aircraft and other
parts and items

cpi Section 6.3.11 [none] Technical industries
(e.g. automotive
sector) for unique
identification of
parts and
components

Table 2. EPC Schemes and Where the Pure Identity Form is Defined 751

6.3.1. Serialized Global Trade Item Number (SGTIN) 752
The Serialized Global Trade Item Number EPC scheme is used to assign a unique identity to an 753
instance of a trade item, such as a specific instance of a product or SKU. 754

General syntax: 755
urn:epc:id:sgtin:CompanyPrefix.ItemReference.SerialNumber 756

Example: 757
urn:epc:id:sgtin:0614141.112345.400 758

Grammar: 759
SGTIN-URI ::= “urn:epc:id:sgtin:” SGTINURIBody 760

2 While GLNs may be used to identify both locations and parties, the SGLN corresponds only to AI 414, which
[GS1GS10.0] specifies is to be used to identify locations, and not parties.

 EPC Tag Data Standard

Jan-2014, Version 1.8 Copyright ©2005- 2014 GS1 AISBL, All Rights Reserved. Page 28 of 225

SGTINURIBody ::= 2*(PaddedNumericComponent “.”) GS3A3Component 761

The number of characters in the two PaddedNumericComponent fields must total 13 (not 762
including any of the dot characters). 763

The Serial Number field of the SGTIN-URI is expressed as a GS3A3Component, which 764
permits the representation of all characters permitted in the Application Identifier 21 Serial 765
Number according to the GS1 General Specifications.3 SGTIN-URIs that are derived from 96-766
bit tag encodings, however, will have Serial Numbers that consist only of digits and which have 767
no leading zeros (unless the entire serial number consists of a single zero digit). These 768
limitations are described in the encoding procedures, and in Section 12.3.1. 769

The SGTIN consists of the following elements: 770

• The GS1 Company Prefix, assigned by GS1 to a managing entity or its delegates. This is the 771
same as the GS1 Company Prefix digits within a GS1 GTIN key. See Section 7.1.2 for the 772
case of a GTIN-8. 773

• The Item Reference, assigned by the managing entity to a particular object class. The Item 774
Reference as it appears in the EPC URI is derived from the GTIN by concatenating the 775
Indicator Digit of the GTIN (or a zero pad character, if the EPC URI is derived from a GTIN-776
8, GTIN-12, or GTIN-13) and the Item Reference digits, and treating the result as a single 777
numeric string. See Section 7.1.2 for the case of a GTIN-8. 778

• The Serial Number, assigned by the managing entity to an individual object. The serial 779
number is not part of the GTIN, but is formally a part of the SGTIN. 780

6.3.2. Serial Shipping Container Code (SSCC) 781
The Serial Shipping Container Code EPC scheme is used to assign a unique identity to a logistics 782
handling unit, such as a the aggregate contents of a shipping container or a pallet load. 783

General syntax: 784
urn:epc:id:sscc:CompanyPrefix.SerialReference 785

Example: 786
urn:epc:id:sscc:0614141.1234567890 787

Grammar: 788
SSCC-URI ::= “urn:epc:id:sscc:” SSCCURIBody 789
SSCCURIBody ::= PaddedNumericComponent “.” 790
PaddedNumericComponent 791

The number of characters in the two PaddedNumericComponent fields must total 17 (not 792
including any of the dot characters). 793

The SSCC consists of the following elements: 794

3 As specified in Section 7.1, the serial number in the SGTIN is currently defined to be equivalent to AI 21 in the
GS1 General Specifications. This equivalence is currently under discussion within GS1, and may be revised in
future versions of the EPC Tag Data Standard.

 EPC Tag Data Standard

Jan-2014, Version 1.8 Copyright ©2005- 2014 GS1 AISBL, All Rights Reserved. Page 29 of 225

• The GS1 Company Prefix, assigned by GS1 to a managing entity. This is the same as the 795
GS1 Company Prefix digits within a GS1 SSCC key. 796

• The Serial Reference, assigned by the managing entity to a particular logistics handling unit. 797
The Serial Reference as it appears in the EPC URI is derived from the SSCC by 798
concatenating the Extension Digit of the SSCC and the Serial Reference digits, and treating 799
the result as a single numeric string. 800

6.3.3. Global Location Number With or Without Extension (SGLN) 801
The SGLN EPC scheme is used to assign a unique identity to a physical location, such as a 802
specific building or a specific unit of shelving within a warehouse. 803

General syntax: 804
urn:epc:id:sgln:CompanyPrefix.LocationReference.Extension 805

Example: 806
urn:epc:id:sgln:0614141.12345.400 807

Grammar: 808
SGLN-URI ::= “urn:epc:id:sgln:” SGLNURIBody 809
SGLNURIBody ::= PaddedNumericComponent “.” 810
PaddedNumericComponentOrEmpty “.” GS3A3Component 811

The number of characters in the two PaddedNumericComponent fields must total 12 (not 812
including any of the dot characters). 813

The Extension field of the SGLN-URI is expressed as a GS3A3Component, which permits the 814
representation of all characters permitted in the Application Identifier 254 Extension according 815
to the GS1 General Specifications. SGLN-URIs that are derived from 96-bit tag encodings, 816
however, will have Extensions that consist only of digits and which have no leading zeros 817
(unless the entire extension consists of a single zero digit). These limitations are described in the 818
encoding procedures, and in Section 12.3.1. 819

The SGLN consists of the following elements: 820

• The GS1 Company Prefix, assigned by GS1 to a managing entity. This is the same as the 821
GS1 Company Prefix digits within a GS1 GLN key. 822

• The Location Reference, assigned uniquely by the managing entity to a specific physical 823
location. 824

• The GLN Extension, assigned by the managing entity to an individual unique location. If the 825
entire GLN Extension is just a single zero digit, it indicates that the SGLN stands for a GLN, 826
without an extension. 827

Explanation (non-normative): Note that the letter “S” in the term “SGLN” does not stand for 828
“serialized” as it does in SGTIN. This is because a GLN without an extension also identifies a 829
unique location, as opposed to a class of locations, and so both GLN and GLN with extension 830
may be considered as “serialized” identifiers. The term SGLN merely distinguishes the EPC 831
form, which can be used either for a GLN by itself or GLN with extension, from the term GLN 832

 EPC Tag Data Standard

Jan-2014, Version 1.8 Copyright ©2005- 2014 GS1 AISBL, All Rights Reserved. Page 30 of 225

which always refers to the unextended GLN identifier. The letter “S” does not stand for 833
anything. 834

6.3.4. Global Returnable Asset Identifier (GRAI) 835
The Global Returnable Asset Identifier EPC scheme is used to assign a unique identity to a 836
specific returnable asset, such as a reusable shipping container or a pallet skid. 837

General syntax: 838
urn:epc:id:grai:CompanyPrefix.AssetType.SerialNumber 839

Example: 840
urn:epc:id:grai:0614141.12345.400 841

Grammar: 842
GRAI-URI ::= “urn:epc:id:grai:” GRAIURIBody 843
GRAIURIBody ::= PaddedNumericComponent “.” 844
PaddedNumericComponentOrEmpty “.” GS3A3Component 845

The number of characters in the two PaddedNumericComponent fields must total 12 (not 846
including any of the dot characters). 847

The Serial Number field of the GRAI-URI is expressed as a GS3A3Component, which permits 848
the representation of all characters permitted in the Serial Number according to the GS1 General 849
Specifications. GRAI-URIs that are derived from 96-bit tag encodings, however, will have 850
Serial Numbers that consist only of digits and which have no leading zeros (unless the entire 851
serial number consists of a single zero digit). These limitations are described in the encoding 852
procedures, and in Section 12.3.1. 853

The GRAI consists of the following elements: 854

• The GS1 Company Prefix, assigned by GS1 to a managing entity. This is the same as the 855
GS1 Company Prefix digits within a GS1 GRAI key. 856

• The Asset Type, assigned by the managing entity to a particular class of asset. 857

• The Serial Number, assigned by the managing entity to an individual object. Because an 858
EPC always refers to a specific physical object rather than an asset class, the serial number is 859
mandatory in the GRAI-EPC. 860

6.3.5. Global Individual Asset Identifier (GIAI) 861
The Global Individual Asset Identifier EPC scheme is used to assign a unique identity to a 862
specific asset, such as a forklift or a computer. 863

General syntax: 864
urn:epc:id:giai:CompanyPrefix.IndividulAssetReference 865

Example: 866
urn:epc:id:giai:0614141.12345400 867

 EPC Tag Data Standard

Jan-2014, Version 1.8 Copyright ©2005- 2014 GS1 AISBL, All Rights Reserved. Page 31 of 225

Grammar: 868
GIAI-URI ::= “urn:epc:id:giai:” GIAIURIBody 869
GIAIURIBody ::= PaddedNumericComponent “.” GS3A3Component 870

The Individual Asset Reference field of the GIAI-URI is expressed as a GS3A3Component, 871
which permits the representation of all characters permitted in the Serial Number according to 872
the GS1 General Specifications. GIAI-URIs that are derived from 96-bit tag encodings, 873
however, will have Serial Numbers that consist only of digits and which have no leading zeros 874
(unless the entire serial number consists of a single zero digit). These limitations are described 875
in the encoding procedures, and in Section 12.3.1. 876

The GIAI consists of the following elements: 877

• The GS1 Company Prefix, assigned by GS1 to a managing entity. The Company Prefix is the 878
same as the GS1 Company Prefix digits within a GS1 GIAI key. 879

• The Individual Asset Reference, assigned uniquely by the managing entity to a specific asset. 880

6.3.6. Global Service Relation Number (GSRN) 881
The Global Service Relation Number EPC scheme is used to assign a unique identity to a service 882
relation. 883

General syntax: 884
urn:epc:id:gsrn:CompanyPrefix.ServiceReference 885

Example: 886
urn:epc:id:gsrn:0614141.1234567890 887

Grammar: 888
GSRN-URI ::= “urn:epc:id:gsrn:” GSRNURIBody 889
GSRNURIBody ::= PaddedNumericComponent “.” 890
PaddedNumericComponent 891

The number of characters in the two PaddedNumericComponent fields must total 17 (not 892
including any of the dot characters). 893

The GSRN consists of the following elements: 894

• The GS1 Company Prefix, assigned by GS1 to a managing entity. This is the same as the 895
GS1 Company Prefix digits within a GS1 GSRN key. 896

• The Service Reference, assigned by the managing entity to a particular service relation. 897

6.3.7. Global Document Type Identifier (GDTI) 898
The Global Document Type Identifier EPC scheme is used to assign a unique identity to a 899
specific document, such as land registration papers, an insurance policy, and others. 900

General syntax: 901
urn:epc:id:gdti:CompanyPrefix.DocumentType.SerialNumber 902

 EPC Tag Data Standard

Jan-2014, Version 1.8 Copyright ©2005- 2014 GS1 AISBL, All Rights Reserved. Page 32 of 225

Example: 903
urn:epc:id:gdti:0614141.12345.400 904

Grammar: 905
GDTI-URI ::= “urn:epc:id:gdti:” GDTIURIBody 906
GDTIURIBody ::= PaddedNumericComponent “.” 907
PaddedNumericComponentOrEmpty “.” PaddedNumericComponent 908

The number of characters in the two PaddedNumericComponent fields must total 12 (not 909
including any of the dot characters). 910

The Serial Number field of the GDTI-URI is expressed as a NumericComponent, which 911
permits the representation of all characters permitted in the Serial Number according to the GS1 912
General Specifications. GDTI-URIs that are derived from 96-bit tag encodings, however, will 913
have Serial Numbers that have no leading zeros (unless the entire serial number consists of a 914
single zero digit). These limitations are described in the encoding procedures, and in 915
Section 12.3.1. 916

The GDTI consists of the following elements: 917

• The GS1 Company Prefix, assigned by GS1 to a managing entity. This is the same as the 918
GS1 Company Prefix digits within a GS1 GDTI key. 919

• The Document Type, assigned by the managing entity to a particular class of document. 920

• The Serial Number, assigned by the managing entity to an individual document. Because an 921
EPC always refers to a specific document rather than a document class, the serial number is 922
mandatory in the GDTI-EPC. 923

6.3.8. General Identifier (GID) 924
The General Identifier EPC scheme is independent of any specifications or identity scheme 925
outside the EPCglobal Tag Data Standard. 926

General syntax: 927
urn:epc:id:gid:ManagerNumber.ObjectClass.SerialNumber 928

Example: 929
urn:epc:id:gid:95100000.12345.400 930

Grammar: 931
GID-URI ::= “urn:epc:id:gid:” GIDURIBody 932
GIDURIBody ::= 2*(NumericComponent “.”) NumericComponent 933

The GID consists of the following elements: 934

• The General Manager Number identifies an organizational entity (essentially a company, 935
manager or other organization) that is responsible for maintaining the numbers in subsequent 936
fields – Object Class and Serial Number. EPCglobal assigns the General Manager Number to 937
an entity, and ensures that each General Manager Number is unique. Note that a General 938

 EPC Tag Data Standard

Jan-2014, Version 1.8 Copyright ©2005- 2014 GS1 AISBL, All Rights Reserved. Page 33 of 225

Manager Number is not a GS1 Company Prefix. A General Manager Number may only be 939
used in GID EPCs. 940

• The Object Class is used by an EPC managing entity to identify a class or “type” of thing. 941
These object class numbers, of course, must be unique within each General Manager Number 942
domain. 943

• Finally, the Serial Number code, or serial number, is unique within each object class. In 944
other words, the managing entity is responsible for assigning unique, non-repeating serial 945
numbers for every instance within each object class. 946

6.3.9. US Department of Defense Identifier (DOD) 947
The US Department of Defense identifier is defined by the United States Department of Defense. 948
This tag data construct may be used to encode 96-bit Class 1 tags for shipping goods to the 949
United States Department of Defense by a supplier who has already been assigned a CAGE 950
(Commercial and Government Entity) code. 951

At the time of this writing, the details of what information to encode into these fields is explained 952
in a document titled "United States Department of Defense Supplier's Passive RFID Information 953
Guide" that can be obtained at the United States Department of Defense's web site 954
(http://www.dodrfid.org/supplierguide.htm). 955

Note that the DoD Guide explicitly recognizes the value of cross-branch, globally applicable 956
standards, advising that “suppliers that are EPCglobal subscribers and possess a unique [GS1] 957
Company Prefix may use any of the identity types and encoding instructions described in the 958
EPC™ Tag Data Standards document to encode tags.” 959

General syntax: 960
urn:epc:id:usdod:CAGEOrDODAAC.SerialNumber 961

Example: 962
urn:epc:id:usdod:2S194.12345678901 963

Grammar: 964
DOD-URI ::= “urn:epc:id:usdod:” DODURIBody 965
DODURIBody ::= CAGECodeOrDODAAC “.” DoDSerialNumber 966
CAGECodeOrDODAAC ::= CAGECode | DODAAC 967
CAGECode ::= CAGECodeOrDODAACChar*5 968
DODAAC ::= CAGECodeOrDODAACChar*6 969
DoDSerialNumber ::= NumericComponent 970
CAGECodeOrDODAACChar ::= Digit | “A” | “B” | “C” | “D” | “E” | 971
“F” | “G” | “H” | “J” | “K” | “L” | “M” | “N” | “P” | “Q” | “R” 972
| “S” | “T” | “U” | “V” | “W” | “X” | “Y” | “Z” 973

http://www.dodrfid.org/supplierguide.htm

 EPC Tag Data Standard

Jan-2014, Version 1.8 Copyright ©2005- 2014 GS1 AISBL, All Rights Reserved. Page 34 of 225

6.3.10. Aerospace and Defense Identifier (ADI) 974
The variable-length Aerospace and Defense EPC identifier is designed for use by the aerospace 975
and defense sector for the unique identification of parts or items. The existing unique identifier 976
constructs are defined in the Air Transport Association (ATA) Spec 2000 standard [SPEC2000], 977
and the US Department of Defense Guide to Uniquely Identifying items [UID]. The ADI EPC 978
construct provides a mechanism to directly encode such unique identifiers in RFID tags and to 979
use the URI representations at other layers of the EPCglobal architecture. 980

Within the Aerospace & Defense sector identification constructs supported by the ADI EPC, 981
companies are uniquely identified by their Commercial And Government Entity (CAGE) code or 982
by their Department of Defense Activity Address Code (DODAAC). The NATO CAGE 983
(NCAGE) code is issued by NATO / Allied Committee 135 and is structurally equivalent to a 984
CAGE code (five character uppercase alphanumeric excluding capital letters I and O) and is non-985
colliding with CAGE codes issued by the US Defense Logistics Information Service (DLIS). 986
Note that in the remainder of this section, all references to CAGE apply equally to NCAGE. 987

ATA Spec 2000 defines that a unique identifier may be constructed through the combination of 988
the CAGE code or DODAAC together with either: 989

• A serial number (SER) that is assigned uniquely within the CAGE code or DODAAC; or 990

• An original part number (PNO) that is unique within the CAGE code or DODAAC and a 991
sequential serial number (SEQ) that is uniquely assigned within that original part number. 992

The US DoD Guide to Uniquely Identifying Items defines a number of acceptable methods for 993
constructing unique item identifiers (UIIs). The UIIs that can be represented using the 994
Aerospace and Defense EPC identifier are those that are constructed through the combination of 995
a CAGE code or DODAAC together with either: 996

• a serial number that is unique within the enterprise identifier. (UII Construct #1) 997

• an original part number and a serial number that is unique within the original part number (a 998
subset of UII Construct #2) 999

Note that the US DoD UID guidelines recognize a number of unique identifiers based on GS1 1000
identifier keys as being valid UIDs. In particular, the SGTIN (GTIN + Serial Number), GIAI, 1001
and GRAI with full serialization are recognized as valid UIDs. These may be represented in 1002
EPC form using the SGTIN, GIAI, and GRAI EPC schemes as specified in Sections 6.3.1, 6.3.5, 1003
and 6.3.4, respectively; the ADI EPC scheme is not used for this purpose. Conversely, the US 1004
DoD UID guidelines also recognize a wide range of enterprise identifiers issued by various 1005
issuing agencies other than those described above; such UIDs do not have a corresponding EPC 1006
representation. 1007

For purposes of identification via RFID of those aircraft parts that are traditionally not serialized 1008
or not required to be serialized for other purposes, the ADI EPC scheme may be used for 1009
assigning a unique identifier to a part. In this situation, the first character of the serial number 1010
component of the ADI EPC SHALL be a single '#' character. This is used to indicate that the 1011
serial number does not correspond to the serial number of a traditionally serialized part because 1012
the '#' character is not permitted to appear within the values associated with either the SER or 1013
SEQ text element identifiers in ATA Spec 2000 standard. 1014

 EPC Tag Data Standard

Jan-2014, Version 1.8 Copyright ©2005- 2014 GS1 AISBL, All Rights Reserved. Page 35 of 225

For parts that are traditionally serialized / required to be serialized for purposes other than having 1015
a unique RFID identifier, and for all usage within US DoD UID guidelines, the '#' character 1016
SHALL NOT appear within the serial number element. 1017

The ATA Spec 2000 standard recommends that companies serialize uniquely within their CAGE 1018
code. For companies who do serialize uniquely within their CAGE code or DODAAC, a zero-1019
length string SHALL be used in place of the Original Part Number element when constructing an 1020
EPC. 1021

General syntax: 1022
urn:epc:id:adi:CAGEOrDODAAC.OriginalPartNumber.Serial 1023

Examples: 1024
urn:epc:id:adi:2S194..12345678901 1025
urn:epc:id:adi:W81X9C.3KL984PX1.2WMA52 1026

Grammar: 1027
ADI-URI ::= “urn:epc:id:adi:” ADIURIBody 1028
ADIURIBody ::= CAGECodeOrDODAAC “.” ADIComponent “.” 1029
ADIExtendedComponent 1030
ADIComponent ::= ADIChar* 1031
ADIExtendedComponent ::= “%23”? ADIChar+ 1032
ADIChar ::= UpperAlpha | Digit | OtherADIChar 1033
OtherADIChar ::= "-" | "%2F" 1034

CAGECodeOrDODAAC is defined in Section 6.3.9. 1035

6.3.11. Component / Part Identifier (CPI) 1036
The Component / Part EPC identifier is designed for use by the technical industries (including 1037
the automotive sector) for the unique identification of parts or components. 1038

The CPI EPC construct provides a mechanism to directly encode unique identifiers in RFID tags 1039
and to use the URI representations at other layers of the EPCglobal architecture. 1040

General syntax: 1041
urn:epc:id:cpi:CompanyPrefix.ComponentPartReference.Serial 1042

Example: 1043
urn:epc:id:cpi:0614141.123ABC.123456789 1044
urn:epc:id:cpi:0614141.123456.123456789 1045

Grammar: 1046
CPI-URI ::= “urn:epc:id:cpi:” CPIURIBody 1047
CPIURIBody ::= PaddedNumericComponent “.” CPRefComponent “.” 1048
NumericComponent 1049

 EPC Tag Data Standard

Jan-2014, Version 1.8 Copyright ©2005- 2014 GS1 AISBL, All Rights Reserved. Page 36 of 225

The Component / Part Reference field of the CPI-URI is expressed as a CPRefComponent, 1050
which permits the representation of all characters permitted in the Component / Part Reference 1051
according to the GS1 General Specifications. CPI-URIs that are derived from 96-bit tag 1052
encodings, however, will have Component / Part References that consist only of digits, with no 1053
leading zeros, and whose length is less than or equal to 15 minus the length of the GS1 Company 1054
Prefix. These limitations are described in the encoding procedures, and in Section 12.3.1. 1055

The CPI consists of the following elements: 1056

• The GS1 Company Prefix, assigned by GS1 to a managing entity or its delegates. 1057

• The Component/Part Reference, assigned by the managing entity to a particular object class. 1058

• The Serial Number, assigned by the managing entity to an individual object. 1059
The managing entity or its delegates ensure that each CPI is issued to no more than one physical 1060
component or part. Typically this is achieved by assigning a component/part reference to 1061
designate a collection of instances of a part that share the same form, fit or function and then 1062
issuing serial number values uniquely within each value of component/part reference in order to 1063
distinguish between such instances. 1064

7. Correspondence Between EPCs and GS1 Keys 1065
As discussed in Section 4.3, there is a well-defined releationship between Electronic Product 1066
Codes (EPCs) and seven keys (plus the component / part identifier) defined in the GS1 General 1067
Specifications [GS1GS10.0]. This section specifies the correspondence between EPCs and GS1 1068
keys. 1069

The correspondence between EPCs and GS1 keys relies on identifying the portion of a GS1 key 1070
that is the GS1 Company Prefix. The GS1 Company Prefix is a 6- to 11-digit number assigned 1071
by a GS1 Member Organization to a managing entity, and the managing entity is free to create 1072
GS1 keys using that GS1 Company Prefix. 1073

In some instances, a GS1 Member Organization assigns a “one off” GS1 key, such as a complete 1074
GTIN, GLN, or other key, to a subscribing organization. In such cases, the GS1 Member 1075
Organization holds the GS1 Company Prefix, and therefore is responsible for identifying the 1076
number of digits that are to occupy the GS1 Company Prefix position within the EPC. The 1077
organization receiving the one-off key should consult with its GS1 Member Organization to 1078
determine the appropriate number of digits to ascribe to the GS1 Company Prefix portion when 1079
constructing a corresponding EPC. In particular, a subscribing organization must not assume 1080
that the entire one-off key will occupy the GS1 Company Prefix digits of the EPC, unless 1081
specifically instructed by the GS1 Member Organization issuing the key. Moreover, a 1082
subscribing organization must not use the digits comprising a particular one-off key to construct 1083
any other kind of GS1 Key. For example, if a subscribing organization is issued a one-off GLN, 1084
it must not create SSCCs using the 12 digits of the one-off GLN as though it were a 12-digit GS1 1085
Company Prefix. 1086

When derived from GS1 Keys, the “first component of an EPC” is usually, but not always (e.g., 1087
GTIN-8, One-Off Key), a GS1 Company prefix. The GTIN-8 requires special treatment; see 1088
Section 7.1.2 for how an EPC is constructed from a GTIN-8. As stated above, the One-Off Key 1089
may or may not be used in its entirety as the first component of an EPC. 1090

 EPC Tag Data Standard

Jan-2014, Version 1.8 Copyright ©2005- 2014 GS1 AISBL, All Rights Reserved. Page 37 of 225

7.1. Serialized Global Trade Item Number (SGTIN) 1091
The SGTIN EPC (Section 6.3.1) does not correspond directly to any GS1 key, but instead 1092
corresponds to a combination of a GTIN key plus a serial number. The serial number in the 1093
SGTIN is defined to be equivalent to AI 21 in the GS1 General Specifications. 1094

The correspondence between the SGTIN EPC URI and a GS1 element string consisting of a 1095
GTIN key (AI 01) and a serial number (AI 21) is depicted graphically below: 1096

 1097
Figure 7. Correspondence between SGTIN EPC URI and GS1 Element String 1098

(Note that in the case of a GTIN-12 or GTIN-13, a zero pad character takes the place of the 1099
Indicator Digit in the figure above.) 1100

Formally, the correspondence is defined as follows. Let the EPC URI and the GS1 element 1101
string be written as follows: 1102

EPC URI: urn:epc:id:sgtin:d2d3…d(L+1).d1d(L+2)d(L+3)…d13.s1s2…sK 1103

GS1 Element String: (01)d1d2…d14 (21)s1s2…sK 1104

where 1 ≤ K ≤ 20. 1105

To find the GS1 element string corresponding to an SGTIN EPC URI: 1106

1. Number the digits of the first two components of the EPC as shown above. Note that there 1107
will always be a total of 13 digits. 1108

2. Number the characters of the serial number (third) component of the EPC as shown above. 1109
Each si corresponds to either a single character or to a percent-escape triplet consisting of a 1110
% character followed by two hexadecimal digit characters. 1111

3. Calculate the check digit d14 = (10 – ((3(d1 + d3 + d5 + d7 + d9 + d11 + d13) + (d2 + d4 + d6 + d8 1112
+ d10 + d12)) mod 10)) mod 10. 1113

4. Arrange the resulting digits and characters as shown for the GS1 Element String. If any si in 1114
the EPC URI is a percent-escape triplet %xx, in the GS1 Element String replace the triplet 1115
with the corresponding character according to Table 51 (Appendix A). (For a given percent-1116
escape triplet %xx, find the row of Table 51 that contains xx in the “Hex Value” column; the 1117

EPC
URI

GS1
Element
String

urn:epc:id:sgtin:
Company

Prefix
Item
Ref

Indi-
cator

Serial
Number

Company
Prefix

Indi-
cator

Item
Ref

Check
Digit

Serial
Number (21) (01)

Σ

 EPC Tag Data Standard

Jan-2014, Version 1.8 Copyright ©2005- 2014 GS1 AISBL, All Rights Reserved. Page 38 of 225

“Graphic Symbol” column then gives the corresponding character to use in the GS1 Element 1118
String.) 1119

To find the EPC URI corresponding to a GS1 element string that includes both a GTIN (AI 01) 1120
and a serial number (AI 21): 1121

1. Number the digits and characters of the GS1 element string as shown above. 1122

2. Except for a GTIN-8, determine the number of digits L in the GS1 Company Prefix. This 1123
may be done, for example, by reference to an external table of company prefixes. See 1124
Section 7.1.2 for the case of a GTIN-8. 1125

3. Arrange the digits as shown for the EPC URI. Note that the GTIN check digit d14 is not 1126
included in the EPC URI. For each serial number character si, replace it with the 1127
corresponding value in the “URI Form” column of Table 51 (Appendix A) – either the 1128
character itself or a percent-escape triplet if si is not a legal URI character. 1129

Example: 1130

EPC URI: urn:epc:id:sgtin:0614141.712345.32a%2Fb 1131

GS1 element string: (01) 7 0614141 12345 1 (21) 32a/b 1132

Spaces have been added to the GS1 element string for clarity, but they are not normally present. 1133
In this example, the slash (/) character in the serial number must be represented as an escape 1134
triplet in the EPC URI. 1135

7.1.1. GTIN-12 and GTIN-13 1136
To find the EPC URI corresponding to the combination of a GTIN-12 or GTIN-13 and a serial 1137
number, first convert the GTIN-12 or GTIN-13 to a 14-digit number by adding two or one 1138
leading zero characters, respectively, as shown in [GS1GS10.0] Section 3.3.2. 1139

Example: 1140

GTIN-12: 614141 12345 2 1141

Corresponding 14-digit number: 0 0614141 12345 2 1142

Corresponding SGTIN-EPC: urn:epc:id:sgtin:0614141.012345.Serial 1143

Example: 1144

GTIN-13: 0614141 12345 2 1145

Corresponding 14-digit number: 0 0614141 12345 2 1146

Corresponding SGTIN-EPC: urn:epc:id:sgtin:0614141.012345.Serial 1147

In these examples, spaces have been added to the GTIN strings for clarity, but are never 1148
encoded. 1149

7.1.2. GTIN-8 and RCN-8 1150
A GTIN-8 is a special case of the GTIN that is used to identify small trade items. 1151

 EPC Tag Data Standard

Jan-2014, Version 1.8 Copyright ©2005- 2014 GS1 AISBL, All Rights Reserved. Page 39 of 225

The GTIN-8 code consists of eight digits N1, N2…N8, where the first digits N1 to NLare the GS1-1152
8 Prefix (where L = 1, 2, or 3), the next digits NL+1 to N7 are the Item Reference, and the last 1153
digit N8 is the check digit. The GS1-8 Prefix is a one-, two-, or three-digit index number, 1154
administered by the GS1 Global Office. It does not identify the origin of the item. The Item 1155
Reference is assigned by the GS1 Member Organisation. The GS1 Member Organisations 1156
provide procedures for obtaining GTIN-8s. 1157

To find the EPC URI corresponding to the combination of a GTIN-8 and a serial number, the 1158
following procedure SHALL be used. For the purpose of the procedure defined above in 1159
Section 7.1, the GS1 Company Prefix portion of the EPC shall be constructed by prepending five 1160
zeros to the first three digits of the GTIN-8; that is, the GS1 Company Prefix portion of the EPC 1161
is eight digits and shall be 00000N1N2N3. The Item Reference for the procedure shall be the 1162
remaining GTIN-8 digits apart from the check digit, that is, N4 to N7. The Indicator Digit for the 1163
procedure shall be zero. 1164

Example: 1165

GTIN-8: 95010939 1166

Corresponding SGTIN-EPC: urn:epc:id:sgtin:00000950.01093.Serial 1167

An RCN-8 is an 8-digit code beginning with GS1-8 Prefixes 0 or 2, as defined in [GS1GS10.0] 1168
Section 2.1.6.1. These are reserved for company internal numbering, and are not GTIN-8s. 1169
Such codes SHALL NOT be used to construct SGTIN EPCs, and the above procedure does not 1170
apply. 1171

7.1.3. Company Internal Numbering (GS1 Prefixes 04 and 0001 – 1172
0007) 1173

The GS1 General Specifications reserve codes beginning with either 04 or 0001 through 0007 for 1174
company internal numbering. (See [GS1GS10.0], Sections 2.1.6.2 and 2.1.6.3.) 1175

These numbers SHALL NOT be used to construct SGTIN EPCs. A future version of the 1176
EPCglobal Tag Data Standard may specify normative rules for using Company Internal 1177
Numbering codes in EPCs. 1178

7.1.4. Restricted Circulation (GS1 Prefixes 02 and 20 – 29) 1179
The GS1 General Specifications reserve codes beginning with either 02 or 20 through 29 for 1180
restricted circulation for geopolitical areas defined by GS1 member organizations and for 1181
variable measure trade items. (See [GS1GS10.0], Sections 2.1.6.4 and 2.1.7.) 1182

These numbers SHALL NOT be used to construct SGTIN EPCs. A future version of the 1183
EPCglobal Tag Data Standard may specify normative rules for using Restricted Circulation 1184
codes in EPCs. 1185

7.1.5. Coupon Code Identification for Restricted Distribution (GS1 1186
Prefixes 05, 99, 981, and 982) 1187

Coupons may be identified by constructing codes according to Sections 2.6.3, 2.6.4, and 2.6.5 of 1188
the GS1 General Specifications. The resulting numbers begin with GS1 Prefixes 05, 99, 981, or 1189

 EPC Tag Data Standard

Jan-2014, Version 1.8 Copyright ©2005- 2014 GS1 AISBL, All Rights Reserved. Page 40 of 225

982. Strictly speaking, however, a coupon is not a trade item, and these coupon codes are not 1190
actually trade item identification numbers. 1191

Therefore, coupon codes SHALL NOT be used to construct SGTIN EPCs. 1192

7.1.6. Refund Receipt (GS1 Prefix 980) 1193
Section 2.6.8 of the GS1 General Specification specifies the construction of codes to represent 1194
refund receipts, such as those created by bottle recycling machines for redemption at point-of-1195
sale. The resulting number begins with GS1 Prefix 980. Strictly speaking, however, a refund 1196
receipt is not a trade item, and these refund receipt codes are not actually trade item 1197
identification numbers. 1198

Therefore, refund receipt codes SHALL NOT be used to construct SGTIN EPCs. 1199

7.1.7. ISBN, ISMN, and ISSN (GS1 Prefixes 977, 978, or 979) 1200
The GS1 General Specifications provide for the use of a 13-digit identifier to represent 1201
International Standard Book Number, International Standard Music Number, and International 1202
Standard Serial Number codes. The resulting code is a GTIN whose GS1 Prefix is 977, 978, or 1203
979. 1204

7.1.7.1. ISBN and ISMN 1205
ISBN and ISMN codes are used for books and printed music, respectively. The codes are 1206
defined by ISO (ISO 2108 for ISBN and ISO 10957 for ISMN) and administered by the 1207
International ISBN Agency (http://www.isbn-international.org/) and affiliated national 1208
registration agencies. ISMN is a separate organization (http://www.ismn-international.org/) but 1209
its management and coding structure are similar to the ones of ISBN. 1210

While these codes are not assigned by GS1, they have a very similar internal structure that 1211
readily lends itself to similar treatment when creating EPCs. An ISBN code consists of the 1212
following parts, shown below with the corresponding concept from the GS1 system: 1213

Prefix Element + 1214
Registrant Group Element = GS1 Prefix (978 or 979 plus more digits) 1215

 Registrant Element = Remainder of GS1 Company Prefix 1216

 Publication Element = Item Reference 1217

 Check Digit = Check Digit 1218

The Registrant Group Elements are assigned to ISBN registration agencies, who in turn assign 1219
Registrant Elements to publishers, who in turn assign Publication Elements to individual 1220
publication editions. This exactly parallels the construction of GTIN codes. As in GTIN, the 1221
various components are of variable length, and as in GTIN, each publisher knows the combined 1222
length of the Registrant Group Element and Registrant Element, as the combination is assigned 1223
to the publisher. The total length of the “978” or “979” Prefix Element, the Registrant Group 1224
Element, and the Registrant Element is in the range of 6 to 12 digits, which is exactly the range 1225
of GS1 Company Prefix lengths permitted in the SGTIN EPC. The ISBN and ISMN can thus be 1226
used to construct SGTINs as specified in this standard. 1227

http://www.isbn-international.org/
http://www.ismn-international.org/

 EPC Tag Data Standard

Jan-2014, Version 1.8 Copyright ©2005- 2014 GS1 AISBL, All Rights Reserved. Page 41 of 225

To find the EPC URI corresponding to the combination of an ISBN or ISMN and a serial 1228
number, the following procedure SHALL be used. For the purpose of the procedure defined 1229
above in Section 7.1, the GS1 Company Prefix portion of the EPC shall be constructed by 1230
concatenating the ISBN/ISMN Prefix Element (978 or 979), the Registrant Group Element, and 1231
the Registrant Element. The Item Reference for the procedure shall be the digits of the 1232
ISBN/ISMN Publication Element. The Indicator Digit for the procedure shall be zero. 1233

Example: 1234

ISBN: 978-81-7525-766-5 1235

Corresponding SGTIN-EPC: urn:epc:id:sgtin:978817525.0766.Serial 1236

7.1.7.2. ISSN 1237
The ISSN is the standardized international code which allows the identification of any serial 1238
publication, including electronic serials, independently of its country of publication, of its 1239
language or alphabet, of its frequency, medium, etc. The code is defined by ISO (ISO 3297) and 1240
administered by the International ISSN Agency (http://www.issn.org/). 1241

The ISSN is a GTIN starting with the GS1 prefix 977. The ISSN does not have a structure that 1242
would allow it to use an SGTIN format. Therefore and pending formal requirements emerging 1243
from the serial publication sector, it is not currently possible to create an SGTIN on the basis of 1244
an ISSN. 1245

7.2. Serial Shipping Container Code (SSCC) 1246
The SSCC EPC (Section 6.3.2) corresponds directly to the SSCC key defined in Sections 2.2.1 1247
and 3.3.1 of the GS1 General Specifications [GS1GS10.0]. 1248

The correspondence between the SSCC EPC URI and a GS1 element string consisting of an 1249
SSCC key (AI 00) is depicted graphically below: 1250

 1251
Figure 8. Correspondence between SSCC EPC URI and GS1 Element String 1252

Formally, the correspondence is defined as follows. Let the EPC URI and the GS1 element 1253
string be written as follows: 1254

EPC
URI

GS1
Element
String

urn:epc:id:sscc:
Company

Prefix
Serial
Ref

Exten-
sion

Company
Prefix

Exten-
sion

Serial
Ref

Check
Digit (00)

Σ

http://www.issn.org/

 EPC Tag Data Standard

Jan-2014, Version 1.8 Copyright ©2005- 2014 GS1 AISBL, All Rights Reserved. Page 42 of 225

EPC URI: urn:epc:id:sscc:d2d3…d(L+1).d1d(L+2)d(L+3)…d17 1255

GS1 Element String: (00)d1d2…d18 1256

To find the GS1 element string corresponding to an SSCC EPC URI: 1257

1. Number the digits of the two components of the EPC as shown above. Note that there will 1258
always be a total of 17 digits. 1259

2. Calculate the check digit d18 = (10 – ((3(d1 + d3 + d5 + d7 + d9 + d11 + d13
 + d15 + d17) + (d2 + 1260

d4 + d6 + d8 + d10 + d12 + d14 + d16)) mod 10)) mod 10. 1261

3. Arrange the resulting digits and characters as shown for the GS1 Element String. 1262

To find the EPC URI corresponding to a GS1 element string that includes an SSCC (AI 00): 1263

1. Number the digits and characters of the GS1 element string as shown above. 1264

2. Determine the number of digits L in the GS1 Company Prefix. This may be done, for 1265
example, by reference to an external table of company prefixes. 1266

3. Arrange the digits as shown for the EPC URI. Note that the SSCC check digit d18 is not 1267
included in the EPC URI. 1268

Example: 1269

EPC URI: urn:epc:id:sscc:0614141.1234567890 1270

GS1 element string: (00) 1 0614141 234567890 8 1271

Spaces have been added to the GS1 element string for clarity, but they are never encoded. 1272

7.3. Global Location Number With or Without Extension (SGLN) 1273
The SGLN EPC (Section 6.3.3) corresponds either directly to a Global Location Number key 1274
(GLN) as specified in Sections 2.4.4 and 3.7.9 of the GS1 General Specifications [GS1GS10.0], 1275
or to the combination of a GLN key plus an extension number as specified in Section 3.5.10 of 1276
[GS1GS10.0]. An extension number of zero is reserved to indicate that an SGLN EPC denotes 1277
an unextended GLN, rather than a GLN plus extension. (See Section 6.3.3 for an explanation of 1278
the letter “S” in “SGLN.”) 1279

The correspondence between the SGLN EPC URI and a GS1 element string consisting of a GLN 1280
key (AI 414) without an extension is depicted graphically below: 1281

 EPC Tag Data Standard

Jan-2014, Version 1.8 Copyright ©2005- 2014 GS1 AISBL, All Rights Reserved. Page 43 of 225

 1282
Figure 9. Correspondence between SGLN EPC URI without extension and GS1 Element String 1283

The correspondence between the SGLN EPC URI and a GS1 element string consisting of a GLN 1284
key (AI 414) together with an extension (AI 254) is depicted graphically below: 1285

 1286
Figure 10. Correspondence between SGLN EPC URI with extension and GS1 Element String 1287

Formally, the correspondence is defined as follows. Let the EPC URI and the GS1 element 1288
string be written as follows: 1289

EPC URI: urn:epc:id:sgln:d1d2…dL.d(L+1)d(L+2)…d12.s1s2…sK 1290

GS1 Element String: (414)d1d2…d13 (254)s1s2…sK 1291

To find the GS1 element string corresponding to an SGLN EPC URI: 1292

1. Number the digits of the first two components of the EPC as shown above. Note that there 1293
will always be a total of 12 digits. 1294

2. Number the characters of the serial number (third) component of the EPC as shown above. 1295
Each si corresponds to either a single character or to a percent-escape triplet consisting of a 1296
% character followed by two hexadecimal digit characters. 1297

EPC
URI

GS1
Element
String

urn:epc:id:sgln:
Company

Prefix
Location

Ref

Company
Prefix

Location
Ref

Check
Digit (414)

Σ

0

EPC
URI

GS1
Element
String

urn:epc:id:sgln:
Company

Prefix
Location

Ref
Extension

Company
Prefix

Location
Ref

Check
Digit

Extension
(254) (414)

Σ

 EPC Tag Data Standard

Jan-2014, Version 1.8 Copyright ©2005- 2014 GS1 AISBL, All Rights Reserved. Page 44 of 225

3. Calculate the check digit d13 = (10 – ((3(d2 + d4 + d6 + d8 + d10 + d12) + (d1+ d3 + d5 + d7 + d9 1298
+ d11)) mod 10)) mod 10. 1299

4. Arrange the resulting digits and characters as shown for the GS1 Element String. If any si in 1300
the EPC URI is a percent-escape triplet %xx, in the GS1 Element String replace the triplet 1301
with the corresponding character according to Table 51 (Appendix A). (For a given percent-1302
escape triplet %xx, find the row of Table 51 that contains xx in the “Hex Value” column; the 1303
“Graphic Symbol” column then gives the corresponding character to use in the GS1 Element 1304
String.). If the serial number consists of a single character s1 and that character is the digit 1305
zero (‘0’), omit the extension from the GS1 Element String. 1306

To find the EPC URI corresponding to a GS1 element string that includes a GLN (AI 414), with 1307
or without an accompanying extension (AI 254): 1308

1. Number the digits and characters of the GS1 element string as shown above. 1309

2. Determine the number of digits L in the GS1 Company Prefix. This may be done, for 1310
example, by reference to an external table of company prefixes. 1311

3. Arrange the digits as shown for the EPC URI. Note that the GLN check digit d13 is not 1312
included in the EPC URI. For each serial number character si, replace it with the 1313
corresponding value in the “URI Form” column of Table 51 (Appendix A) – either the 1314
character itself or a percent-escape triplet if si is not a legal URI character. If the input GS1 1315
element string did not include an extension (AI 254), use a single zero digit (‘0’) as the entire 1316
serial number s1s2…sK in the EPC URI. 1317

Example (without extension): 1318

EPC URI: urn:epc:id:sgln:0614141.12345.0 1319

GS1 element string: (414) 0614141 12345 2 1320

Example (with extension): 1321

EPC URI: urn:epc:id:sgln:0614141.12345.32a%2Fb 1322

GS1 element string: (414) 0614141 12345 2 (254) 32a/b 1323

Spaces have been added to the GS1 element string for clarity, but they are never encoded. In this 1324
example, the slash (/) character in the serial number must be represented as an escape triplet in 1325
the EPC URI. 1326

7.4. Global Returnable Asset Identifier (GRAI) 1327
The GRAI EPC (Section 6.3.4) corresponds directly to a serialized GRAI key defined in 1328
Sections 2.3.1 and 3.9.3 of the GS1 General Specifications [GS1GS10.0]. Because an EPC 1329
always identifies a specific physical object, only GRAI keys that include the optional serial 1330
number have a corresponding GRAI EPC. GRAI keys that lack a serial number refer to asset 1331
classes rather than specific assets, and therefore do not have a corresponding EPC (just as a 1332
GTIN key without a serial number does not have a corresponding EPC). 1333

 EPC Tag Data Standard

Jan-2014, Version 1.8 Copyright ©2005- 2014 GS1 AISBL, All Rights Reserved. Page 45 of 225

 1334
Figure 11. Correspondence between GRAI EPC URI and GS1 Element String 1335

Note that the GS1 Element String includes an extra zero (‘0’) digit following the Application 1336
Identifier (8003). This zero digit is extra padding in the element string, and is not part of the 1337
GRAI key itself. 1338

Formally, the correspondence is defined as follows. Let the EPC URI and the GS1 element 1339
string be written as follows: 1340

EPC URI: urn:epc:id:grai:d1d2…dL.d(L+1)d(L+2)…d12.s1s2…sK 1341

GS1 Element String: (8003)0d1d2…d13s1s2…sK 1342

To find the GS1 element string corresponding to a GRAI EPC URI: 1343

1. Number the digits of the first two components of the EPC as shown above. Note that there 1344
will always be a total of 12 digits. 1345

2. Number the characters of the serial number (third) component of the EPC as shown above. 1346
Each si corresponds to either a single character or to a percent-escape triplet consisting of a 1347
% character followed by two hexadecimal digit characters. 1348

3. Calculate the check digit d13 = (10 – ((3(d2 + d4 + d6 + d8 + d10 + d12) + (d1+ d3 + d5 + d7 + d9 1349
+ d11)) mod 10)) mod 10. 1350

4. Arrange the resulting digits and characters as shown for the GS1 Element String. If any si in 1351
the EPC URI is a percent-escape triplet %xx, in the GS1 Element String replace the triplet 1352
with the corresponding character according to Table 51 (Appendix A). (For a given percent-1353
escape triplet %xx, find the row of Table 51 that contains xx in the “Hex Value” column; the 1354
“Graphic Symbol” column then gives the corresponding character to use in the GS1 Element 1355
String.). 1356

To find the EPC URI corresponding to a GS1 element string that includes a GRAI (AI 8003): 1357

1. If the number of characters following the (8003) application identifier is less than or equal 1358
to 14, stop: this element string does not have a corresponding EPC because it does not 1359
include the optional serial number. 1360

2. Number the digits and characters of the GS1 element string as shown above. 1361

EPC
URI

GS1
Element
String

urn:epc:id:grai:
Company

Prefix
Asset
Type

Serial

Company
Prefix

Asset
Type

Check
Digit

Serial
(8003) 0

Σ

 EPC Tag Data Standard

Jan-2014, Version 1.8 Copyright ©2005- 2014 GS1 AISBL, All Rights Reserved. Page 46 of 225

3. Determine the number of digits L in the GS1 Company Prefix. This may be done, for 1362
example, by reference to an external table of company prefixes. 1363

4. Arrange the digits as shown for the EPC URI. Note that the GRAI check digit d13 is not 1364
included in the EPC URI. For each serial number character si, replace it with the 1365
corresponding value in the “URI Form” column of Table 51 (Appendix A) – either the 1366
character itself or a percent-escape triplet if si is not a legal URI character. 1367

Example: 1368

EPC URI: urn:epc:id:grai:0614141.12345.32a%2Fb 1369

GS1 element string: (8003) 0 0614141 12345 2 32a/b 1370

Spaces have been added to the GS1 element string for clarity, but they are never encoded. In this 1371
example, the slash (/) character in the serial number must be represented as an escape triplet in 1372
the EPC URI. 1373

7.5. Global Individual Asset Identifier (GIAI) 1374
The GIAI EPC (Section 6.3.5) corresponds directly to the GIAI key defined in Sections 2.3.2 and 1375
3.9.4 of the GS1 General Specifications [GS1GS10.0]. 1376

The correspondence between the GIAI EPC URI and a GS1 element string consisting of a GIAI 1377
key (AI 8004) is depicted graphically below: 1378

 1379
Figure 12. Correspondence between GIAI EPC URI and GS1 Element String 1380

Formally, the correspondence is defined as follows. Let the EPC URI and the GS1 element 1381
string be written as follows: 1382

EPC URI: urn:epc:id:giai:d1d2…dL.s1s2…sK 1383

GS1 Element String: (8004)d1d2…dLs1s2…sK 1384

To find the GS1 element string corresponding to a GIAI EPC URI: 1385

1. Number the characters of the two components of the EPC as shown above. Each si 1386
corresponds to either a single character or to a percent-escape triplet consisting of a % 1387
character followed by two hexadecimal digit characters. 1388

EPC
URI

GS1
Element
String

urn:epc:id:giai:
Company

Prefix
Asset

Reference

Company
Prefix (8004)

Asset
Reference

 EPC Tag Data Standard

Jan-2014, Version 1.8 Copyright ©2005- 2014 GS1 AISBL, All Rights Reserved. Page 47 of 225

2. Arrange the resulting digits and characters as shown for the GS1 Element String. If any si in 1389
the EPC URI is a percent-escape triplet %xx, in the GS1 Element String replace the triplet 1390
with the corresponding character according to Table 51 (Appendix A). (For a given percent-1391
escape triplet %xx, find the row of Table 51 that contains xx in the “Hex Value” column; the 1392
“Graphic Symbol” column then gives the corresponding character to use in the GS1 Element 1393
String.) 1394

To find the EPC URI corresponding to a GS1 element string that includes a GIAI (AI 8004): 1395

1. Number the digits and characters of the GS1 element string as shown above. 1396

2. Determine the number of digits L in the GS1 Company Prefix. This may be done, for 1397
example, by reference to an external table of company prefixes. 1398

3. Arrange the digits as shown for the EPC URI. For each serial number character si, replace it 1399
with the corresponding value in the “URI Form” column of Table 51 (Appendix A) – either 1400
the character itself or a percent-escape triplet if si is not a legal URI character. 1401

EPC URI: urn:epc:id:giai:0614141.32a%2Fb 1402

GS1 element string: (8004) 0614141 32a/b 1403

Spaces have been added to the GS1 element string for clarity, but they are never encoded. In this 1404
example, the slash (/) character in the serial number must be represented as an escape triplet in 1405
the EPC URI. 1406

7.6. Global Service Relation Number (GSRN) 1407
The GSRN EPC (Section 6.3.6) corresponds directly to the GSRN key defined in Sections 2.5 1408
and 3.9.9 of the GS1 General Specifications [GS1GS10.0]. 1409

The correspondence between the GSRN EPC URI and a GS1 element string consisting of a 1410
GSRN key (AI 8018) is depicted graphically below: 1411

 1412
Figure 13. Correspondence between GSRN EPC URI and GS1 Element String 1413

Formally, the correspondence is defined as follows. Let the EPC URI and the GS1 element 1414
string be written as follows: 1415

EPC
URI

GS1
Element
String

urn:epc:id:gsrn:
Company

Prefix
Service

Reference

Company
Prefix

Check
Digit (8018)

Σ

Service
Reference

 EPC Tag Data Standard

Jan-2014, Version 1.8 Copyright ©2005- 2014 GS1 AISBL, All Rights Reserved. Page 48 of 225

EPC URI: urn:epc:id:gsrn:d1d2…dL.d(L+1)d(L+2)…d17 1416

GS1 Element String: (8018)d1d2…d18 1417

To find the GS1 element string corresponding to a GSRN EPC URI: 1418

1. Number the digits of the two components of the EPC as shown above. Note that there will 1419
always be a total of 17 digits. 1420

2. Calculate the check digit d18 = (10 – ((3(d1 + d3 + d5 + d7 + d9 + d11 + d13
 + d15 + d17) + (d2 + 1421

d4 + d6 + d8 + d10 + d12 + d14 + d16)) mod 10)) mod 10. 1422

3. Arrange the resulting digits and characters as shown for the GS1 Element String. 1423

To find the EPC URI corresponding to a GS1 element string that includes a GSRN (AI 8018): 1424

1. Number the digits and characters of the GS1 element string as shown above. 1425

2. Determine the number of digits L in the GS1 Company Prefix. This may be done, for 1426
example, by reference to an external table of company prefixes. 1427

3. Arrange the digits as shown for the EPC URI. Note that the GSRN check digit d18 is not 1428
included in the EPC URI. 1429

Example: 1430

EPC URI: urn:epc:id:gsrn:0614141.1234567890 1431

GS1 element string: (8018) 0614141 1234567890 2 1432

Spaces have been added to the GS1 element string for clarity, but they are never encoded. 1433

7.7. Global Document Type Identifier (GDTI) 1434
The GDTI EPC (Section 6.3.7) corresponds directly to a serialized GDTI key defined in 1435
Sections 2.6.13 and 3.5.9 of the GS1 General Specifications [GS1GS10.0]. Because an EPC 1436
always identifies a specific physical object, only GDTI keys that include the optional serial 1437
number have a corresponding GDTI EPC. GDTI keys that lack a serial number refer to 1438
document classes rather than specific documents, and therefore do not have a corresponding EPC 1439
(just as a GTIN key without a serial number does not have a corresponding EPC). 1440

 1441

EPC
URI

GS1
Element
String

urn:epc:id:gdti:
Company

Prefix
Doc

 Type
Serial

Company
Prefix

Doc
 Type

Check
Digit

Serial
(253)

Σ

 EPC Tag Data Standard

Jan-2014, Version 1.8 Copyright ©2005- 2014 GS1 AISBL, All Rights Reserved. Page 49 of 225

Figure 14. Correspondence between GDTI EPC URI and GS1 Element String 1442
Formally, the correspondence is defined as follows. Let the EPC URI and the GS1 element 1443
string be written as follows: 1444

EPC URI: urn:epc:id:gdti:d1d2…dL.d(L+1)d(L+2)…d12.s1s2…sK 1445

GS1 Element String: (253)d1d2…d13s1s2…sK 1446

To find the GS1 element string corresponding to a GRAI EPC URI: 1447

1. Number the digits of the first two components of the EPC as shown above. Note that there 1448
will always be a total of 12 digits. 1449

2. Number the characters of the serial number (third) component of the EPC as shown above. 1450
Each si is a digit character. 1451

3. Calculate the check digit d13 = (10 – ((3(d2 + d4 + d6 + d8 + d10 + d12) + (d1+ d3 + d5 + d7 + d9 1452
+ d11)) mod 10)) mod 10. 1453

4. Arrange the resulting digits as shown for the GS1 Element String. 1454

To find the EPC URI corresponding to a GS1 element string that includes a GDTI (AI 253): 1455

1. If the number of characters following the (253) application identifier is less than or equal to 1456
13, stop: this element string does not have a corresponding EPC because it does not include 1457
the optional serial number. 1458

2. Number the digits and characters of the GS1 element string as shown above. 1459

3. Determine the number of digits L in the GS1 Company Prefix. This may be done, for 1460
example, by reference to an external table of company prefixes. 1461

4. Arrange the digits as shown for the EPC URI. Note that the GDTI check digit d13 is not 1462
included in the EPC URI. 1463

Example: 1464

EPC URI: urn:epc:id:gdti:0614141.12345.006847 1465

GS1 element string: (253) 0614141 12345 2 006847 1466

Spaces have been added to the GS1 element string for clarity, but they are never encoded. 1467

7.8. Component and Part Identifier (CPI) 1468
The CPI EPC (Section 6.3.11) does not correspond directly to any GS1 Key, but instead 1469
corresponds to a combination of two data elements defined in the GS1 General Specifications. 1470

The correspondence between the CPI EPC URI and a GS1 element string consisting of a 1471
Component / Part Identifier (AI 8010) and a Component / Part serial number (AI 8011) is 1472
depicted graphically below: 1473

 EPC Tag Data Standard

Jan-2014, Version 1.8 Copyright ©2005- 2014 GS1 AISBL, All Rights Reserved. Page 50 of 225

 1474
Figure 15. Correspondence between CPI EPC URI and GS1 Element String 1475

Formally, the correspondence is defined as follows. Let the EPC URI and the GS1 element 1476
string be written as follows: 1477

EPC URI: urn:epc:id:cpi:d1d2…d(L).d(L+1)d(L+2)…dN.s1s2…sK 1478

GS1 Element String: (8010)d1d2…dN (8011)s1s2…sK 1479

where 1 ≤ N ≤ 30 and 1 ≤ K ≤ 12. 1480

To find the GS1 element string corresponding to a CPI EPC URI: 1481

1. Number the digits of the three components of the EPC as shown above. Each di in the 1482
second component corresponds to either a single character or to a percent-escape triplet 1483
consisting of a % character followed by two hexadecimal digit characters. 1484

2. Arrange the resulting digits and characters as shown for the GS1 Element String. If any di in 1485
the EPC URI is a percent-escape triplet %xx, in the GS1 Element String replace the triplet 1486
with the corresponding character according to Table 52 (Appendix G). (For a given percent-1487
escape triplet %xx, find the row of Table 52 that contains xx in the “Hex Value” column; the 1488
“Graphic Symbol” column then gives the corresponding character to use in the GS1 Element 1489
String.) 1490

To find the EPC URI corresponding to a GS1 element string that includes both a Component / 1491
Part Identifier (AI 8010) and a Component / Part Serial Number (AI 8011): 1492

1. Number the digits and characters of the GS1 element string as shown above. 1493

2. Determine the number of digits L in the GS1 Company Prefix. This may be done, for 1494
example, by reference to an external table of company prefixes. 1495

3. Arrange the characters as shown for the EPC URI. For each component/part character di, 1496
replace it with the corresponding value in the “URI Form” column of Table 52 (Appendix 1497
G) – either the character itself or a percent-escape triplet if di is not a legal URI character. 1498

Example: 1499

EPC URI: urn:epc:id:cpi:0614141.5PQ7%2FZ43.12345 1500

EPC
URI

GS1
Element
String

urn:epc:id:cpi:
Company

Prefix
C/P
Ref

C/P Serial
Number

Company
Prefix

C/P
Ref

C/P Serial
Number (8011) (8010)

 EPC Tag Data Standard

Jan-2014, Version 1.8 Copyright ©2005- 2014 GS1 AISBL, All Rights Reserved. Page 51 of 225

GS1 element string: (8010) 0614141 5PQ7/Z43 (8011) 12345 1501

Spaces have been added to the GS1 element string for clarity, but they are not normally present. 1502
In this example, the slash (/) character in the component/part reference must be represented as 1503
an escape triplet in the EPC URI. 1504

8. URIs for EPC Pure Identity Patterns 1505
Certain software applications need to specify rules for filtering lists of EPC pure identities 1506
according to various criteria. This specification provides a Pure Identity Pattern URI form for 1507
this purpose. A Pure Identity Pattern URI does not represent a single EPC, but rather refers to a 1508
set of EPCs. A typical Pure Identity Pattern URI looks like this: 1509
urn:epc:idpat:sgtin:0652642.*.* 1510

This pattern refers to any EPC SGTIN, whose GS1 Company Prefix is 0652642, and whose Item 1511
Reference and Serial Number may be anything at all. The tag length and filter bits are not 1512
considered at all in matching the pattern to EPCs. 1513

In general, there is a Pure Identity Pattern URI scheme corresponding to each Pure Identity EPC 1514
URI scheme (Section 6.3), whose syntax is essentially identical except that any number of fields 1515
starting at the right may be a star (*). This is more restrictive than EPC Tag Pattern URIs 1516
(Section 13), in that the star characters must occupy adjacent rightmost fields and the range 1517
syntax is not allowed at all. 1518

The pure identity pattern URI for the DoD Construct is as follows: 1519
urn:epc:idpat:usdod:CAGECodeOrDODAACPat.serialNumberPat 1520

with similar restrictions on the use of star (*). 1521

8.1. Syntax 1522
The grammar for Pure Identity Pattern URIs is given below. 1523
IDPatURI ::= “urn:epc:idpat:” IDPatBody 1524
IDPatBody ::= GIDIDPatURIBody | SGTINIDPatURIBody | 1525
SGLNIDPatURIBody | GIAIIDPatURIBody | SSCCIDPatURIBody | 1526
GRAIIDPatURIBody | GSRNIDPatURIBody | GDTIIDPatURIBody | 1527
DODIDPatURIBody | ADIIDPatURIBody | CPIIDPatURIBody 1528
GIDIDPatURIBody ::= “gid:” GIDIDPatURIMain 1529
GIDIDPatURIMain ::= 1530
 2*(NumericComponent “.”) NumericComponent 1531
 | 2*(NumericComponent “.”) “*” 1532
 | NumericComponent “.*.*” 1533
 | “*.*.*” 1534
SGTINIDPatURIBody ::= “sgtin:” SGTINPatURIMain 1535
SGTINPatURIMain ::= 1536
 2*(PaddedNumericComponent “.”) GS3A3Component 1537
 | 2*(PaddedNumericComponent “.”) “*” 1538

 EPC Tag Data Standard

Jan-2014, Version 1.8 Copyright ©2005- 2014 GS1 AISBL, All Rights Reserved. Page 52 of 225

 | PaddedNumericComponent “.*.*” 1539
 | “*.*.*” 1540
GRAIIDPatURIBody ::= “grai:” SGLNGRAIIDPatURIMain 1541
SGLNIDPatURIBody ::= “sgln:” SGLNGRAIIDPatURIMain 1542
SGLNGRAIIDPatURIMain ::= 1543
 PaddedNumericComponent “.” PaddedNumericComponentOrEmpty “.” 1544
GS3A3Component 1545
 | PaddedNumericComponent “.” PaddedNumericComponentOrEmpty 1546
“.*” 1547
 | PaddedNumericComponent “.*.*” 1548
 | “*.*.*” 1549
SSCCIDPatURIBody ::= “sscc:” SSCCIDPatURIMain 1550
SSCCIDPatURIMain ::= 1551
 PaddedNumericComponent “.” PaddedNumericComponent 1552
 | PaddedNumericComponent “.*” 1553
 | “*.*” 1554
GIAIIDPatURIBody ::= “giai:” GIAIIDPatURIMain 1555
GIAIIDPatURIMain ::= 1556
 PaddedNumericComponent “.” GS3A3Component 1557
 | PaddedNumericComponent “.*” 1558
 | “*.*” 1559
GSRNIDPatURIBody ::= “gsrn:” GSRNIDPatURIMain 1560
GSRNIDPatURIMain ::= 1561
 PaddedNumericComponent “.” PaddedNumericComponent 1562
 | PaddedNumericComponent “.*” 1563
 | “*.*” 1564
GDTIIDPatURIBody ::= “gdti:” GDTIIDPatURIMain 1565
GDTIIDPatURIMain ::= 1566
 PaddedNumericComponent “.” PaddedNumericComponentOrEmpty “.” 1567
PaddedNumericComponent 1568
 | PaddedNumericComponent “.” PaddedNumericComponentOrEmpty 1569
“.*” 1570
 | PaddedNumericComponent “.*.*” 1571
 | “*.*.*” 1572
DODIDPatURIBody ::= “usdod:” DODIDPatMain 1573
DODIDPatMain ::= 1574
 CAGECodeOrDODAAC “.” DoDSerialNumber 1575
 | CAGECodeOrDODAAC “.*” 1576
 | “*.*” 1577
ADIIDPatURIBody ::= “adi:” ADIIDPatMain 1578

 EPC Tag Data Standard

Jan-2014, Version 1.8 Copyright ©2005- 2014 GS1 AISBL, All Rights Reserved. Page 53 of 225

ADIIDPatMain ::= 1579
 CAGECodeOrDODAAC “.” ADIComponent “.” ADIExtendedComponent 1580
 | CAGECodeOrDODAAC “.” ADIComponent “.*” 1581
 | CAGECodeOrDODAAC “.*.*” 1582
 | “*.*.*” 1583
CPIIDPatURIBody ::= “cpi:” CPIIDPatMain 1584
CPIIDPatMain ::= 1585
 PaddedNumericComponent “.” CPRefComponent “.” 1586
NumericComponent 1587
 | PaddedNumericComponent “.” CPRefComponent “.*” 1588
 | PaddedNumericComponent “.*.*” 1589
 | “*.*.*” 1590

8.2. Semantics 1591
The meaning of a Pure Identity Pattern URI (urn:epc:idpat:) is formally defined as 1592
denoting a set of a set of pure identity EPCs, respectively. 1593

The set of EPCs denoted by a specific Pure Identity Pattern URI is defined by the following 1594
decision procedure, which says whether a given Pure Identity EPC URI belongs to the set 1595
denoted by the Pure Identity Pattern URI. 1596

Let urn:epc:idpat:Scheme:P1.P2...Pn be a Pure Identity Pattern URI. Let 1597
urn:epc:id:Scheme:C1.C2...Cn be a Pure Identity EPC URI, where the Scheme field 1598
of both URIs is the same. The number of components (n) depends on the value of Scheme. 1599

First, any Pure Identity EPC URI component Ci is said to match the corresponding Pure Identity 1600
Pattern URI component Pi if: 1601

• Pi is a NumericComponent, and Ci is equal to Pi; or 1602

• Pi is a PaddedNumericComponent, and Ci is equal to Pi both in numeric value as 1603
well as in length; or 1604

• Pi is a GS3A3Component, ADIExtendedComponent, ADIComponent, or 1605
CPRefComponent and Ci is equal to Pi, character for character; or 1606

• Pi is a CAGECodeOrDODAAC, and Ci is equal to Pi; or 1607

• Pi is a StarComponent (and Ci is anything at all) 1608

Then the Pure Identity EPC URI is a member of the set denoted by the Pure Identity Pattern URI 1609
if and only if Ci matches Pi for all 1 ≤ i ≤ n. 1610

9. Memory Organization of Gen 2 RFID Tags 1611

9.1. Types of Tag Data 1612
RFID Tags, particularly Gen 2 RFID Tags, may carry data of three different kinds: 1613

 EPC Tag Data Standard

Jan-2014, Version 1.8 Copyright ©2005- 2014 GS1 AISBL, All Rights Reserved. Page 54 of 225

• Business Data Information that describes the physical object to which the tag is affixed. 1614
This information includes the Electronic Product Code (EPC) that uniquely identifies the 1615
physical object, and may also include other data elements carried on the tag. This 1616
information is what business applications act upon, and so this data is commonly transferred 1617
between the data capture level and the business application level in a typical implementation 1618
architecture. Most standardized business data on an RFID tag is equivalent to business data 1619
that may be found in other data carriers, such as bar codes. 1620

• Control Information Information that is used by data capture applications to help control 1621
the process of interacting with tags. Control Information includes data that helps a capturing 1622
application filter out tags from large populations to increase read efficiency, special handling 1623
information that affects the behavior of capturing application, information that controls tag 1624
security features, and so on. Control Information is typically not passed directly to business 1625
applications, though Control Information may influence how a capturing application presents 1626
business data to the business application level. Unlike Business Data, Control Information 1627
has no equivalent in bar codes or other data carriers. 1628

• Tag Manufacture Information Information that describes the Tag itself, as opposed to the 1629
physical object to which the tag is affixed. Tag Manufacture information includes a 1630
manufacturer ID and a code that indicates the tag model. It may also include information 1631
that describes tag capabilities, as well as a unique serial number assigned at manufacture 1632
time. Usually, Tag Manufacture Information is like Control Information in that it is used by 1633
capture applications but not directly passed to business applications. In some applications, 1634
the unique serial number that may be a part of Tag Manufacture Information is used in 1635
addition to the EPC, and so acts like Business Data. Like Control Information, Tag 1636
Manufacture Information has no equivalent in bar codes or other data carrriers. 1637

It should be noted that these categories are slightly subjective, and the lines may be blurred in 1638
certain applications. However, they are useful for understanding how the Tag Data Standards are 1639
structured, and are a good guide for their effective and correct use. 1640

The following table summarizes the information above. 1641

Information
Type

Description Where on Gen 2
Tag

Where Typically
Used

Bar Code
Equivalent

Business
Data

Describes the
physical
object to
which the tag
is affixed.

EPC Bank
(excluding PC and
XPC bits, and
filter value within
EPC)

User Memory
Bank

Data Capture layer
and Business
Application layer

Yes: GS1
keys,
Application
Identifiers
(AIs)

Control
Information

Facilitates
efficient tag
interaction

Reserved Bank

EPC Bank: PC and
XPC bits, and
filter value within
EPC

Data Capture layer No

 EPC Tag Data Standard

Jan-2014, Version 1.8 Copyright ©2005- 2014 GS1 AISBL, All Rights Reserved. Page 55 of 225

Information
Type

Description Where on Gen 2
Tag

Where Typically
Used

Bar Code
Equivalent

Tag
Manufacture
Information

Describes the
tag itself, as
opposed to
the physical
object to
which the tag
is affixed

TID Bank Data Capture layer

Unique tag
manufacture serial
number may reach
Business
Application layer

No

Table 3. Kinds of Data on a Gen 2 RFID Tag 1642

9.2. Gen 2 Tag Memory Map 1643
Binary data structures defined in the Tag Data Standard are intended for use in RFID Tags, 1644
particularly in UHF Class 1 Gen 2 Tags (also known as ISO 18000-6C Tags). The air interface 1645
standard [UHFC1G2] specifies the structure of memory on Gen 2 tags. Specifically, it specifies 1646
that memory in these tags consists of four separately addressable banks, numbered 00, 01, 10, 1647
and 11. It also specifies the intended use of each bank, and constraints upon the content of each 1648
bank dictated by the behavior of the air interface. For example, the layout and meaning of the 1649
Reserved bank (bank 00), which contains passwords that govern certain air interface commands, 1650
is fully specified in [UHFC1G2]. 1651

For those memory banks and memory locations that have no special meaning to the air interface 1652
(i.e., are “just data” as far as the air interface is concerned), the Tag Data Standard specifies the 1653
content and meaning of these memory locations. 1654

Following the convention established in [UHFC1G2], memory addresses are described using 1655
hexadecimal bit addresses, where each bank begins with bit 00h and extends upward to as many 1656
bits as each bank contains, the capacity of each bank being constrained in some respects by 1657
[UHFC1G2] but ultimately may vary with each tag make and model. Bit 00h is considered the 1658
most significant bit of each bank, and when binary fields are laid out into tag memory the most 1659
significant bit of any given field occupies the lowest-numbered bit address occupied by that 1660
field. When describing individual fields, however, the least significant bit is numbered zero. For 1661
example, the Access Password is a 32-bit unsigned integer consisting of bits b31b30…b0, where b-1662
31 is the most significant bit and b0 is the least significant bit. When the Access Password is 1663
stored at address 20h – 3Fh (inclusive) in the Reserved bank of a Gen 2 tag, the most significant 1664
bit b31 is stored at tag address 20h and the least significant bit b0 is stored at address 3Fh. 1665

The following diagram shows the layout of memory on a Gen 2 tag, The colors indicate the type 1666
of data following the categorization in Section Figure 1. 1667

 EPC Tag Data Standard

Jan-2014, Version 1.8 Copyright ©2005- 2014 GS1 AISBL, All Rights Reserved. Page 56 of 225

 1668
Figure 16. Gen 2 Tag Memory Map 1669

The following table describes the fields in the memory map above. 1670

Bank Bits Field Description Category Where
Specified

Bank 00
(Reserved)

00h –
1Fh

Kill
Passwd

A 32-bit password that must be
presented to the tag in order to
complete the Gen 2 “kill”
command.

Control
Info

[UHFC1G2]

20h –
2Fh

Access
Passwd

A 32-bit password that must be
presented to the tag in order to
perform privileged operations

Control
Info

[UHFC1G2]

Kill Passwd Access Passwd
Bank 00

(Reserved)

Bank 01
(EPC)

00h 10h 20h 30h

CRC PC Bits EPC

00h 10h 20h

40h

210h

XPC Bits

Bank 10
(TID)

00h 10h 20h 30h

TID Bits

Bank 11
(User)

00h 10h 20h 30h

DSFID

08h

Encoded Data Elements

= Business Data

= Control Information

= Tag Manufacture Information

Filter value

Attribute bits

 EPC Tag Data Standard

Jan-2014, Version 1.8 Copyright ©2005- 2014 GS1 AISBL, All Rights Reserved. Page 57 of 225

Bank Bits Field Description Category Where
Specified

Bank 01
(EPC)

00h –
0Fh

CRC A 16-bit Cyclic Redundancy
Check computed over the
contents of the EPC bank.

Control
Info

[UHFC1G2]

10h –
1Fh

PC Bits Protocol Control bits (see
below)

Control
Info

(see below)

20h –
end

EPC Electronic Product Code, plus
filter value. The Electronic
Product code is a globally
unique identifier for the
physical object to which the
tag is affixed. The filter value
provides a means to improve
tag read efficiency by selecting
a subset of tags of interest.

Business
Data
(except
filter
value,
which is
Control
Info)

The EPC is
defined in
Sections 6,
7, and 13.
The filter
values are
defined in
Section 10.

210h
–
21Fh

XPC
Bits

Extended Protocol Control bits.
If bit 16h of the EPC bank is set
to one, then bits 210h – 21Fh
(inclusive) contain additional
protocol control bits as
specified in [UHFC1G2]

Control
Info

[UHFC1G2]

Bank 10
(TID)

00h –
end

TID
Bits

Tag Identification bits, which
provide information about the
tag itself, as opposed to the
physical object to which the
tag is affixed.

Tag
Manu-
facture
Info

Section 16

 EPC Tag Data Standard

Jan-2014, Version 1.8 Copyright ©2005- 2014 GS1 AISBL, All Rights Reserved. Page 58 of 225

Bank Bits Field Description Category Where
Specified

Bank 11
(User)

00h –
end

DSFID Logically, the content of user
memory is a set of name-value
pairs, where the name part is
an OID [ASN.1] and the value
is a character string.
Physically, the first few bits are
a Data Storage Format
Identifier as specified in
[ISO15961] and [ISO15962].
The DSFID specifies the
format for the remainder of the
user memory bank. The
DSFID is typically eight bits in
length, but may be extended
further as specified in
[ISO15961]. When the DSFID
specifies Access Method 2, the
format of the remainder of user
memory is “packed objects” as
specified in Section 17. This
format is recommended for use
in EPC applications. The
physical encoding in the
packed objects data format is
as a sequence of “packed
objects,” where each packed
object includes one or more
name-value pairs whose values
are compacted together.

Business
Data

[ISO15961],
[ISO15962],
Section 17

Table 4. Gen 2 Memory Map 1671
The following diagram illustrates in greater detail the first few bits of the EPC Bank (Bank 01), 1672
and in particular shows the various fields within the Protocol Control bits (bits 10h – 1Fh, 1673
inclusive). 1674

 EPC Tag Data Standard

Jan-2014, Version 1.8 Copyright ©2005- 2014 GS1 AISBL, All Rights Reserved. Page 59 of 225

 1675
Figure 17. Gen 2 Protocol Control (PC) Bits Memory Map 1676

The following table specifies the meaning of the PC bits: 1677

Bits Field Description Where
Specified

10h –
14h

Length Represents the number of 16-bit words
comprising the PC field and the EPC field
(below). See discussion in Section 15.1.1 for
the encoding of this field.

[UHFC1G2]

15h User Memory
Indicator (UMI)

Indicates whether the user memory bank is
present and contains data.

[UHFC1G2]

16h XPC Indicator
(XI)

Indicates whether an XPC is present [UHFC1G2]

17h Toggle If zero, indicates an EPCglobal application; in
particular, indicates that bits 18h – 1Fh contain
the Attribute Bits and the remainder of the
EPC bank contains a binary encoded EPC.

If one, indicates a non-EPCglobal application;
in particular, indicates that bits 18h – 1Fh
contain the ISO Application Family Identifier
(AFI) as defined in [ISO15961] and the
remainder of the EPC bank contains a Unique
Item Identifier (UII) appropriate for that AFI.

[UHFC1G2]

x00
x10

x14
x15
x16

x17
x18 x1F

x20
xF

CRC Length

User Memory Indicator (UMI)

Toggle – always zero for EPC

EPC
Binary
Encoding

Zero Fill
to the
word

boundary

Attribute
/AFI

PC

NSI

 Attribute bits for EPC

XPC Indicator (XI)

 EPC Tag Data Standard

Jan-2014, Version 1.8 Copyright ©2005- 2014 GS1 AISBL, All Rights Reserved. Page 60 of 225

Bits Field Description Where
Specified

18h –
1Fh
(if
toggle
= 0)

Attribute Bits Bits that may guide the handling of the
physical object to which the tag is affixed.

Section 11

18h –
1Fh
(if
toggle
= 1)

AFI An Application Family Identifier that
specifies a non-EPCglobal application for
which the remainder of the EPC bank is
encoded

[ISO15961]

Table 5. Gen 2 Protocol Control (PC) Bits Memory Map 1678
Bits 17h – 1Fh (inclusive) are collectively known as the Numbering System Identifier (NSI). It 1679
should be noted, however, that when the toggle bit (bit 17h) is zero, the numbering system is 1680
always the Electronic Product Code, and bits 18h – 1Fh contain the Attribute Bits whose purpose 1681
is completely unrelated to identifying the numbering system being used. 1682

10. Filter Value 1683
The filter value is additional control information that may be included in the EPC memory bank 1684
of a Gen 2 tag. The intended use of the filter value is to allow an RFID reader to select or 1685
deselect the tags corresponding to certain physical objects, to make it easier to read the desired 1686
tags in an environment where there may be other tags present in the environment. For example, 1687
if the goal is to read the single tag on a pallet, and it is expected that there may be hundreds or 1688
thousands of item-level tags present, the performance of the capturing application may be 1689
improved by using the Gen 2 air interface to select the pallet tag and deselect the item-level tags. 1690

Filter values are available for all EPC types except for the General Identifier (GID). There is a 1691
different set of standardized filter value values associated with each type of EPC, as specified 1692
below. 1693

It is essential to understand that the filter value is additional “control information” that is not part 1694
of the Electronic Product Code. The filter value does not contribute to the unique identity of the 1695
EPC. For example, it is not permissible to attach two RFID tags to to different physical objects 1696
where both tags contain the same EPC, even if the filter values are different on the two tags. 1697

Because the filter value is not part of the EPC, the filter value is not included when the EPC is 1698
represented as a pure identity URI, nor should the filter value be considered as part of the EPC 1699
by business applications. Capturing applications may, however, read the filter value and pass it 1700
upwards to business applications in some data field other than the EPC. It should be recognized, 1701
however, that the purpose of the filter values is to assist in the data capture process, and in most 1702
cases the filter value will be of limited or no value to business applications. The filter value is 1703
not intended to provide a reliable packaging-level indicator for business applications to use. 1704

Tables of filter values for all EPC schemes are available for download at 1705
http://www.gs1.org/gsmp/kc/epcglobal/tds. 1706

http://www.gs1.org/gsmp/kc/epcglobal/tds

 EPC Tag Data Standard

Jan-2014, Version 1.8 Copyright ©2005- 2014 GS1 AISBL, All Rights Reserved. Page 61 of 225

10.1. Use of “Reserved” and “All Others” Filter Values 1707
In the following sections, filter values marked as “reserved” are reserved for assignment by 1708
EPCglobal in future versions of this specification. Implementations of the encoding and 1709
decoding rules specified herein SHALL accept any value of the filter values, whether reserved or 1710
not. Applications, however, SHOULD NOT direct an encoder to write a reserved value to a tag, 1711
nor rely upon a reserved value decoded from a tag, as doing so may cause interoperability 1712
problems if a reserved value is assigned in a future revision to this specification. 1713

Each EPC scheme includes a filter value identified as “All Others.” This filter value means that 1714
the object to which the tag is affixed does not match the description of any of the other filter 1715
values defined for that EPC scheme. In some cases, the “All Others” filter value may appear on 1716
a tag that was encoded to conform to an earlier version of this specification, at which time no 1717
other suitable filter value was available. When encoding a new tag, the filter value should be set 1718
to match the description of the object to which the tag is affixed, with “All Others” being used 1719
only if a suitable filter value for the object is not defined in this specification. 1720

10.2. Filter Values for SGTIN EPC Tags 1721
The normative specifications for Filter Values for SGTIN EPC Tags are specified below. 1722

Type Filter Value Binary Value

All Others (see Section 10.1) 0 000

Point of Sale (POS) Trade Item 1 001

Full Case for Transport 2 010

Reserved (see Section 10.1) 3 011

Inner Pack Trade Item Grouping for Handling 4 100

Reserved (see Section 10.1) 5 101

Unit Load 6 110

Unit inside Trade Item or component inside a
product not intended for individual sale

7 111

Table 6. SGTIN Filter Values 1723

10.3. Filter Values for SSCC EPC Tags 1724
The normative specifications for Filter Values for SSCC EPC Tags are specified below. 1725

Type Filter Value Binary Value

All Others (see Section 10.1) 0 000

Reserved (see Section 10.1) 1 001

Full Case for Transport 2 010

Reserved (see Section 10.1) 3 011

 EPC Tag Data Standard

Jan-2014, Version 1.8 Copyright ©2005- 2014 GS1 AISBL, All Rights Reserved. Page 62 of 225

Type Filter Value Binary Value

Reserved (see Section 10.1) 4 100

Reserved (see Section 10.1) 5 101

Unit Load 6 110

Reserved (see Section 10.1) 7 111

Table 7. SSCC Filter Values 1726

10.4. Filter Values for SGLN EPC Tags 1727
Type Filter Value Binary Value

All Others (see Section 10.1) 0 000

Reserved (see Section 10.1) 1 001

Reserved (see Section 10.1) 2 010

Reserved (see Section 10.1) 3 011

Reserved (see Section 10.1) 4 100

Reserved (see Section 10.1) 5 101

Reserved (see Section 10.1) 6 110

Reserved (see Section 10.1) 7 111

Table 8. SGLN Filter Values 1728

10.5. Filter Values for GRAI EPC Tags 1729
Type Filter Value Binary Value

All Others (see Section 10.1) 0 000

Reserved (see Section 10.1) 1 001

Reserved (see Section 10.1) 2 010

Reserved (see Section 10.1) 3 011

Reserved (see Section 10.1) 4 100

Reserved (see Section 10.1) 5 101

Reserved (see Section 10.1) 6 110

Reserved (see Section 10.1) 7 111

Table 9. GRAI Filter Values 1730

 EPC Tag Data Standard

Jan-2014, Version 1.8 Copyright ©2005- 2014 GS1 AISBL, All Rights Reserved. Page 63 of 225

10.6. Filter Values for GIAI EPC Tags 1731
Type Filter Value Binary Value

All Others (see Section 10.1) 0 000

Rail Vehicle 1 001

Reserved (see Section 10.1) 2 010

Reserved (see Section 10.1) 3 011

Reserved (see Section 10.1) 4 100

Reserved (see Section 10.1) 5 101

Reserved (see Section 10.1) 6 110

Reserved (see Section 10.1) 7 111

Table 10. GIAI Filter Values 1732

10.7. Filter Values for GSRN EPC Tags 1733
Type Filter Value Binary Value

All Others (see Section 10.1) 0 000

Reserved (see Section 10.1) 1 001

Reserved (see Section 10.1) 2 010

Reserved (see Section 10.1) 3 011

Reserved (see Section 10.1) 4 100

Reserved (see Section 10.1) 5 101

Reserved (see Section 10.1) 6 110

Reserved (see Section 10.1) 7 111

Table 11. GSRN Filter Values 1734

10.8. Filter Values for GDTI EPC Tags 1735
Type Filter Value Binary Value

All Others (see Section 10.1) 0 000

Reserved (see Section 10.1) 1 001

Reserved (see Section 10.1) 2 010

Reserved (see Section 10.1) 3 011

Reserved (see Section 10.1) 4 100

Reserved (see Section 10.1) 5 101

 EPC Tag Data Standard

Jan-2014, Version 1.8 Copyright ©2005- 2014 GS1 AISBL, All Rights Reserved. Page 64 of 225

Type Filter Value Binary Value

Reserved (see Section 10.1) 6 110

Reserved (see Section 10.1) 7 111

Table 12. GDTI Filter Values 1736

10.9. Filter Values for GID EPC Tags 1737
The GID EPC scheme does not provide for the use of filter values. 1738

10.10. Filter Values for DOD EPC Tags 1739
Filter values for US DoD EPC Tags are as specified in [USDOD]. 1740

10.11. Filter Values for ADI EPC Tags 1741
Type Filter Value Binary Value

All Others (see Section 10.1) 0 000000

Item, other than an item to which filter values 8
through 63 apply

1 000001

Carton 2 000010

Reserved (see Section 10.1) 3 thru 5 000011 thru
000101

Pallet 6 000110

Reserved (see Section 10.1) 7 000111

Seat cushions 8 001000

Seat covers 9 001001

Seat belts 10 001010

Galley cars 11 001011

Unit Load Devices, cargo containers 12 001100

Security items (life vest boxes, rear lav walls, lav
ceiling access hatches)

13 001101

Life vests 14 001110

Oxygen generators 15 001111

Engine components 16 010000

Avionics 17 010001

Experimental (“flight test”) equipment 18 010010

 EPC Tag Data Standard

Jan-2014, Version 1.8 Copyright ©2005- 2014 GS1 AISBL, All Rights Reserved. Page 65 of 225

Other emergency equipment (smoke masks, PBE,
crash axes, medical kits, smoke detectors,
flashlights, etc.)

19 010011

Other rotables; e.g., line or base replaceable 20 010100

Other repariable 21 010101

Other cabin interior 22 010110

Other repair (exclude component); e.g., structure
item repair

23 010111

Reserved (see Section 10.1) 24 thru 63 011000 thru
111111

 1742

10.12. Filter Values for CPI EPC Tags 1743
Type Filter Value Binary Value

All Others (see Section 10.1) 0 000

Reserved (see Section 10.1) 1 001

Reserved (see Section 10.1) 2 010

Reserved (see Section 10.1) 3 011

Reserved (see Section 10.1) 4 100

Reserved (see Section 10.1) 5 101

Reserved (see Section 10.1) 6 110

Reserved (see Section 10.1) 7 111

11. Attribute Bits 1744
The Attribute Bits are eight bits of “control information” that may be used by capturing 1745
applications to guide the capture process. Attribute Bits may be used to determine whether the 1746
physical object to which a tag is affixed requires special handling of any kind. 1747

Attribute bits are available for all EPC types. The same definitions of attribute bits as specified 1748
below apply regardless of which EPC scheme is used. 1749

It is essential to understand that attribute bits are additional “control information” that is not part 1750
of the Electronic Product Code. Attribute bits do not contribute to the unique identity of the 1751
EPC. For example, it is not permissible to attach two RFID tags to two different physical objects 1752
where both tags contain the same EPC, even if the attribute bits are different on the two tags. 1753

Because attribute bits are not part of the EPC, they are not included when the EPC is represented 1754
as a pure identity URI, nor should the attribute bits be considered as part of the EPC by business 1755
applications. Capturing applications may, however, read the attribute bits and pass them 1756
upwards to business applications in some data field other than the EPC. It should be recognized, 1757

 EPC Tag Data Standard

Jan-2014, Version 1.8 Copyright ©2005- 2014 GS1 AISBL, All Rights Reserved. Page 66 of 225

however, that the purpose of the attribute bits is to assist in the data capture and physical 1758
handling process, and in most cases the attribute bits will be of limited or no value to business 1759
applications. The attribute bits are not intended to provide a reliable master data or product 1760
descriptive attributes for business applications to use. 1761

The currently assigned attribute bits are as specified below: 1762

Bit Address Assigned as of TDS
Version

Meaning

18h [unassigned]

19h [unassigned]

1Ah [unassigned]

1Bh [unassigned]

1Ch [unassigned]

1Dh [unassigned]

1Eh [unassigned]

1Fh 1.5 A “1” bit indicates the tag is
affixed to hazardous
material. A “0” bit provides
no such indication.

Table 13. Attribute Bit Assignments 1763
In the table above, attribute bits marked as “unassigned” are reserved for assignment by 1764
EPCglobal in future versions of this specification. Implementations of the encoding and 1765
decoding rules specified herein SHALL accept any value of the attribute bits, whether reserved 1766
or not. Applications, however, SHOULD direct an encoder to write a zero for each unassigned 1767
bit, and SHOULD NOT rely upon the value of an unassigned bit decoded from a tag, as doing so 1768
may cause interoperability problems if an unassigned value is assigned in a future revision to this 1769
specification. 1770

12. EPC Tag URI and EPC Raw URI 1771
The EPC memory bank of a Gen 2 tag contains a binary-encoded EPC, along with other control 1772
information. Applications do not normally process binary data directly. An application wishing 1773
to read the EPC may receive the EPC as a Pure Identity EPC URI, as defined in Section 6. In 1774
other situations, however, a capturing application may be interested in the control information on 1775
the tag as well as the EPC. Also, an application that writes the EPC memory bank needs to 1776
specify the values for control information that are written along with the EPC. In both of these 1777
situations, the EPC Tag URI and EPC Raw URI may be used. 1778

The EPC Tag URI specifies both the EPC and the values of control information in the EPC 1779
memory bank. It also specifies which of several variant binary coding schemes is to be used 1780
(e.g., the choice between SGTIN-96 and SGTIN-198). As such, an EPC Tag URI completely 1781
and uniquely specifies the contents of the EPC memory bank. The EPC Raw URI also specifies 1782

 EPC Tag Data Standard

Jan-2014, Version 1.8 Copyright ©2005- 2014 GS1 AISBL, All Rights Reserved. Page 67 of 225

the complete contents of the EPC memory bank, but repesents the memory contents as a single 1783
decimal or hexadecimal numeral. 1784

12.1. Structure of the EPC Tag URI and EPC Raw URI 1785
The EPC Tag URI begins with urn:epc:tag:, and is used when the EPC memory bank 1786
contains a valid EPC. EPC Tag URIs resemble Pure Identity EPC URIs, but with added control 1787
information. The EPC Raw URI begins with urn:epc:raw:, and is used when the EPC 1788
memory bank does not contain a valid EPC. This includes situations where the toggle bit (bit 1789
17h) is set to one, as well as situations where the toggle bit is set to zero but the remainder of the 1790
EPC bank does not conform to the coding rules specified in Section 14, either because the header 1791
bits are unassigned or the remainder of the binary encoding violates a validity check for that 1792
header. 1793

The following figure illustrates these URI forms. 1794

 1795
Figure 18. Illustration of EPC Tag URI and EPC Raw URI 1796

The first form in the figure, the EPC Tag URI, is used for a valid EPC. It resembles the Pure 1797
Identity EPC URI, with the addition of optional control information fields as specified in 1798
Section 12.2.2 and a (non-optional) filter value. The EPC scheme name (sgtin-96 in the 1799
example above) specifies a particular binary encoding scheme, and so it includes the length of 1800
the encoding. This is in contrast to the Pure Identity EPC URI which identifies an EPC scheme 1801
but not a specific binary encoding (e.g., sgtin but not specifically sgtin-96). 1802

urn:epc:tag:[att=x01][xpc=x0004]:sgtin-96:3.0614141.112345.400

urn:epc:raw:[att=x01][xpc=x0004]:96.x0123456890ABCDEF01234567

urn:epc:raw:[umi=1][xpc=x0004]:64.x31.x0123456890ABCDEF

EPC Tag URI

EPC Raw URI, toggle=0

EPC Raw URI, toggle=1

Control fields
(optional)

Filter value

Application Family
Identifier (AFI)

EPC Encoding
Scheme Name

(includes length)

Explicit
Length

 EPC Tag Data Standard

Jan-2014, Version 1.8 Copyright ©2005- 2014 GS1 AISBL, All Rights Reserved. Page 68 of 225

The EPC Raw URI illustrated by the second example in the figure can be used whenever the 1803
toggle bit (bit 17h) is zero, but is typically only used if the first form cannot (that is, if the 1804
contents of the EPC bank cannot be decoded according to Section 14.3.9). It specifies the 1805
contents of bit 20h onward as a single hexadecimal numeral. The number of bits in this numeral 1806
is determined by the “length” field in the EPC bank of the tag (bits 10h – 14h). (The grammar in 1807
Section 12.4 includes a variant of this form in which the contents are specified as a decimal 1808
numeral. This form is deprecated.) 1809

The EPC Raw URI illustrated by the third example in the figure is used when the toggle bit (bit 1810
17h) is one. It is similar to the second form, but with an additional field between the length and 1811
payload that reports the value of the AFI field (bits 18h – 1Fh) as a hexadecimal numeral. 1812

Each of these forms is fully defined by the encoding and decoding procedures specified in 1813
Section 14.5.10. 1814

12.2. Control Information 1815
The EPC Tag URI and EPC Raw URI specify the complete contents of the Gen 2 EPC memory 1816
bank, including control information such as filter values and attribute bits. This section specifies 1817
how control information is included in these URIs. 1818

12.2.1. Filter Values 1819
Filter values are only available when the EPC bank contains a valid EPC, and only then when the 1820
EPC is an EPC scheme other than GID. In the EPC Tag URI, the filter value is indicated as an 1821
additional field following the scheme name and preceding the remainder of the EPC, as 1822
illustrated below: 1823

 1824
Figure 19. Illustration of Filter Value Within EPC Tag URI 1825

The filter value is a decimal integer. The allowed values of the filter value are specified in 1826
Section 10. 1827

12.2.2. Other Control Information Fields 1828
Control information in the EPC bank apart from the filter values is stored separately from the 1829
EPC. Such information can be represented both in the EPC Tag URI and the EPC Raw URI, 1830
using the name-value pair syntax described below. 1831

In both URI forms, control field name-value pairs may occur following the urn:epc:tag: or 1832
urn:epc:raw:, as illustrated below: 1833

urn:epc:id:sgtin:0614141.112345.400 EPC Pure Identity URI

urn:epc:tag:sgtin-96:3.0614141.112345.400 EPC Tag URI

Filter value

 EPC Tag Data Standard

Jan-2014, Version 1.8 Copyright ©2005- 2014 GS1 AISBL, All Rights Reserved. Page 69 of 225

urn:epc:tag:[att=x01][xpc=x0004]:sgtin-96:3.0614141.112345.400 1834
urn:epc:raw:[att=x01][xpc=x0004]:96.x012345689ABCDEF01234567 1835
Each element in square brackets specifies the value of one control information field. An omitted 1836
field is equivalent to specifying a value of zero. As a limiting case, if no control information 1837
fields are specified in the URI it is equivalent to specifying a value of zero for all fields. This 1838
provides back-compatibility with earlier versions of the Tag Data Standard. 1839

The available control information fields are specified in the following table. 1840

Field Syntax Description Read/Write

Attribute Bits [att=xNN] The value of the attribute
bits (bits 18h – 1Fh), as a
two-digit hexadecimal
numeral NN.

This field is only available
if the toggle bit (bit 17h) is
zero.

Read / Write

User Memory
Indicator

[umi=B] The value of the user
memory indicator bit (bit
15h). The value B is either
the digit 0 or the digit 1.

Read / Write

Note that certain Gen 2
Tags may ignore the
value written to this bit,
and instead calculate
the value of the bit
from the contents of
user memory. See
[UHFC1G2].

Extended PC
Bits

[xpc=xNNNN] The value of the XPC bits
(bits 210h-21Fh) as a four-
digit hexadecimal numeral
NNNN.

Read only

Table 14. Control Information Fields 1841
The user memory indicator and extended PC bits are calculated by the tag as a function of other 1842
information on the tag or based on operations performed to the tag (such as recommissioning). 1843
Therefore, these fields cannot be written directly. When reading from a tag, any of the control 1844
information fields may appear in the URI that results from decoding the EPC memory bank. 1845
When writing a tag, the umi and xpc fields will be ignored when encoding the URI into the tag. 1846

To aid in decoding, any control information fields that appear in a URI must occur in 1847
alphabetical order (the same order as in the table above). 1848

Examples (non-normative): The following examples illustrate the use of control information 1849
fields in the EPC Tag URI and EPC Raw URI. 1850

 EPC Tag Data Standard

Jan-2014, Version 1.8 Copyright ©2005- 2014 GS1 AISBL, All Rights Reserved. Page 70 of 225

urn:epc:tag:sgtin-96:3.0614141.112345.400 1851

This is a tag with an SGTIN EPC, filter bits = 3, the hazardous material attribute bit set to zero, 1852
no user memory (user memory indicator = 0), and not recommissioned (extended PC = 0). This 1853
illustrates back-compatibility with earlier versions of the Tag Data Standard. 1854
urn:epc:tag:[att=x01]:sgtin-96:3.0614141.112345.400 1855

This is a tag with an SGTIN EPC, filter bits = 3, the hazardous material attribute bit set to one, 1856
no user memory (user memory indicator = 0), and not recommissioned (extended PC = 0). This 1857
URI might be specified by an application wishing to commission a tag with the hazardous 1858
material bit set to one and the filter bits and EPC as shown. 1859
urn:epc:raw:[att=x01][umi=1][xpc=x0004]:96.x1234567890ABCDEF01234567 1860
This is a tag with toggle=0, random data in bits 20h onward (not decodable as an EPC), the 1861
hazardous material attribute bit set to one, non-zero contents in user memory, and has been 1862
recommissioned (as indicated by the extended PC). 1863
urn:epc:raw:[xpc=x0001]:96.xC1.x1234567890ABCDEF01234567 1864

This is a tag with toggle=1, Application Family Indicator = C1 (hexadecimal), and has had its 1865
user memory killed (as indicated by the extended PC). 1866

12.3. EPC Tag URI and EPC Pure Identity URI 1867
The Pure Identity EPC URI as defined in Section 6 is a representation of an EPC for use in 1868
information systems. The only information in a Pure Identity EPC URI is the EPC itself. The 1869
EPC Tag URI, in contrast, contains additional information: it specifies the contents of all control 1870
information fields in the EPC memory bank, and it also specifies which encoding scheme is used 1871
to encode the EPC into binary. Therefore, to convert a Pure Identity EPC URI to an EPC Tag 1872
URI, additional information must be provided. Conversely, to extract a Pure Identity EPC URI 1873
from an EPC Tag URI, this additional information is removed. The procedures in this section 1874
specify how these conversions are done. 1875

12.3.1. EPC Binary Coding Schemes 1876
For each EPC scheme as specified in Section 6, there are one or more corresponding EPC Binary 1877
Coding Schemes that determine how the EPC is encoded into binary representation for use in 1878
RFID tags. When there is more than one EPC Binary Coding Scheme available for a given EPC 1879
scheme, a user must choose which binary coding scheme to use. In general, the shorter binary 1880
coding schemes result in fewer bits and therefore permit the use of less expensive RFID tags 1881
containing less memory, but are restricted in the range of serial numbers that are permitted. The 1882
longer binary coding schemes allow for the full range of serial numbers permitted by the GS1 1883
General Specifications, but require more bits and therefore more expensive RFID tags. 1884

It is important to note that two EPCs are the same if and only if the Pure Identity EPC URIs are 1885
character for character identical. A long binary encoding (e.g., SGTIN-198) is not a different 1886
EPC from a short binary encoding (e.g., SGTIN-96) if the GS1 Company Prefix, item reference 1887
with indicator, and serial numbers are identical. 1888

The following table enumerates the available EPC binary coding schemes, and indicates the 1889
limitations imposed on serial numbers. 1890

 EPC Tag Data Standard

Jan-2014, Version 1.8 Copyright ©2005- 2014 GS1 AISBL, All Rights Reserved. Page 71 of 225

EPC
Scheme

EPC Binary
Coding
Scheme

EPC +
Filter

Bit
Count

Includes
Filter
Value

Serial Number Limitation

sgtin sgtin-96 96 Yes Numeric-only, no leading zeros, decimal
value must be less than 238 (i.e., decimal
value less than or equal to
274,877,906,943).

sgtin-198 198 Yes All values permitted by GS1 General
Specifications (up to 20 alphanumeric
characters)

sscc sscc-96 96 Yes All values permitted by GS1 General
Specifications (11 – 5 decimal digits
including extension digit, depending on
GS1 Company Prefix length)

sgln sgln-96 96 Yes Numeric-only, no leading zeros, decimal
value must be less than 241 (i.e., decimal
value less than or equal to
2,199,023,255,551).

sgln-195 195 Yes All values permitted by GS1 General
Specifications (up to 20 alphanumeric
characters)

grai grai-96 96 Yes Numeric-only, no leading zeros, decimal
value must be less than 238 (i.e., decimal
value less than or equal to
274,877,906,943).

grai-170 170 Yes All values permitted by GS1 General
Specifications (up to 16 alphanumeric
characters)

giai giai-96 96 Yes Numeric-only, no leading zeros, decimal
value must be less than a limit that varies
according to the length of the GS1
Company Prefix. See Section 14.5.5.1.

giai-202 202 Yes All values permitted by GS1 General
Specifications (up to 18 – 24
alphanumeric characters, depending on
company prefix length)

gsrn gsrn-96 96 Yes All values permitted by GS1 General
Specifications (11 – 5 decimal digits,
depending on GS1 Company Prefix
length)

 EPC Tag Data Standard

Jan-2014, Version 1.8 Copyright ©2005- 2014 GS1 AISBL, All Rights Reserved. Page 72 of 225

EPC
Scheme

EPC Binary
Coding
Scheme

EPC +
Filter

Bit
Count

Includes
Filter
Value

Serial Number Limitation

gdti gdti-96 96 Yes Numeric-only, no leading zeros, decimal
value must be less than 241 (i.e., decimal
value less than or equal to
2,199,023,255,551).

gdti-113 113 Yes All values permitted by GS1 General
Specifications (up to 17 decimal digits,
with or without leading zeros)

gid gid-96 96 No Numeric-only, no leading zeros, decimal
value must be less than 236 (i.e., decimal
value must be less than or equal to
68,719,476,735).

usdod usdod-96 96 See “United States Department of Defense Supplier's
Passive RFID Information Guide” that can be
obtained at the United States Department of Defense's
web site (http://www.dodrfid.org/supplierguide.htm).

adi adi-var Variable Yes See Section 14.5.10.1

cpi cpi-96 96 Yes Serial Number: Numeric-only, no leading
zeros, decimal value must be less than 231
(i.e., decimal value less than or equal to
2,147,483,647).

The component/part reference is also
limited to values that are numeric-only,
with no leading zeros, and whose length is
less than or equal to 15 minus the length
of the GS1 Company Prefix

 cpi-var Variable Yes All values permitted by GS1 General
Specifications (up to 12 decimal digits, no
leading zeros).

Table 15. EPC Binary Coding Schemes and Their Limitations 1891
Explanation (non-normative): For the SGTIN, SGLN, GRAI, and GIAI EPC schemes, the serial 1892
number according to the GS1 General Specifications is a variable length, alphanumeric string. 1893
This means that serial number 34, 034, 0034, etc, are all different serial numbers, as are P34, 1894
34P, 0P34, P034, and so forth. In order to provide for up to 20 alphanumeric characters, 140 1895
bits are required to encode the serial number. This is why the “long” binary encodings all have 1896
such a large number of bits. Similar considerations apply to the GDTI EPC scheme, except that 1897
the GDTI only allows digit characters (but still permits leading zeros). 1898

http://www.dodrfid.org/supplierguide.htm

 EPC Tag Data Standard

Jan-2014, Version 1.8 Copyright ©2005- 2014 GS1 AISBL, All Rights Reserved. Page 73 of 225

In order to accommodate the very common 96-bit RFID tag, additional binary coding schemes 1899
are introduced that only require 96 bits. In order to fit within 96 bits, some serial numbers have 1900
to be excluded. The 96-bit encodings of SGTIN, SGLN, GRAI, GIAI, and GDTI are limited to 1901
serial numbers that consist only of digits, which do not have leading zeros (unless the serial 1902
number consists in its entirety of a single 0 digit), and whose value when considered as a 1903
decimal numeral is less than 2B, where B is the number of bits available in the binary coding 1904
scheme. The choice to exclude serial numbers with leading zeros was an arbitrary design choice 1905
at the time the 96-bit encodings were first defined; for example, an alternative would have been 1906
to permit leading zeros, at the expense of excluding other serial numbers. But it is impossible to 1907
escape the fact that in B bits there can be no more than 2B different serial numbers. 1908

When decoding a “long” binary encoding, it is not permissible to strip off leading zeros when 1909
the binary encoding includes leading zero characters. Likewise, when encoding an EPC into 1910
either the “short” or “long” form, it is not permissible to strip off leading zeros prior to 1911
encoding. This means that EPCs whose serial numbers have leading zeros can only be encoded 1912
in the “long” form. 1913

In certain applications, it is desirable for the serial number to always contain a specific number 1914
of characters. Reasons for this may include wanting a predictable length for the EPC URI 1915
string, or for having a predictable size for a corresponding bar code encoding of the same 1916
identifier. In certain bar code applications, this is accomplished through the use of leading 1917
zeros. If 96-bit tags are used, however, the option to use leading zeros does not exist. 1918

Therefore, in applications that both require 96-bit tags and require that the serial number be a 1919
fixed number of characters, it is recommended that numeric serial numbers be used that are in 1920
the range 10D ≤ serial < 10D+1, where D is the desired number of digits. For example, if 11-digit 1921
serial numbers are desired, an application can use serial numbers in the range 10,000,000,000 1922
through 99,999,999,999. Such applications must take care to use serial numbers that fit within 1923
the constraints of 96-bit tags. For example, if 12-digit serial numbers are desired for SGTIN-96 1924
encodings, then the serial numbers must be in the range 100,000,000,000 through 1925
274,877,906,943. 1926

It should be remembered, however, that many applications do not require a fixed number of 1927
characters in the serial number, and so all serial numbers from 0 through the maximum value 1928
(without leading zeros) may be used with 96-bit tags. 1929

12.3.2. EPC Pure Identity URI to EPC Tag URI 1930
Given: 1931

• An EPC Pure Identity URI as specified in Section 6.3. This is a string that matches the 1932
EPC-URI production of the grammar in Section 6.3. 1933

• A selection of a binary coding scheme to use. This is one of the the binary coding schemes 1934
specified in the “EPC Binary Coding Scheme” column of Table 15. The chosen binary 1935
coding scheme must be one that corresponds to the EPC scheme in the EPC Pure Identity 1936
URI. 1937

• A filter value, if the “Includes Filter Value” column of Table 15 indicates that the binary 1938
encoding includes a filter value. 1939

 EPC Tag Data Standard

Jan-2014, Version 1.8 Copyright ©2005- 2014 GS1 AISBL, All Rights Reserved. Page 74 of 225

• The value of the attribute bits. 1940

• The value of the user memory indicator. 1941

Validation: 1942

• The serial number portion of the EPC (the characters following the rightmost dot character) 1943
must conform to any restrictions implied by the selected binary coding scheme, as specified 1944
by the “Serial Number Limitation” column of Table 15. 1945

• The filter value must be in the range 0 ≤ filter ≤ 7. 1946
Procedure: 1947

1. Starting with the EPC Pure Identity URI, replace the prefix urn:epc:id: with 1948
urn:epc:tag:. 1949

2. Replace the EPC scheme name with the selected EPC binary coding scheme name. For 1950
example, replace sgtin with sgtin-96 or sgtin-198. 1951

3. If the selected binary coding scheme includes a filter value, insert the filter value as a single 1952
decimal digit following the rightmost colon (“:”) character of the URI, followed by a dot 1953
(“.”) character. 1954

4. If the attribute bits are non-zero, construct a string [att=xNN], where NN is the value of the 1955
attribute bits as a 2-digit hexadecimal numeral. 1956

5. If the user memory indicator is non-zero, construct a string [umi=1]. 1957

6. If Step 4 or Step 5 yielded a non-empty string, insert those strings following the rightmost 1958
colon (“:”) character of the URI, followed by an additional colon character. 1959

7. The resulting string is the EPC Tag URI. 1960

12.3.3. EPC Tag URI to EPC Pure Identity URI 1961
Given: 1962

• An EPC Tag URI as specified in Section 12. This is a string that matches the TagURI 1963
production of the grammar in Section 12.4. 1964

Procedure: 1965

1. Starting with the EPC Tag URI, replace the prefix urn:epc:tag: with urn:epc:id:. 1966

2. Replace the EPC binary coding scheme name with the corresponding EPC scheme name. 1967
For example, replace sgtin-96 or sgtin-198 with sgtin. 1968

3. If the coding scheme includes a filter value, remove the filter value (the digit following the 1969
rightmost colon character) and the following dot (“.”) character. 1970

4. If the URI contains one or more control fields as specified in Section 12.2.2, remove them 1971
and the following colon character. 1972

5. The resulting string is the Pure Identity EPC URI. 1973

 EPC Tag Data Standard

Jan-2014, Version 1.8 Copyright ©2005- 2014 GS1 AISBL, All Rights Reserved. Page 75 of 225

12.4. Grammar 1974
The following grammar specifies the syntax of the EPC Tag URI and EPC Raw URI. The 1975
grammar makes reference to grammatical elements defined in Sections 5 and 6.3. 1976
TagOrRawURI ::= TagURI | RawURI 1977
TagURI ::= “urn:epc:tag:” TagURIControlBody 1978
TagURIControlBody ::= (ControlField+ “:”)? TagURIBody 1979
TagURIBody ::= SGTINTagURIBody | SSCCTagURIBody | SGLNTagURIBody 1980
| GRAITagURIBody | GIAITagURIBody | GDTITagURIBody | 1981
GSRNTagURIBody | GIDTagURIBody | DODTagURIBody | ADITagUriBody | 1982
CPITagURIBody 1983
SGTINTagURIBody ::= SGTINEncName “:” NumericComponent “.” 1984
SGTINURIBody 1985
SGTINEncName ::= “sgtin-96” | “sgtin-198” 1986
SSCCTagURIBody ::= SSCCEncName “:” NumericComponent “.” 1987
SSCCURIBody 1988
SSCCEncName ::= “sscc-96” 1989
SGLNTagURIBody ::= SGLNEncName “:” NumericComponent “.” 1990
SGLNURIBody 1991
SGLNEncName ::= “sgln-96” | “sgln-195” 1992
GRAITagURIBody ::= GRAIEncName “:” NumericComponent “.” 1993
GRAIURIBody 1994
GRAIEncName ::= “grai-96” | “grai-170” 1995
GIAITagURIBody ::= GIAIEncName “:” NumericComponent “.” 1996
GIAIURIBody 1997
GIAIEncName ::= “giai-96” | “giai-202” 1998
GDTITagURIBody ::= GDTIEncName “:” NumericComponent “.” 1999
GDTIURIBody 2000
GDTIEncName ::= “gdti-96” | “gdti-113” 2001
GSRNTagURIBody ::= GSRNEncName “:” NumericComponent “.” 2002
GSRNURIBody 2003
GSRNEncName ::= “gsrn-96” 2004
GIDTagURIBody ::= GIDEncName “:” GIDURIBody 2005
GIDEncName ::= “gid-96” 2006
DODTagURIBody ::= DODEncName “:” NumericComponent “.” DODURIBody 2007
DODEncName ::= “usdod-96” 2008
ADITagURIBody ::= ADIEncName “:” NumericComponent “.” ADIURIBody 2009

 EPC Tag Data Standard

Jan-2014, Version 1.8 Copyright ©2005- 2014 GS1 AISBL, All Rights Reserved. Page 76 of 225

ADIEncName ::= “adi-var” 2010
CPITagURIBody ::= CPIEncName “:” NumericComponent “.” CPIURIBody 2011
CPIEncName ::= “cpi-96” | “cpi-var” 2012
RawURI ::= “urn:epc:raw:” RawURIControlBody 2013
RawURIControlBody ::= (ControlField+ “:”)? RawURIBody 2014
RawURIBody ::= DecimalRawURIBody | HexRawURIBody | 2015
AFIRawURIBody 2016
DecimalRawURIBody ::= NonZeroComponent “.” NumericComponent 2017
HexRawURIBody ::= NonZeroComponent “.x” HexComponentOrEmpty 2018
AFIRawURIBody ::= NonZeroComponent “.x” HexComponent “.x” 2019
HexComponentOrEmpty 2020
ControlField ::= “[” ControlName “=” ControlValue “]” 2021
ControlName ::= “att” | “umi” | “xpc” 2022
ControlValue ::= BinaryControlValue | HexControlValue 2023
BinaryControlValue ::= “0” | “1” 2024
HexControlValue ::= “x” HexComponent 2025

13. URIs for EPC Patterns 2026
Certain software applications need to specify rules for filtering lists of tags according to various 2027
criteria. This specification provides an EPC Tag Pattern URI for this purpose. An EPC Tag 2028
Pattern URI does not represent a single tag encoding, but rather refers to a set of tag encodings. 2029
A typical pattern looks like this: 2030
urn:epc:pat:sgtin-96:3.0652642.[102400-204700].* 2031

This pattern refers to any tag containing a 96-bit SGTIN EPC Binary Encoding, whose Filter 2032
field is 3, whose GS1 Company Prefix is 0652642, whose Item Reference is in the range 102400 2033
≤ itemReference ≤ 204700, and whose Serial Number may be anything at all. 2034

In general, there is an EPC Tag Pattern URI scheme corresponding to each EPC Binary 2035
Encoding scheme, whose syntax is essentially identical except that ranges or the star (*) 2036
character may be used in each field. 2037

For the SGTIN, SSCC, SGLN, GRAI, GIAI, GSRN and GDTI patterns, the pattern syntax 2038
slightly restricts how wildcards and ranges may be combined. Only two possibilities are 2039
permitted for the CompanyPrefix field. One, it may be a star (*), in which case the following 2040
field (ItemReference, SerialReference, LocationReference, 2041
AssetType,IndividualAssetReference, ServiceReference or 2042
DocumentType) must also be a star. Two, it may be a specific company prefix, in which case 2043
the following field may be a number, a range, or a star. A range may not be specified for the 2044
CompanyPrefix. 2045

 EPC Tag Data Standard

Jan-2014, Version 1.8 Copyright ©2005- 2014 GS1 AISBL, All Rights Reserved. Page 77 of 225

Explanation (non-normative): Because the company prefix is variable length, a range may not 2046
be specified, as the range might span different lengths. When a particular company prefix is 2047
specified, however, it is possible to match ranges or all values of the following field, because its 2048
length is fixed for a given company prefix. The other case that is allowed is when both fields are 2049
a star, which works for all tag encodings because the corresponding tag fields (including the 2050
Partition field, where present) are simply ignored. 2051

The pattern URI for the DoD Construct is as follows: 2052
urn:epc:pat:usdod-96:filterPat.CAGECodeOrDODAACPat.serialNumberPat 2053

where filterPat is either a filter value, a range of the form [lo-hi], or a * character; 2054
CAGECodeOrDODAACPat is either a CAGE Code/DODAAC or a * character; and 2055
serialNumberPat is either a serial number, a range of the form [lo-hi], or a * character. 2056

The pattern URI for the Aerospace and Defense (ADI) identifier is as follows: 2057
urn:epc:pat:adi-2058
var:filterPat.CAGECodeOrDODAACPat.partNumberPat.serialNumberPat 2059

where filterPat is either a filter value, a range of the form [lo-hi], or a * character; 2060
CAGECodeOrDODAACPat is either a CAGE Code/DODAAC or a * character; 2061
partNumberPat is either an empty string, a part number, or a * character; and 2062
serialNumberPat is either a serial number or a * character. 2063

The pattern URI for the Component / Part (CPI) identifier is as follows: 2064
urn:epc:pat:cpi-96:filterPat.CPI96PatBody.serialNumberPat 2065
or 2066
urn:epc:pat:cpi-var:filterPat.CPIVarPatBody 2067

where filterPat is either a filter value, a range of the form [lo-hi], or a * character; 2068
CPI96PatBody is either *.* or a GS1 Company Prefix followed by a dot and either a 2069
numeric component/part number, a range in the form[lo-hi], or a * character; 2070
serialNumberPat is either a serial number or a * character or a range in the form[lo-hi]; 2071
and CPIVarPatBody is either *.*.* or a GS1 Company Prefix followed by a dot followed 2072
by a component/part reference followed by a dot followed by either a component/part serial 2073
number, a range in the form[lo-hi] or a * character. 2074

13.1. Syntax 2075
The syntax of EPC Tag Pattern URIs is defined by the grammar below. 2076
PatURI ::= “urn:epc:pat:” PatBody 2077
PatBody ::= GIDPatURIBody | SGTINPatURIBody | 2078
SGTINAlphaPatURIBody | SGLNGRAI96PatURIBody | 2079
SGLNGRAIAlphaPatURIBody | SSCCPatURIBody | GIAI96PatURIBody | 2080
GIAIAlphaPatURIBody | GSRNPatURIBody | GDTIPatURIBody | 2081
USDOD96PatURIBody | ADIVarPatURIBody |CPI96PatURIBody | 2082
CPIVarPatURIBody 2083
GIDPatURIBody ::= “gid-96:” 2*(PatComponent “.”) PatComponent 2084

 EPC Tag Data Standard

Jan-2014, Version 1.8 Copyright ©2005- 2014 GS1 AISBL, All Rights Reserved. Page 78 of 225

SGTIN96PatURIBody ::= “sgtin-96:” PatComponent “.” GS1PatBody 2085
“.” PatComponent 2086
SGTINAlphaPatURIBody ::= “sgtin-198:” PatComponent “.” 2087
GS1PatBody “.” GS3A3PatComponent 2088
SGLNGRAI96PatURIBody ::= SGLNGRAI96TagEncName “:” PatComponent 2089
“.” GS1EPatBody “.” PatComponent 2090
SGLNGRAI96TagEncName ::= “sgln-96” | “grai-96” 2091
SGLNGRAIAlphaPatURIBody ::= SGLNGRAIAlphaTagEncName “:” 2092
PatComponent “.” GS1EPatBody “.” GS3A3PatComponent 2093
SGLNGRAIAlphaTagEncName ::= “sgln-195” | “grai-170” 2094
SSCCPatURIBody ::= “sscc-96:” PatComponent “.” GS1PatBody 2095
GIAI96PatURIBody ::= “giai-96:” PatComponent “.” GS1PatBody 2096
GIAIAlphaPatURIBody ::= “giai-202:” PatComponent “.” 2097
GS1GS3A3PatBody 2098
GSRNPatURIBody ::= “gsrn-96:” PatComponent “.” GS1PatBody 2099
GDTIPatURIBody ::= GDTI96PatURIBody | GDTI113PatURIBody 2100
GDTI96PatURIBody ::= “gdti-96:” PatComponent “.” GS1EPatBody “.” 2101
PatComponent 2102
GDTI113PatURIBody ::= “gdti-113:” PatComponent “.” GS1EPatBody 2103
“.” PaddedNumericOrStarComponent 2104
USDOD96PatURIBody ::= “usdod-96:” PatComponent “.” 2105
CAGECodeOrDODAACPat “.” PatComponent 2106
ADIVarPatURIBody ::= “adi-var:” PatComponent “.” 2107
CAGECodeOrDODAACPat “.” ADIPatComponent “.” 2108
ADIExtendedPatComponent 2109
CPI96PatURIBody ::= “cpi-96:” PatComponent “.” GS1PatBody “.” 2110
PatComponent 2111
CPIVarPatURIBody ::= “cpi-var:” PatComponent “.” CPIVarPatBody 2112
CPIVarPatBody ::= “*.*.*” 2113
 | PaddedNumericComponent “.” CPRefComponent “.” PatComponent 2114
PaddedNumericOrStarComponent ::= PaddedNumericComponent 2115
 | StarComponent 2116
GS1PatBody ::= “*.*” | (PaddedNumericComponent “.” 2117
PaddedPatComponent) 2118
GS1EPatBody ::= “*.*” | (PaddedNumericComponent “.” 2119
PaddedOrEmptyPatComponent) 2120
GS1GS3A3PatBody ::= “*.*” | (PaddedNumericComponent “.” 2121
GS3A3PatComponent) 2122

 EPC Tag Data Standard

Jan-2014, Version 1.8 Copyright ©2005- 2014 GS1 AISBL, All Rights Reserved. Page 79 of 225

PatComponent ::= NumericComponent 2123
 | StarComponent 2124
 | RangeComponent 2125
PaddedPatComponent ::= PaddedNumericComponent 2126
 | StarComponent 2127
 | RangeComponent 2128
PaddedOrEmptyPatComponent ::= PaddedNumericComponentOrEmpty 2129
 | StarComponent 2130
 | RangeComponent 2131
GS3A3PatComponent ::= GS3A3Component | StarComponent 2132
CAGECodeOrDODAACPat ::= CAGECodeOrDODAAC | StarComponent 2133
ADIPatComponent::= ADIComponent | StarComponent 2134
ADIExtendedPatComponent ::= ADIExtendedComponent | StarComponent 2135
StarComponent ::= “*” 2136
RangeComponent ::= “[” NumericComponent “-” 2137
 NumericComponent “]” 2138

For a RangeComponent to be legal, the numeric value of the first NumericComponent 2139
must be less than or equal to the numeric value of the second NumericComponent. 2140

13.2. Semantics 2141
The meaning of an EPC Tag Pattern URI (urn:epc:pat:) is formally defined as denoting a 2142
set of EPC Tag URIs. 2143

The set of EPCs denoted by a specific EPC Tag Pattern URI is defined by the following decision 2144
procedure, which says whether a given EPC Tag URI belongs to the set denoted by the EPC Tag 2145
Pattern URI. 2146

Let urn:epc:pat:EncName:P1.P2...Pn be an EPC Tag Pattern URI. Let 2147
urn:epc:tag:EncName:C1.C2...Cn be an EPC Tag URI, where the EncName field of 2148
both URIs is the same. The number of components (n) depends on the value of EncName. 2149

First, any EPC Tag URI component Ci is said to match the corresponding EPC Tag Pattern URI 2150
component Pi if: 2151

• Pi is a NumericComponent, and Ci is equal to Pi; or 2152

• Pi is a PaddedNumericComponent, and Ci is equal to Pi both in numeric value as 2153
well as in length; or 2154

• Pi is a GS3A3Component, ADIExtendedComponent, ADIComponent, or 2155
CPRefComponent and Ci is equal to Pi, character for character; or 2156

• Pi is a CAGECodeOrDODAAC, and Ci is equal to Pi; or 2157

• Pi is a RangeComponent [lo-hi], and lo ≤ Ci ≤ hi; or 2158

 EPC Tag Data Standard

Jan-2014, Version 1.8 Copyright ©2005- 2014 GS1 AISBL, All Rights Reserved. Page 80 of 225

• Pi is a StarComponent (and Ci is anything at all) 2159

Then the EPC Tag URI is a member of the set denoted by the EPC Pattern URI if and only if Ci 2160
matches Pi for all 1 ≤ i ≤ n. 2161

14. EPC Binary Encoding 2162
This section specifies how EPC Tag URIs are encoded into binary strings, and conversely how a 2163
binary string is decoded into an EPC Tag URI (if possible). The binary strings defined by the 2164
encoding and decoding procedures herein are suitable for use in the EPC memory bank of a Gen 2165
2 tag, as specified in Section 14.5.10. 2166

The complete procedure for encoding an EPC Tag URI into the binary contents of the EPC 2167
memory bank of a Gen 2 tag is specified in Section 15.1.1. The procedure in Section 15.1.1 uses 2168
the procedure defined below in Section 14.3 to do the bulk of the work. Conversely, the 2169
complete procedure for decoding the binary contents of the EPC memory bank of a Gen 2 tag 2170
into an EPC Tag URI (or EPC Raw URI, if necessary) is specified in Section 15.2.2. The 2171
procedure in Section 15.2.2 uses the procedure defined below in Section 14.3.9 to do the bulk of 2172
the work. 2173

14.1. Overview of Binary Encoding 2174
The general structure of an EPC Binary Encoding as used on a tag is as a string of bits (i.e., a 2175
binary representation), consisting of a fixed length header followed by a series of fields whose 2176
overall length, structure, and function are determined by the header value. The assigned header 2177
values are specified in Section 14.2. 2178

The procedures for converting between the EPC Tag URI and the binary encoding are specified 2179
in Section 14.3 (encoding URI to binary) and Section 14.3.9 (decoding binary to URI). Both the 2180
encoding and decoding procedures are driven by coding tables specified in Section 14.4.9. Each 2181
coding table specifies, for a given header value, the structure of the fields following the header. 2182

To convert an EPC Tag URI to the EPC Binary Encoding, follow the procedure specified in 2183
Section 14.3, which is summarized as follows. First, the appropriate coding table is selected 2184
from among the tables specified in Section 14.4.9. The correct coding table is the one whose 2185
“URI Template” entry matches the given EPC Tag URI. Each column in the coding table 2186
corresponds to a bit field within the final binary encoding. Within each column, a “Coding 2187
Method” is specified that says how to calculate the corresponding bits of the binary encoding, 2188
given some portion of the URI as input. The encoding details for each “Coding Method” are 2189
given in subsections of Section 14.3. 2190

To convert an EPC Binary Encoding into an EPC Tag URI, follow the procedure specified in 2191
Section 14.3.9, which is summarized as follows. First, the most significant eight bits are looked 2192
up in the table of EPC binary headers (Table 16 in Section 14.2). This identifies the EPC coding 2193
scheme, which in turn selects a coding table from among those specified in Section 14.4.9. Each 2194
column in the coding table corresponds to a bit field in the input binary encoding. Within each 2195
column, a “Coding Method” is specified that says how to calculate a corresponding portion of 2196
the output URI, given that bit field as input. The decoding details for each “Coding Method” are 2197
given in subsections of Section 14.3.9. 2198

 EPC Tag Data Standard

Jan-2014, Version 1.8 Copyright ©2005- 2014 GS1 AISBL, All Rights Reserved. Page 81 of 225

14.2. EPC Binary Headers 2199
The general structure of an EPC Binary Encoding as used on a tag is as a string of bits (i.e., a 2200
binary representation), consisting of a fixed length, 8 bit, header followed by a series of fields 2201
whose overall length, structure, and function are determined by the header value. For future 2202
expansion purpose, a header value of 11111111 is defined, to indicate that longer header beyond 2203
8 bits is used; this provides for future expansion so that more than 256 header values may be 2204
accommodated by using longer headers. Therefore, the present specification provides for up to 2205
255 8-bit headers, plus a currently undetermined number of longer headers. 2206

Back-compatibility note (non-normative) In a prior version of the Tag Data Standard, the 2207
header was of variable length, using a tiered approach in which a zero value in each tier 2208
indicated that the header was drawn from the next longer tier. For the encodings defined in the 2209
earlier specification, headers were either 2 bits or 8 bits. Given that a zero value is reserved to 2210
indicate a header in the next longer tier, the 2-bit header had 3 possible values (01, 10, and 11, 2211
not 00), and the 8-bit header had 63 possible values (recognizing that the first 2 bits must be 00 2212
and 00000000 is reserved to allow headers that are longer than 8 bits). The 2-bit headers were 2213
only used in conjunction with certain 64-bit EPC Binary Encodings. 2214

In this version of the Tag Data Standard, the tiered header approach has been abandoned. Also, 2215
all 64-bit encodings (including all encodings that used 2-bit headers) have been deprecated, and 2216
should not be used in new applications. To facilitate an orderly transition, the portions of 2217
header space formerly occupied by 64-bit encodings are reserved in this version of the Tag Data 2218
Standard, with the intention that they be reclaimed after a “sunset date” has passed. After the 2219
“sunset date,” tags containing 64-bit EPCs with 2-bit headers and tags with 64-bit headers 2220
starting with 00001 will no longer be properly interpreted. 2221

The encoding schemes defined in this version of the EPC Tag Data Standard are shown in Table 2222
16 below. The table also indicates header values that are currently unassigned, as well as header 2223
values that have been reserved to allow for an orderly “sunset” of 64-bit encodings defined in 2224
prior versions of the EPC Tag Data Standard. These will not be available for assignment until 2225
after the “sunset date” has passed. The “sunset date” is July 1, 2009, as stated by EPCglobal on 2226
July 1, 2006. 2227

Header
Value

(binary)

Header Value
(hexadecimal)

Encoding
Length
(bits)

Coding Scheme

0000 0000 00 NA Unprogrammed Tag

0000 0001
0000 001x

0000 01xx

01
02,03

04,05

06,07

NA
NA

NA

NA

Reserved for Future Use
Reserved for Future Use

Reserved for Future Use

Reserved for Future Use

0000 1000 08 64 Reserved until 64bit Sunset <SSCC-64>

0000 1001 09 64 Reserved until 64bit Sunset <SGLN-64>

0000 1010 0A 64 Reserved until 64bit Sunset <GRAI-64>

 EPC Tag Data Standard

Jan-2014, Version 1.8 Copyright ©2005- 2014 GS1 AISBL, All Rights Reserved. Page 82 of 225

Header
Value

(binary)

Header Value
(hexadecimal)

Encoding
Length
(bits)

Coding Scheme

0000 1011 0B 64 Reserved until 64bit Sunset <GIAI-64>

0000 1100

to

0000 1111

0C

to

0F

 Reserved until 64 bit Sunset

Due to 64 bit encoding rule in Gen 1

0001 0000

to

0010 1011

10

to

2B

NA

NA

Reserved for Future Use

0010 1100 2C 96 GDTI-96

0010 1101 2D 96 GSRN-96

0010 1110 2E NA Reserved for Future Use

0010 1111 2F 96 USDoD-96

0011 0000 30 96 SGTIN-96

0011 0001 31 96 SSCC-96

0011 0010 32 96 SGLN-96

0011 0011 33 96 GRAI-96

0011 0100 34 96 GIAI-96

0011 0101 35 96 GID-96

0011 0110 36 198 SGTIN-198

0011 0111 37 170 GRAI-170

0011 1000 38 202 GIAI-202

0011 1001 39 195 SGLN-195

0011 1010 3A 113 GDTI-113

0011 1011 3B Variable ADI-var

0011 1100 3C 96 CPI-96

0011 1101 3D Variable CPI-var

0011 1110

to

0011 1111

3E

to

3F

NA Reserved for future Header values

 EPC Tag Data Standard

Jan-2014, Version 1.8 Copyright ©2005- 2014 GS1 AISBL, All Rights Reserved. Page 83 of 225

Header
Value

(binary)

Header Value
(hexadecimal)

Encoding
Length
(bits)

Coding Scheme

0100 0000

to

0111 1111

40

to

7F

 Reserved until 64 bit Sunset

1000 0000

to

1011 1111

80

to

BF

64 Reserved until 64 bit Sunset <SGTIN-64>

(64 header values)

1100 0000

to

1100 1101

C0

to

CD

 Reserved until 64 bit Sunset

1100 1110 CE 64 Reserved until 64 bit Sunset <DoD-64>

1100 1111

to

1111 1110

CF

to

FE

 Reserved until 64 bit Sunset

Following 64 bit Sunset, E2 remains reserved
to avoid confusion with the first eight bits of
TID memory (Section 16).

1111 1111 FF NA Reserved for future headers longer than 8 bits

Table 16. EPC Binary Header Values 2228

14.3. Encoding Procedure 2229
The following procedure encodes an EPC Tag URI into a bit string containing the encoded EPC 2230
and (for EPC schemes that have a filter value) the filter value. This bit string is suitable for 2231
storing in the EPC memory bank of a Gen 2 Tag beginning at bit 20h. See Section 15.1.1 for the 2232
complete procedure for encoding the entire EPC memory bank, including control information 2233
that resides outside of the encoded EPC. (The procedure in Section 15.1.1 uses the procedure 2234
below as a subroutine.) 2235

Given: 2236

• An EPC Tag URI of the form urn:epc:tag:scheme:remainder 2237

Yields: 2238

• A bit string containing the EPC binary encoding of the specified EPC Tag URI, containing 2239
the encoded EPC together with the filter value (if applicable); OR 2240

• An exception indicating that the EPC Tag URI could not be encoded. 2241
Procedure: 2242

1. Use the scheme to identify the coding table for this URI scheme. If no such scheme exists, 2243
stop: this URI is not syntactically legal. 2244

 EPC Tag Data Standard

Jan-2014, Version 1.8 Copyright ©2005- 2014 GS1 AISBL, All Rights Reserved. Page 84 of 225

2. Confirm that the URI syntactically matches the URI template associated with the coding 2245
table. If not, stop: this URI is not syntactically legal. 2246

3. Read the coding table left-to-right, and construct the encoding specified in each column to 2247
obtain a bit string. If the “Coding Segment Bit Count” row of the table specifies a fixed 2248
number of bits, the bit string so obtained will always be of this length. The method for 2249
encoding each column depends on the “Coding Method” row of the table. If the “Coding 2250
Method” row specifies a specific bit string, use that bit string for that column. Otherwise, 2251
consult the following sections that specify the encoding methods. If the encoding of any 2252
segment fails, stop: this URI cannot be encoded. 2253

4. Concatenate the bit strings from Step 3 to form a single bit string. If the overall binary length 2254
specified by the scheme is of fixed length, then the bit string so obtained will always be of 2255
that length. The position of each segment within the concatenated bit string is as specified in 2256
the “Bit Position” row of the coding table. Section 15.1.1 specifies the procedure that uses 2257
the result of this step for encoding the EPC memory bank of a Gen 2 tag. 2258

The following sections specify the procedures to be used in Step 3. 2259

14.3.1. “Integer” Encoding Method 2260
The Integer encoding method is used for a segment that appears as a decimal integer in the URI, 2261
and as a binary integer in the binary encoding. 2262

Input: The input to the encoding method is the URI portion indicated in the “URI portion” row 2263
of the encoding table, a character string with no dot (“.”) characters. 2264

Validity Test: The input character string must satisfy the following: 2265

• It must match the grammar for NumericComponent as specified in Section 5. 2266

• The value of the string when considered as a decimal integer must be less than 2b, where b is 2267
the value specified in the “Coding Segmen Bit Count” row of the encoding table. 2268

If any of the above tests fails, the encoding of the URI fails. 2269

Output: The encoding of this segment is a b-bit integer, where b is the value specified in the 2270
“Coding Segment Bit Count” row of the encoding table, whose value is the value of the input 2271
character string considered as a decimal integer. 2272

14.3.2. “String” Encoding Method 2273
The String encoding method is used for a segment that appears as an alphanumeric string in the 2274
URI, and as an ISO 646 (ASCII) encoded bit string in the binary encoding. 2275

Input: The input to the encoding method is the URI portion indicated in the “URI portion” row 2276
of the encoding table, a character string with no dot (“.”) characters. 2277

Validity Test: The input character string must satisfy the following: 2278

• It must match the grammar for GS3A3Component as specified in Section 5. 2279

• For each portion of the string that matches the Escape production of the grammar specified 2280
in Section 5 (that is, a 3-character sequence consisting of a % character followed by two 2281

 EPC Tag Data Standard

Jan-2014, Version 1.8 Copyright ©2005- 2014 GS1 AISBL, All Rights Reserved. Page 85 of 225

hexadecimal digits), the two hexadecimal characters following the % character must map to 2282
one of the 82 allowed characters specified in Table 51 (Appendix A). 2283

• The number of characters must be less than b/7, where b is the value specified in the “Coding 2284
Segment Bit Count” row of the coding table. 2285

If any of the above tests fails, the encoding of the URI fails. 2286

Output: Consider the input to be a string of zero or more characters s1s2…sN, where each 2287
character si is either a single character or a 3-character sequence matching the Escape 2288
production of the grammar (that is, a 3-character sequence consisting of a % character followed 2289
by two hexadecimal digits). Translate each character to a 7-bit string. For a single character, the 2290
corresponding 7-bit string is specified in Table 51 (Appendix A). For an Escape sequence, the 2291
7-bit string is the value of the two hexadecimal characters considered as a 7-bit integer. 2292
Concatenating those 7-bit strings in the order corresponding to the input, then pad with zero bits 2293
as necessary to total b bits, where b is the value specified in the “Coding Segment Bit Count” 2294
row of the coding table. (The number of padding bits will be b – 7N.) The resulting b-bit string 2295
is the output. 2296

14.3.3. “Partition Table” Encoding Method 2297
The Partition Table encoding method is used for a segment that appears in the URI as a pair of 2298
variable-length numeric fields separated by a dot (“.”) character, and in the binary encoding as a 2299
3-bit “partition” field followed by two variable length binary integers. The number of characters 2300
in the two URI fields always totals to a constant number of characters, and the number of bits in 2301
the binary encoding likewise totals to a constant number of bits. 2302

The Partition Table encoding method makes use of a “partition table.” The specific partition 2303
table to use is specified in the coding table for a given EPC scheme. 2304

Input: The input to the encoding method is the URI portion indicated in the “URI portion” row 2305
of the encoding table. This consists of two strings of digits separated by a dot (“.”) character. 2306
For the purpose of this encoding procedure, the digit strings to the left and right of the dot are 2307
denoted C and D, respectively. 2308

Validity Test: The input must satisfy the following: 2309

• C must match the grammar for PaddedNumericComponent as specified in Section 5. 2310

• D must match the grammar for PaddedNumericComponentOrEmpty as specified in 2311
Section 5. 2312

• The number of digits in C must match one of the values specified in the “GS1 Company 2313
Prefix Digits (L)” column of the partition table. The corresponding row is called the 2314
“matching partition table row” in the remainder of the encoding procedure. 2315

• The number of digits in D must match the corresponding value specified in the “Other Field 2316
Digits” column of the matching partition table row. Note that if the “Other Field Digits” 2317
column specifies zero, then D must be the empty string, implying the overall input segment 2318
ends with a “dot” character. 2319

Output: Construct the output bit string by concatenating the following three components: 2320

 EPC Tag Data Standard

Jan-2014, Version 1.8 Copyright ©2005- 2014 GS1 AISBL, All Rights Reserved. Page 86 of 225

• The value P specified in the “partition value” column of the matching partition table row, as 2321
a 3-bit binary integer. 2322

• The value of C considered as a decimal integer, converted to an M-bit binary integer, where 2323
M is the number of bits specified in the “GS1 Company Prefix bits” column of the matching 2324
partition table row. 2325

• The value of D considered as a decimal integer, converted to an N-bit binary integer, where N 2326
is the number of bits specified in the “other field bits” column of the matching partition table 2327
row. If D is the empty string, the value of the N-bit integer is zero. 2328

The resulting bit string is (3 + M + N) bits in length, which always equals the “Coding Segment 2329
Bit Count” for this segment as indicated in the coding table. 2330

14.3.4. “Unpadded Partition Table” Encoding Method 2331
The Unpadded Partition Table encoding method is used for a segment that appears in the URI as 2332
a pair of variable-length numeric fields separated by a dot (“.”) character, and in the binary 2333
encoding as a 3-bit “partition” field followed by two variable length binary integers. The 2334
number of characters in the two URI fields is always less than or equal to a known limit, and the 2335
number of bits in the binary encoding is always a constant number of bits. 2336

The Unpadded Partition Table encoding method makes use of a “partition table.” The specific 2337
partition table to use is specified in the coding table for a given EPC scheme. 2338

Input: The input to the encoding method is the URI portion indicated in the “URI portion” row 2339
of the encoding table. This consists of two strings of digits separated by a dot (“.”) character. 2340
For the purpose of this encoding procedure, the digit strings to the left and right of the dot are 2341
denoted C and D, respectively. 2342

Validity Test: The input must satisfy the following: 2343

• C must match the grammar for PaddedNumericComponent as specified in Section 5. 2344

• D must match the grammar for NumericComponent as specified in Section 5. 2345

• The number of digits in C must match one of the values specified in the “GS1 Company 2346
Prefix Digits (L)” column of the partition table. The corresponding row is called the 2347
“matching partition table row” in the remainder of the encoding procedure. 2348

• The value of D, considered as a decimal integer, must be less than 2N, where N is the number 2349
of bits specified in the “other field bits” column of the matching partition table row. 2350

Output: Construct the output bit string by concatenating the following three components: 2351

• The value P specified in the “partition value” column of the matching partition table row, as 2352
a 3-bit binary integer. 2353

• The value of C considered as a decimal integer, converted to an M-bit binary integer, where 2354
M is the number of bits specified in the “GS1 Company Prefix bits” column of the matching 2355
partition table row. 2356

 EPC Tag Data Standard

Jan-2014, Version 1.8 Copyright ©2005- 2014 GS1 AISBL, All Rights Reserved. Page 87 of 225

• The value of D considered as a decimal integer, converted to an N-bit binary integer, where N 2357
is the number of bits specified in the “other field bits” column of the matching partition table 2358
row. If D is the empty string, the value of the N-bit integer is zero. 2359

The resulting bit string is (3 + M + N) bits in length, which always equals the “Coding Segment 2360
Bit Count” for this segment as indicated in the coding table. 2361

14.3.5. “String Partition Table” Encoding Method 2362
The String Partition Table encoding method is used for a segment that appears in the URI as a 2363
variable-length numeric field and a variable-length string field separated by a dot (“.”) 2364
character, and in the binary encoding as a 3-bit “partition” field followed by a variable length 2365
binary integer and a variable length binary-encoded character string. The number of characters 2366
in the two URI fields is always less than or equal to a known limit (counting a 3-character escape 2367
sequence as a single character), and the number of bits in the binary encoding is padded if 2368
necessary to a constant number of bits. 2369

The Partition Table encoding method makes use of a “partition table.” The specific partition 2370
table to use is specified in the coding table for a given EPC scheme. 2371

Input: The input to the encoding method is the URI portion indicated in the “URI portion” row 2372
of the encoding table. This consists of two strings separated by a dot (“.”) character. For the 2373
purpose of this encoding procedure, the strings to the left and right of the dot are denoted C and 2374
D, respectively. 2375

Validity Test: The input must satisfy the following: 2376

• C must match the grammar for PaddedNumericComponent as specified in Section 5. 2377

• D must match the grammar for GS3A3Component as specified in Section 5. 2378

• The number of digits in C must match one of the values specified in the “GS1 Company 2379
Prefix Digits (L)” column of the partition table. The corresponding row is called the 2380
“matching partition table row” in the remainder of the encoding procedure. 2381

• The number of characters in D must be less than or equal to the corresponding value 2382
specified in the “Other Field Maximum Characters” column of the matching partition table 2383
row. For the purposes of this rule, an escape triplet (%nn) is counted as one character. 2384

• For each portion of D that matches the Escape production of the grammar specified in 2385
Section 5 (that is, a 3-character sequence consisting of a % character followed by two 2386
hexadecimal digits), the two hexadecimal characters following the % character must map to 2387
one of the 82 allowed characters specified in Table 51 (Appendix A). 2388

Output: Construct the output bit string by concatenating the following three components: 2389

• The value P specified in the “partition value” column of the matching partition table row, as 2390
a 3-bit binary integer. 2391

• The value of C considered as a decimal integer, converted to an M-bit binary integer, where 2392
M is the number of bits specified in the “GS1 Company Prefix bits” column of the matching 2393
partition table row. 2394

 EPC Tag Data Standard

Jan-2014, Version 1.8 Copyright ©2005- 2014 GS1 AISBL, All Rights Reserved. Page 88 of 225

• The value of D converted to an N-bit binary string, where N is the number of bits specified in 2395
the “other field bits” column of the matching partition table row. This N-bit binary string is 2396
constructed as follows. Consider D to be a string of zero or more characters s1s2…sN, where 2397
each character si is either a single character or a 3-character sequence matching the Escape 2398
production of the grammar (that is, a 3-character sequence consisting of a % character 2399
followed by two hexadecimal digits). Translate each character to a 7-bit string. For a single 2400
character, the corresponding 7-bit string is specified in Table 51 (Appendix A). For an 2401
Escape sequence, the 7-bit string is the value of the two hexadecimal characters considered 2402
as a 7-bit integer. Concatenate those 7-bit strings in the order corresponding to the input, 2403
then pad with zero bits as necessary to total N bits. 2404

The resulting bit string is (3 + M + N) bits in length, which always equals the “Coding Segment 2405
Bit Count” for this segment as indicated in the coding table. 2406

14.3.6. “Numeric String” Encoding Method 2407
The Numeric String encoding method is used for a segment that appears as a numeric string in 2408
the URI, possibly including leading zeros. The leading zeros are preserved in the binary 2409
encoding by prepending a “1” digit to the numeric string before encoding. 2410

Input: The input to the encoding method is the URI portion indicated in the “URI portion” row 2411
of the encoding table, a character string with no dot (“.”) characters. 2412

Validity Test: The input character string must satisfy the following: 2413

• It must match the grammar for PaddedNumericComponent as specified in Section 5. 2414

• The number of digits in the string, D, must be such that 2 × 10D < 2b, where b is the value 2415
specified in the “Coding Segment Bit Count” row of the encoding table. (For the GDTI-113 2416
scheme, b = 58 and therefore the number of digits D must be less than or equal to 17. GDTI-2417
113 is the only scheme that uses this encoding method.) 2418

If any of the above tests fails, the encoding of the URI fails. 2419

Output: Construct the output bit string as follows: 2420

• Prepend the character “1” to the left of the input character string. 2421

• Convert the resulting string to a b-bit integer, where b is the value specified in the “bit count” 2422
row of the encoding table, whose value is the value of the input character string considered as 2423
a decimal integer. 2424

14.3.7. “6-bit CAGE/DODAAC” Encoding Method 2425
The 6-Bit CAGE/DoDAAC encoding method is used for a segment that appears as a 5-character 2426
CAGE code or 6-character DoDAAC in the URI, and as a 36-bit encoded bit string in the binary 2427
encoding. 2428

Input: The input to the encoding method is the URI portion indicated in the “URI portion” row 2429
of the encoding table, a 5- or 6-character string with no dot (“.”) characters. 2430

Validity Test: The input character string must satisfy the following: 2431

 EPC Tag Data Standard

Jan-2014, Version 1.8 Copyright ©2005- 2014 GS1 AISBL, All Rights Reserved. Page 89 of 225

• It must match the grammar for CAGECodeOrDODAAC as specified in Section 6.3.9. 2432

If the above test fails, the encoding of the URI fails. 2433

Output: Consider the input to be a string of five or six characters d1d2…dN, where each character 2434
di is a single character. Translate each character to a 6-bit string using Table 52 (Appendix G). 2435
Concatenate those 6-bit strings in the order corresponding to the input. If the input was five 2436
characters, prepend the 6-bit value 100000 to the left of the result. The resulting 36-bit string is 2437
the output. 2438

14.3.8. “6-Bit Variable String” Encoding Method 2439
The 6-Bit Variable String encoding method is used for a segment that appears in the URI as a 2440
string field, and in the binary encoding as variable length null-terminated binary-encoded 2441
character string. 2442

Input: The input to the encoding method is the URI portion indicated in the “URI portion” row 2443
of the encoding table. 2444

Validity Test: The input must satisfy the following: 2445

• The input must match the grammar for the corresponding portion of the URI as specified in 2446
the appropriate subsection of Section 6.3. 2447

• The number of characters in the input must be greater than or equal to the minimum number 2448
of characters and less than or equal to the maximum number of characters specified in the 2449
footnote to the coding table for this coding table column. For the purposes of this rule, an 2450
escape triplet (%nn) is counted as one character. 2451

• For each portion of the input that matches the Escape production of the grammar specified 2452
in Section 5 (that is, a 3-character sequence consisting of a % character followed by two 2453
hexadecimal digits), the two hexadecimal characters following the % character must map to 2454
one of the characters specified in Table 52 (Appendix G), and the character so mapped must 2455
satisfy any other constraints specified in the coding table for this coding segment. 2456

• For each portion of the input that is a single character (as opposed to a 3-character escape 2457
sequence), that character must satisfy any other constraints specified in the coding table for 2458
this coding segment. 2459

Output: Consider the input to be a string of zero or more characters s1s2…sN, where each 2460
character si is either a single character or a 3-character sequence matching the Escape 2461
production of the grammar (that is, a 3-character sequence consisting of a % character followed 2462
by two hexadecimal digits). Translate each character to a 6-bit string. For a single character, the 2463
corresponding 6-bit string is specified in Table 52 (Appendix G). For an Escape sequence, the 2464
corresponding 6-bit string is specified in Table 52 (Appendix G) by finding the escape sequence 2465
in the “URI Form” column. Concatenate those 6-bit strings in the order corresponding to the 2466
input, then append six zero bits (000000). 2467

The resulting bit string is of variable length, but is always at least 6 bits and is always a multiple 2468
of 6 bits. 2469

 EPC Tag Data Standard

Jan-2014, Version 1.8 Copyright ©2005- 2014 GS1 AISBL, All Rights Reserved. Page 90 of 225

14.3.9. “6-Bit Variable String Partition Table” Encoding Method 2470
The 6-Bit Variable String Partition Table encoding method is used for a segment that appears in 2471
the URI as a variable-length numeric field and a variable-length string field separated by a dot 2472
(“.”) character, and in the binary encoding as a 3-bit “partition” field followed by a variable 2473
length binary integer and a null-terminated binary-encoded character string. The number of 2474
characters in the two URI fields is always less than or equal to a known limit (counting a 3-2475
character escape sequence as a single character), and the number of bits in the binary encoding is 2476
also less than or equal to a known limit. 2477

The 6-Bit Variable String Partition Table encoding method makes use of a “partition table.” The 2478
specific partition table to use is specified in the coding table for a given EPC scheme. 2479

Input: The input to the encoding method is the URI portion indicated in the “URI portion” row 2480
of the encoding table. This consists of two strings separated by a dot (“.”) character. For the 2481
purpose of this encoding procedure, the strings to the left and right of the dot are denoted C and 2482
D, respectively. 2483

Validity Test: The input must satisfy the following: 2484

• The input must match the grammar for the corresponding portion of the URI as specified in 2485
the appropriate subsection of Section 6.3. 2486

• The number of digits in C must match one of the values specified in the “GS1 Company 2487
Prefix Digits (L)” column of the partition table. The corresponding row is called the 2488
“matching partition table row” in the remainder of the encoding procedure. 2489

• The number of characters in D must be less than or equal to the corresponding value 2490
specified in the “Other Field Maximum Characters” column of the matching partition table 2491
row. For the purposes of this rule, an escape triplet (%nn) is counted as one character. 2492

• For each portion of D that matches the Escape production of the grammar specified in 2493
Section 5 (that is, a 3-character sequence consisting of a % character followed by two 2494
hexadecimal digits), the two hexadecimal characters following the % character must map to 2495
one of the 39 allowed characters specified in Table 52 (Appendix G). 2496

Output: Construct the output bit string by concatenating the following three components: 2497

• The value P specified in the “partition value” column of the matching partition table row, as 2498
a 3-bit binary integer. 2499

• The value of C considered as a decimal integer, converted to an M-bit binary integer, where 2500
M is the number of bits specified in the “GS1 Company Prefix bits” column of the matching 2501
partition table row. 2502

• The value of D converted to an N-bit binary string, where N is less than or equal to the 2503
number of bits specified in the “other field maximum bits” column of the matching partition 2504
table row. This binary string is constructed as follows. Consider D to be a string of one or 2505
more characters s1s2…sN, where each character si is either a single character or a 3-character 2506
sequence matching the Escape production of the grammar (that is, a 3-character sequence 2507
consisting of a % character followed by two hexadecimal digits). Translate each character to 2508
a 6-bit string. For a single character, the corresponding 6-bit string is specified in Table 52 2509
(Appendix G). For an Escape sequence, the 6-bit string is the value of the two hexadecimal 2510

 EPC Tag Data Standard

Jan-2014, Version 1.8 Copyright ©2005- 2014 GS1 AISBL, All Rights Reserved. Page 91 of 225

characters considered as a 6-bit integer. Concatenate those 6-bit strings in the order 2511
corresponding to the input, then add six zero bits. 2512

The resulting bit string is (3 + M + N) bits in length, which is always less than or equal to the 2513
maximum “Coding Segment Bit Count” for this segment as indicated in the coding table. 2514

14.4. Decoding Procedure 2515
This procedure decodes a bit string as found beginning at bit 20h in the EPC memory bank of a 2516
Gen 2 Tag into an EPC Tag URI. This procedure only decodes the EPC and filter value (if 2517
applicable). Section 15.2.2 gives the complete procedure for decoding the entire contents of the 2518
EPC memory bank, including control information that is stored outside of the encoded EPC. The 2519
procedure in Section 15.2.2 should be used by most applications. (The procedure in 2520
Section 15.2.2 uses the procedure below as a subroutine.) 2521

Given: 2522

• A bit string consisting of N bits bN-1bN-2…b0 2523
Yields: 2524

• An EPC Tag URI beginning with urn:epc:tag:, which does not contain control 2525
information fields (other than the filter value if the EPC scheme includes a filter value); OR 2526

• An exception indicating that the bit string cannot be decoded into an EPC Tag URI. 2527
Procedure: 2528

1. Extract the most significant eight bits, the EPC header: bN-1bN-2…bN-8. Referring to Table 2529
16 in Section 14.2, use the header to identify the coding table for this binary encoding and 2530
the encoding bit length B. If no coding table exists for this header, stop: this binary 2531
encoding cannot be decoded. 2532

2. Confirm that the total number of bits N is greater than or equal to the total number of bits B 2533
specified for this header in Table 16. If not, stop: this binary encoding cannot be decoded. 2534

3. If necessary, truncate the least significant bits of the input to match the number of bits 2535
specified in Table 16. That is, if Table 16 specifies B bits, retain bits bN-1bN-2…bN-B. For the 2536
remainder of this procedure, consider the remaining bits to be numbered 2537
bB-1bB-2…b0. (The purpose of this step is to remove any trailing zero padding bits that may 2538
have been read due to word-oriented data transfer.) 2539

For a variable-length coding scheme, there is no B specified in Table 16 and so this step must 2540
be omitted. There may be trailing zero padding bits remaining after all segments are decoded 2541
in Step 4, below; if so, ignore them. 2542

4. Separate the bits of the binary encoding into segments according to the “bit position” row of 2543
the coding table. For each segment, decode the bits to obtain a character string that will be 2544
used as a portion of the final URI. The method for decoding each column depends on the 2545
“coding method” row of the table. If the “coding method” row specifies a specific bit string, 2546
the corresponding bits of the input must match those bits exactly; if not, stop: this binary 2547
encoding cannot be decoded. Otherwise, consult the following sections that specify the 2548
decoding methods. If the decoding of any segment fails, stop: this binary encoding cannot be 2549
decoded. 2550

 EPC Tag Data Standard

Jan-2014, Version 1.8 Copyright ©2005- 2014 GS1 AISBL, All Rights Reserved. Page 92 of 225

For a variable-length coding segment, the coding method is applied beginning with the bit 2551
following the bits consumed by the previous coding column. That is, if the previous coding 2552
column (the column to the left of this one) consumed bits up to and including bit bi, then the 2553
most significant bit for decoding this segment is bit bi-1. The coding method will determine 2554
where the ending bit for this segment is. 2555

5. Concatenate the following strings to obtain the final URI: the string urn:epc:tag:, the 2556
scheme name as specified in the coding table, a colon (“:”) character, and the strings 2557
obtained in Step 4, inserting a dot (“.”) character between adjacent strings. 2558

The following sections specify the procedures to be used in Step 4. 2559

14.4.1. “Integer” Decoding Method 2560
The Integer decoding method is used for a segment that appears as a decimal integer in the URI, 2561
and as a binary integer in the binary encoding. 2562

Input: The input to the decoding method is the bit string identified in the “bit position” row of 2563
the coding table. 2564

Validity Test: There are no validity tests for this decoding method. 2565

Output: The decoding of this segment is a decimal numeral whose value is the value of the input 2566
considered as an unsigned binary integer. The output shall not begin with a zero character if it is 2567
two or more digits in length. 2568

14.4.2. “String” Decoding Method 2569
The String decoding method is used for a segment that appears as a alphanumeric string in the 2570
URI, and as an ISO 646 (ASCII) encoded bit string in the binary encoding. 2571

Input: The input to the decoding method is the bit string identified in the “bit position” row of 2572
the coding table. This length of this bit string is always a multiple of seven. 2573

Validity Test: The input bit string must satisfy the following: 2574

• Each 7-bit segment must have a value corresponding to a character specified in Table 51 2575
(Appendix A), or be all zeros. 2576

• All 7-bit segments following an all-zero segment must also be all zeros. 2577

• The first 7-bit segment must not be all zeros. (In other words, the string must contain at least 2578
one character.) 2579

If any of the above tests fails, the decoding of the segment fails. 2580

Output: Translate each 7-bit segment, up to but not including the first all-zero segment (if any), 2581
into a single character or 3-charcter escape triplet by looking up the 7-bit segment in Table 51 2582
(Appendix A) and using the value found in the “URI Form” column. Concatenate the characters 2583
and/or 3-character triplets in the order corresponding to the input bit string. The resulting 2584
character string is the output. This character string matches the GS3A3 production of the 2585
grammar in Section 5. 2586

 EPC Tag Data Standard

Jan-2014, Version 1.8 Copyright ©2005- 2014 GS1 AISBL, All Rights Reserved. Page 93 of 225

14.4.3. “Partition Table” Decoding Method 2587
The Partition Table decoding method is used for a segment that appears in the URI as a pair of 2588
variable-length numeric fields separated by a dot (“.”) character, and in the binary encoding as a 2589
3-bit “partition” field followed by two variable length binary integers. The number of characters 2590
in the two URI fields always totals to a constant number of characters, and the number of bits in 2591
the binary encoding likewise totals to a constant number of bits. 2592

The Partition Table decoding method makes use of a “partition table.” The specific partition 2593
table to use is specified in the coding table for a given EPC scheme. 2594

Input: The input to the decoding method is the bit string identified in the “bit position” row of 2595
the coding table. Logically, this bit string is divided into three substrings, consisting of a 3-bit 2596
“partition” value, followed by two substrings of variable length. 2597

Validity Test: The input must satisfy the following: 2598

• The three most significant bits of the input bit string, considered as a binary integer, must 2599
match one of the values specified in the “partition value” column of the partition table. The 2600
corresponding row is called the “matching partition table row” in the remainder of the 2601
decoding procedure. 2602

• Extract the M next most significant bits of the input bit string following the three partition 2603
bits, where M is the value specified in the “Compay Prefix Bits” column of the matching 2604
partition table row. Consider these M bits to be an unsigned binary integer, C. The value of 2605
C must be less than 10L, where L is the value specified in the “GS1 Company Prefix Digits 2606
(L)” column of the matching partition table row. 2607

• There are N bits remaining in the input bit string, where N is the value specified in the “Other 2608
Field Bits” column of the matching partition table row. Consider these N bits to be an 2609
unsigned binary integer, D. The value of D must be less than 10K, where K is the value 2610
specified in the “Other Field Digits (K)” column of the matching partition table row. Note 2611
that if K = 0, then the value of D must be zero. 2612

Output: Construct the output character string by concatenating the following three components: 2613

• The value C converted to a decimal numeral, padding on the left with zero (“0”) characters 2614
to make L digits in total. 2615

• A dot (“.”) character. 2616

• The value D converted to a decimal numeral, padding on the left with zero (“0”) characters 2617
to make K digits in total. If K = 0, append no characters to the dot above (in this case, the 2618
final URI string will have two adjacent dot characters when this segment is combined with 2619
the following segment). 2620

14.4.4. “Unpadded Partition Table” Decoding Method 2621
The Unpadded Partition Table decoding method is used for a segment that appears in the URI as 2622
a pair of variable-length numeric fields separated by a dot (“.”) character, and in the binary 2623
encoding as a 3-bit “partition” field followed by two variable length binary integers. The 2624
number of characters in the two URI fields is always less than or equal to a known limit, and the 2625
number of bits in the binary encoding is always a constant number of bits. 2626

 EPC Tag Data Standard

Jan-2014, Version 1.8 Copyright ©2005- 2014 GS1 AISBL, All Rights Reserved. Page 94 of 225

The Unpadded Partition Table decoding method makes use of a “partition table.” The specific 2627
partition table to use is specified in the coding table for a given EPC scheme. 2628

Input: The input to the decoding method is the bit string identified in the “bit position” row of 2629
the coding table. Logically, this bit string is divided into three substrings, consisting of a 3-bit 2630
“partition” value, followed by two substrings of variable length. 2631

Validity Test: The input must satisfy the following: 2632

• The three most significant bits of the input bit string, considered as a binary integer, must 2633
match one of the values specified in the “partition value” column of the partition table. The 2634
corresponding row is called the “matching partition table row” in the remainder of the 2635
decoding procedure. 2636

• Extract the M next most significant bits of the input bit string following the three partition 2637
bits, where M is the value specified in the “Compay Prefix Bits” column of the matching 2638
partition table row. Consider these M bits to be an unsigned binary integer, C. The value of 2639
C must be less than 10L, where L is the value specified in the “GS1 Company Prefix Digits 2640
(L)” column of the matching partition table row. 2641

• There are N bits remaining in the input bit string, where N is the value specified in the “Other 2642
Field Bits” column of the matching partition table row. Consider these N bits to be an 2643
unsigned binary integer, D. The value of D must be less than 10K, where K is the value 2644
specified in the “Other Field Max Digits (K)” column of the matching partition table row. 2645

Output: Construct the output character string by concatenating the following three components: 2646

• The value C converted to a decimal numeral, padding on the left with zero (“0”) characters 2647
to make L digits in total. 2648

• A dot (“.”) character. 2649

• The value D converted to a decimal numeral, with no leading zeros (except that if D = 0 it is 2650
converted to a single zero digit). 2651

14.4.5. “String Partition Table” Decoding Method 2652
The String Partition Table decoding method is used for a segment that appears in the URI as a 2653
variable-length numeric field and a variable-length string field separated by a dot (“.”) 2654
character, and in the binary encoding as a 3-bit “partition” field followed by a variable length 2655
binary integer and a variable length binary-encoded character string. The number of characters 2656
in the two URI fields is always less than or equal to a known limit (counting a 3-character escape 2657
sequence as a single character), and the number of bits in the binary encoding is padded if 2658
necessary to a constant number of bits. 2659

The Partition Table decoding method makes use of a “partition table.” The specific partition 2660
table to use is specified in the coding table for a given EPC scheme. 2661

Input: The input to the decoding method is the bit string identified in the “bit position” row of 2662
the coding table. Logically, this bit string is divided into three substrings, consisting of a 3-bit 2663
“partition” value, followed by two substrings of variable length. 2664

Validity Test: The input must satisfy the following: 2665

 EPC Tag Data Standard

Jan-2014, Version 1.8 Copyright ©2005- 2014 GS1 AISBL, All Rights Reserved. Page 95 of 225

• The three most significant bits of the input bit string, considered as a binary integer, must 2666
match one of the values specified in the “partition value” column of the partition table. The 2667
corresponding row is called the “matching partition table row” in the remainder of the 2668
decoding procedure. 2669

• Extract the M next most significant bits of the input bit string following the three partition 2670
bits, where M is the value specified in the “Company Prefix Bits” column of the matching 2671
partition table row. Consider these M bits to be an unsigned binary integer, C. The value of 2672
C must be less than 10L, where L is the value specified in the “GS1 Company Prefix Digits 2673
(L)” column of the matching partition table row. 2674

• There are N bits remaining in the input bit string, where N is the value specified in the “Other 2675
Field Bits” column of the matching partition table row. These bits must consist of one or 2676
more non-zero 7-bit segments followed by zero or more all-zero bits. 2677

• The number of non-zero 7-bit segments that precede the all-zero bits (if any) must be less or 2678
equal to than K, where K is the value specified in the “Maximum Characters” column of the 2679
matching partition table row. 2680

• Each of the non-zero 7-bit segments must have a value corresponding to a character specified 2681
in Table 51 (Appendix A). 2682

Output: Construct the output character string by concatenating the following three components: 2683

• The value C converted to a decimal numeral, padding on the left with zero (“0”) characters 2684
to make L digits in total. 2685

• A dot (“.”) character. 2686

• A character string determined as follows. Translate each non-zero 7-bit segment as 2687
determined by the validity test into a single character or 3-character escape triplet by looking 2688
up the 7-bit segment in Table 51 (Appendix A) and using the value found in the “URI Form” 2689
column. Concatenate the characters and/or 3-character triplet in the order corresponding to 2690
the input bit string. 2691

14.4.6. “Numeric String” Decoding Method 2692
The Numeric String decoding method is used for a segment that appears as a numeric string in 2693
the URI, possibly including leading zeros. The leading zeros are preserved in the binary 2694
encoding by prepending a “1” digit to the numeric string before encoding. 2695

Input: The input to the decoding method is the bit string identified in the “bit position” row of 2696
the coding table. 2697

Validity Test: The input must be such that the decoding procedure below does not fail. 2698

Output: Construct the output string as follows. 2699

• Convert the input bit string to a decimal numeral without leading zeros whose value is the 2700
value of the input considered as an unsigned binary integer. 2701

• If the numeral from the previous step does not begin with a “1” character, stop: the input is 2702
invalid. 2703

 EPC Tag Data Standard

Jan-2014, Version 1.8 Copyright ©2005- 2014 GS1 AISBL, All Rights Reserved. Page 96 of 225

• If the numeral from the previous step consists only of one character, stop: the input is invalid 2704
(because this would correspond to an empty numeric string). 2705

• Delete the leading “1” character from the numeral. 2706

• The resulting string is the output. 2707

14.4.7. “6-Bit CAGE/DoDAAC” Decoding Method 2708
The 6-Bit CAGE/DoDAAC decoding method is used for a segment that appears as a 5-character 2709
CAGE code or 6-character DoDAAC code in the URI, and as a 36-bit encoded bit string in the 2710
binary encoding. 2711

Input: The input to the decoding method is the bit string identified in the “bit position” row of 2712
the coding table. This length of this bit string is always 36 bits. 2713

Validity Test: The input bit string must satisfy the following: 2714

• When the bit string is considered as consisting of six 6-bit segments, each 6-bit segment must 2715
have a value corresponding to a character specified in Table 52 (Appendix G), except that the 2716
first 6-bit segment may also be the value 100000. 2717

• The first 6-bit segment must be the value 100000, or correspond to a digit character, or an 2718
uppercase alphabetic character excluding the letters I and O. 2719

• The remaining five 6-bit segments must correspond to a digit character or an uppercase 2720
alphabetic character excluding the letters I and O. 2721

If any of the above tests fails, the decoding of the segment fails. 2722

Output: Disregard the first 6-bit segment if it is equal to 100000. Translate each of the 2723
remaining five or six 6-bit segments into a single character by looking up the 6-bit segment in 2724
Table 52 (Appendix G) and using the value found in the “URI Form” column. Concatenate the 2725
characters in the order corresponding to the input bit string. The resulting character string is the 2726
output. This character string matches the CAGECodeOrDODAAC production of the grammar in 2727
Section 6.3.9. 2728

14.4.8. “6-Bit Variable String” Decoding Method 2729
The 6-Bit Variable String decoding method is used for a segment that appears in the URI as a 2730
variable-length string field, and in the binary encoding as a variable-length null-terminated 2731
binary-encoded character string. 2732

Input: The input to the decoding method is the bit string that begins in the next least significant 2733
bit position following the previous coding segment. Only a portion of this bit string is consumed 2734
by this decoding method, as described below. 2735

Validity Test: The input must be such that the decoding procedure below does not fail. 2736

Output: Construct the output string as follows. 2737

• Beginning with the most significant bit of the input, divide the input into adjacent 6-bit 2738
segments, until a terminating segment consisting of all zero bits (000000) is found. If the 2739
input is exhausted before an all-zero segment is found, stop: the input is invalid. 2740

 EPC Tag Data Standard

Jan-2014, Version 1.8 Copyright ©2005- 2014 GS1 AISBL, All Rights Reserved. Page 97 of 225

• The number of 6-bit segments preceding the terminating segment must be greater than or 2741
equal to the minimum number of characters and less than or equal to the maximum number 2742
of characters specified in the footnote to the coding table for this coding table column. If not, 2743
stop: the input is invalid. 2744

• For each 6-bit segment preceding the terminating segment, consult Table 52 (Appendix G) to 2745
find the character corresponding to the value of the 6-bit segment. If there is no character in 2746
the table corresponding to the 6-bit segment, stop: the input is invalid. 2747

• If the input violates any other constraint indicated in the coding table, stop: the input is 2748
invalid. 2749

• Translate each 6-bit segment preceding the terminating segment into a single character or 3-2750
character escape triplet by looking up the 6-bit segment in Table 52 (Appendix G) and using 2751
the value found in the “URI Form” column. Concatenate the characters and/or 3-character 2752
triplets in the order corresponding to the input bit string. The resulting string is the output of 2753
the decoding procedure. 2754

• If any columns remain in the coding table, the decoding procedure for the next column 2755
resumes with the next least significant bit after the terminating 000000 segment. 2756

14.4.9. “6-Bit Variable String Partition Table” Decoding Method 2757
The 6-Bit Varaible String Partition Table decoding method is used for a segment that appears in 2758
the URI as a variable-length numeric field and a variable-length string field separated by a dot 2759
(“.”) character, and in the binary encoding as a 3-bit “partition” field followed by a variable 2760
length binary integer and a null-terminated binary-encoded character string. The number of 2761
characters in the two URI fields is always less than or equal to a known limit (counting a 3-2762
character escape sequence as a single character), and the number of bits in the binary encoding is 2763
also less than or equal to a known limit. 2764

The 6-Bit Variable String Partition Table decoding method makes use of a “partition table.” The 2765
specific partition table to use is specified in the coding table for a given EPC scheme. 2766

Input: The input to the decoding method is the bit string identified in the “bit position” row of 2767
the coding table. Logically, this bit string is divided into three substrings, consisting of a 3-bit 2768
“partition” value, followed by two substrings of variable length. 2769

Validity Test: The input must satisfy the following: 2770

• The three most significant bits of the input bit string, considered as a binary integer, must 2771
match one of the values specified in the “partition value” column of the partition table. The 2772
corresponding row is called the “matching partition table row” in the remainder of the 2773
decoding procedure. 2774

• Extract the M next most significant bits of the input bit string following the three partition 2775
bits, where M is the value specified in the “Company Prefix Bits” column of the matching 2776
partition table row. Consider these M bits to be an unsigned binary integer, C. The value of 2777
C must be less than 10L, where L is the value specified in the “GS1 Company Prefix Digits 2778
(L)” column of the matching partition table row. 2779

 EPC Tag Data Standard

Jan-2014, Version 1.8 Copyright ©2005- 2014 GS1 AISBL, All Rights Reserved. Page 98 of 225

• There are up to N bits remaining in the input bit string, where N is the value specified in the 2780
“Other Field Maximum Bits” column of the matching partition table row. These bits must 2781
begin with one or more non-zero 6-bit segments followed by six all-zero bits. Any additional 2782
bits after the six all-zero bits belong to the next coding segment in the coding table. 2783

• The number of non-zero 6-bit segments that precede the all-zero bits must be less or equal to 2784
than K, where K is the value specified in the “Maximum Characters” column of the matching 2785
partition table row. 2786

• Each of the non-zero 6-bit segments must have a value corresponding to a character specified 2787
in Table 52 (Appendix G). 2788

Output: Construct the output character string by concatenating the following three components: 2789

• The value C converted to a decimal numeral, padding on the left with zero (“0”) characters 2790
to make L digits in total. 2791

• A dot (“.”) character. 2792

• A character string determined as follows. Translate each non-zero 6-bit segment as 2793
determined by the validity test into a single character or 3-character escape triplet by looking 2794
up the 6-bit segment in Table 52 (Appendix G) and using the value found in the “URI Form” 2795
column. Concatenate the characters and/or 3-character triplet in the order corresponding to 2796
the input bit string. 2797

14.5. EPC Binary Coding Tables 2798
This section specifies coding tables for use with the encoding procedure of Section 14.3 and the 2799
decoding procedure of Section 14.3.4. 2800

The “Bit Position” row of each coding table illustrates the relative bit positions of segments 2801
within each binary encoding. In the “Bit Position” row, the highest subscript indicates the most 2802
significant bit, and subscript 0 indicates the least significant bit. Note that this is opposite to the 2803
way RFID tag memory bank bit addresses are normally indicated, where address 0 is the most 2804
significant bit. 2805

14.5.1. Serialized Global Trade Item Number (SGTIN) 2806
Two coding schemes for the SGTIN are specified, a 96-bit encoding (SGTIN-96) and a 198-bit 2807
encoding (SGTIN-198). The SGTIN-198 encoding allows for the full range of serial numbers up 2808
to 20 alphanumeric characters as specified in [GS1GS10.0]. The SGTIN-96 encoding allows for 2809
numeric-only serial numbers, without leading zeros, whose value is less than 238 (that is, from 0 2810
through 274,877,906,943, inclusive). 2811

Both SGTIN coding schemes make reference to the following partition table. 2812

Partition
Value

(P)

GS1 Company Prefix Indicator/Pad Digit
and Item
Reference

 Bits
(M)

Digits
(L)

Bits
(N)

Digits

 EPC Tag Data Standard

Jan-2014, Version 1.8 Copyright ©2005- 2014 GS1 AISBL, All Rights Reserved. Page 99 of 225

Partition
Value

(P)

GS1 Company Prefix Indicator/Pad Digit
and Item
Reference

 Bits
(M)

Digits
(L)

Bits
(N)

Digits

0 40 12 4 1

1 37 11 7 2

2 34 10 10 3

3 30 9 14 4

4 27 8 17 5

5 24 7 20 6

6 20 6 24 7

Table 17. SGTIN Partition Table 2813

14.5.1.1. SGTIN-96 Coding Table 2814
Scheme SGTIN-96

URI
Template

urn:epc:tag:sgtin-96:F.C.I.S

Total Bits 96

Logical
Segment

EPC
Header

Filter Partition GS1
Company
Prefix (*)

Indicator
(**) / Item
Reference

Serial

Logical
Segment
Bit Count

8 3 3 20-40 24-4 38

Coding
Segment

EPC
Header

Filter GTIN Serial

URI
portion

 F C.I S

Coding
Segment
Bit Count

8 3 47 38

Bit
Position

b95b94…b88 b87b86b85 b84b83…b38 b37b36…b0

Coding
Method

00110000 Integer Partition Table 17 Integer

Table 18. SGTIN-96 Coding Table 2815

 EPC Tag Data Standard

Jan-2014, Version 1.8 Copyright ©2005- 2014 GS1 AISBL, All Rights Reserved. Page 100 of 225

(*) See Section 7.1.2 for the case of an SGTIN derived from a GTIN-8. 2816

(**) Note that in the case of an SGTIN derived from a GTIN-12 or GTIN-13, a zero pad digit 2817
takes the place of the Indicator Digit. In all cases, see Section 7.1 for the definition of how the 2818
Indicator Digit (or zero pad) and the Item Reference are combined into this segment of the EPC. 2819

14.5.1.2. SGTIN-198 Coding Table 2820
Scheme SGTIN-198

URI
Template

urn:epc:tag:sgtin-198:F.C.I.S

Total
Bits

198

Logical
Segment

EPC Header Filter Partition GS1
Company
Prefix (*)

Indicator
(**) /
Item
Reference

Serial

Logical
Segment
Bit
Count

8 3 3 20-40 24-4 140

Coding
Segment

EPC Header Filter GTIN Serial

URI
portion

 F C.I S

Coding
Segment
Bit
Count

8 3 47 140

Bit
Position

b197b196…b190 b189b188b187 b186b185…b140 b139b138…b0

Coding
Method

00110110 Integer Partition Table 17 String

Table 19. SGTIN-198 Coding Table 2821
(*) See Section 7.1.2 for the case of an SGTIN derived from a GTIN-8. 2822

(**) Note that in the case of an SGTIN derived from a GTIN-12 or GTIN-13, a zero pad digit 2823
takes the place of the Indicator Digit. In all cases, see Section 7.1 for the definition of how the 2824
Indicator Digit (or zero pad) and the Item Reference are combined into this segment of the EPC. 2825

 EPC Tag Data Standard

Jan-2014, Version 1.8 Copyright ©2005- 2014 GS1 AISBL, All Rights Reserved. Page 101 of 225

14.5.2. Serial Shipping Container Code (SSCC) 2826
One coding scheme for the SSCC is specified: the 96-bit encoding SSCC-96. The SSCC-96 2827
encoding allows for the full range of SSCCs as specified in [GS1GS10.0]. 2828

The SSCC-96 coding scheme makes reference to the following partition table. 2829

Partition
Value

(P)

GS1 Company Prefix Extension Digit
and Serial
Reference

 Bits
(M)

Digits
(L)

Bits
(N)

Digits

0 40 12 18 5

1 37 11 21 6

2 34 10 24 7

3 30 9 28 8

4 27 8 31 9

5 24 7 34 10

6 20 6 38 11

Table 20. SSCC Partition Table 2830

 EPC Tag Data Standard

Jan-2014, Version 1.8 Copyright ©2005- 2014 GS1 AISBL, All Rights Reserved. Page 102 of 225

14.5.2.1. SSCC-96 Coding Table 2831
Scheme SSCC-96

URI
Template

urn:epc:tag:sscc-96:F.C.S

Total Bits 96

Logical
Segment

EPC
Header

Filter Partition GS1
Company
Prefix

Extension
/ Serial
Reference

(Reserved)

Logical
Segment
Bit Count

8 3 3 20-40 38-18 24

Coding
Segment

EPC
Header

Filter SSCC (Reserved)

URI
portion

 F C.S

Coding
Segment
Bit Count

8 3 61 24

Bit
Position

b95b94…b88 b87b86b85 b84b83…b24 b23b36…b0

Coding
Method

00110001 Integer Partition Table 20 00…0
(24 zero
bits)

Table 21. SSCC-96 Coding Table 2832

14.5.3. Global Location Number With or Without Extension (SGLN) 2833
Two coding schemes for the SGLN are specified, a 96-bit encoding (SGLN-96) and a 195-bit 2834
encoding (SGLN-195). The SGLN-195 encoding allows for the full range of GLN extensions up 2835
to 20 alphanumeric characters as specified in [GS1GS10.0]. The SGLN-96 encoding allows for 2836
numeric-only GLN extensions, without leading zeros, whose value is less than 241 (that is, from 0 2837
through 2,199,023,255,551, inclusive). Note that an extension value of 0 is reserved to indicate 2838
that the SGLN is equivalent to the GLN indicated by the GS1 Company Prefix and location 2839
reference; this value is available in both the SGLN-96 and the SGLN-195 encodings. 2840

Both SGLN coding schemes make reference to the following partition table. 2841

Partition
Value
(P)

GS1 Company Prefix Location Reference

 Bits
(M)

Digits
(L)

Bits
(N)

Digits

 EPC Tag Data Standard

Jan-2014, Version 1.8 Copyright ©2005- 2014 GS1 AISBL, All Rights Reserved. Page 103 of 225

0 40 12 1 0

1 37 11 4 1

2 34 10 7 2

3 30 9 11 3

4 27 8 14 4

5 24 7 17 5

6 20 6 21 6

Table 22. SGLN Partition Table 2842

14.5.3.1. SGLN-96 Coding Table 2843
Scheme SGLN-96

URI
Template

urn:epc:tag:sgln-96:F.C.L.E

Total Bits 96

Logical
Segment

EPC
Header

Filter Partition GS1
Company
Prefix

Location
Reference

Extension

Logical
Segment
Bit Count

8 3 3 20-40 21-1 41

Coding
Segment

EPC
Header

Filter GLN Extension

URI
portion

 F C.L E

Coding
Segment
Bit Count

8 3 44 41

Bit
Position

b95b94…b88 b87b86b85 b84b83…b41 b40b39…b0

Coding
Method

00110010 Integer Partition Table 22 Integer

Table 23. SGLN-96 Coding Table 2844

 EPC Tag Data Standard

Jan-2014, Version 1.8 Copyright ©2005- 2014 GS1 AISBL, All Rights Reserved. Page 104 of 225

14.5.3.2. SGLN-195 Coding Table 2845
Scheme SGLN-195

URI
Template

urn:epc:tag:sgln-195:F.C.L.E

Total
Bits

195

Logical
Segment

EPC Header Filter Partition GS1
Company
Prefix

Location
Reference

Extension

Logical
Segment
Bit
Count

8 3 3 20-40 21-1 140

Coding
Segment

EPC Header Filter GLN Extension

URI
portion

 F C.L E

Coding
Segment
Bit
Count

8 3 44 140

Bit
Position

b194b193…b187 b186b185b184 b183b182…b140 b139b138…b0

Coding
Method

00111001 Integer Partition Table 22 String

Table 24. SGLN-195 Coding Table 2846

14.5.4. Global Returnable Asset Identifier (GRAI) 2847
Two coding schemes for the GRAI are specified, a 96-bit encoding (GRAI-96) and a 170-bit 2848
encoding (GRAI-170). The GRAI-170 encoding allows for the full range of serial numbers up to 2849
16 alphanumeric characters as specified in [GS1GS10.0]. The GRAI-96 encoding allows for 2850
numeric-only serial numbers, without leading zeros, whose value is less than 238 (that is, from 0 2851
through 274,877,906,943, inclusive). 2852

Only GRAIs that include the optional serial number may be represented as EPCs. A GRAI 2853
without a serial number represents an asset class, rather than a specific instance, and therefore 2854
may not be used as an EPC (just as a non-serialized GTIN may not be used as an EPC). 2855

Both GRAI coding schemes make reference to the following partition table. 2856

 EPC Tag Data Standard

Jan-2014, Version 1.8 Copyright ©2005- 2014 GS1 AISBL, All Rights Reserved. Page 105 of 225

Partition
Value

(P)

Company Prefix Asset Type

 Bits
(M)

Digits (L) Bits
(N)

Digits

0 40 12 4 0

1 37 11 7 1

2 34 10 10 2

3 30 9 14 3

4 27 8 17 4

5 24 7 20 5

6 20 6 24 6

Table 25. GRAI Partition Table 2857

14.5.4.1. GRAI-96 Coding Table 2858
Scheme GRAI-96

URI
Template

urn:epc:tag:grai-96:F.C.A.S

Total Bits 96

Logical
Segment

EPC
Header

Filter Partition GS1
Company
Prefix

Asset
Type

Serial

Logical
Segment
Bit Count

8 3 3 20-40 24-3 38

Coding
Segment

EPC
Header

Filter Partition + Company Prefix + Asset
Type

Serial

URI
portion

 F C.A S

Coding
Segment
Bit Count

8 3 47 38

Bit
Position

b95b94…b88 b87b86b85 b84b83…b38 b37b36…b0

Coding
Method

00110011 Integer Partition Table 25 Integer

Table 26. GRAI-96 Coding Table 2859

 EPC Tag Data Standard

Jan-2014, Version 1.8 Copyright ©2005- 2014 GS1 AISBL, All Rights Reserved. Page 106 of 225

14.5.4.2. GRAI-170 Coding Table 2860
Scheme GRAI-170

URI
Template

urn:epc:tag:grai-170:F.C.A.S

Total Bits 170

Logical
Segment

EPC Header Filter Partition GS1
Company
Prefix

Asset
Type

Serial

Logical
Segment
Bit Count

8 3 3 20-40 24-3 112

Coding
Segment

EPC Header Filter Partition + Company Prefix +
Asset Type

Serial

URI
portion

 F C.A S

Coding
Segment
Bit Count

8 3 47 112

Bit
Position

b169b168…b162 b161b160b159 b158b157…b112 b111b110…b0

Coding
Method

00110111 Integer Partition Table 25 String

Table 27. GRAI-170 Coding Table 2861

14.5.5. Global Individual Asset Identifier (GIAI) 2862
Two coding schemes for the GIAI are specified, a 96-bit encoding (GIAI-96) and a 202-bit 2863
encoding (GIAI-202). The GIAI-202 encoding allows for the full range of serial numbers up to 2864
24 alphanumeric characters as specified in [GS1GS10.0]. The GIAI-96 encoding allows for 2865
numeric-only serial numbers, without leading zeros, whose value is, up to a limit that varies with 2866
the length of the GS1 Company Prefix. 2867

Each GIAI coding schemes make reference to a different partition table, specified alongside the 2868
corresponding coding table in the subsections below. 2869

14.5.5.1. GIAI-96 Partition Table and Coding Table 2870
The GIAI-96 coding scheme makes use of the following partition table. 2871

 EPC Tag Data Standard

Jan-2014, Version 1.8 Copyright ©2005- 2014 GS1 AISBL, All Rights Reserved. Page 107 of 225

Partition
Value

(P)

Company Prefix Individual Asset
Reference

 Bits
(M)

Digits
(L)

Bits
(N)

Max Digits
(K)

0 40 12 42 13

1 37 11 45 14

2 34 10 48 15

3 30 9 52 16

4 27 8 55 17

5 24 7 58 18

6 20 6 62 19

Table 28. GIAI-96 Partition Table 2872

Scheme GIAI-96

URI
Template

urn:epc:tag:giai-96:F.C.A

Total Bits 96

Logical
Segment

EPC
Header

Filter Partition GS1
Company
Prefix

Individual Asset
Reference

Logical
Segment
Bit Count

8 3 3 20-40 62–42

Coding
Segment

EPC
Header

Filter GIAI

URI
portion

 F C.A

Coding
Segment
Bit Count

8 3 85

Bit
Position

b95b94…b88 b87b86b85 b84b83…b0

Coding
Method

00110100 Integer Unpadded Partition Table 28

Table 29. GIAI-96 Coding Table 2873

 EPC Tag Data Standard

Jan-2014, Version 1.8 Copyright ©2005- 2014 GS1 AISBL, All Rights Reserved. Page 108 of 225

14.5.5.2. GIAI-202 Partition Table and Coding Table 2874
The GIAI-202 coding scheme makes use of the following partition table. 2875

Partition
Value

(P)

Company Prefix Individual Asset
Reference

 Bits
(M)

Digits
(L)

Bits
(N)

Maximum
Characters

0 40 12 148 18

1 37 11 151 19

2 34 10 154 20

3 30 9 158 21

4 27 8 161 22

5 24 7 164 23

6 20 6 168 24

Table 30. GIAI-202 Partition Table 2876

 EPC Tag Data Standard

Jan-2014, Version 1.8 Copyright ©2005- 2014 GS1 AISBL, All Rights Reserved. Page 109 of 225

Scheme GIAI-202

URI
Template

urn:epc:tag:giai-202:F.C.A

Total Bits 202

Logical
Segment

EPC Header Filter Partition GS1
Company
Prefix

Individual
Asset Reference

Logical
Segment
Bit Count

8 3 3 20-40 168–148

Coding
Segment

EPC Header Filter GIAI

URI
portion

 F C.A

Coding
Segment
Bit Count

8 3 191

Bit
Position

b201b200…b194 b193b192b191 b190b189…b0

Coding
Method

00111000 Integer String Partition Table 30

Table 31. GIAI-202 Coding Table 2877

14.5.6. Global Service Relation Number (GSRN) 2878
One coding scheme for the GSRN is specified: the 96-bit encoding GSRN-96. The GSRN-96 2879
encoding allows for the full range of GSRN codes as specified in [GS1GS10.0]. 2880

The GSRN-96 coding scheme makes reference to the following partition table. 2881

Partition
Value

(P)

Company Prefix Service Reference

 Bits
(M)

Digits
(L)

Bits
(N)

Digits

0 40 12 18 5

1 37 11 21 6

2 34 10 24 7

3 30 9 28 8

4 27 8 31 9

 EPC Tag Data Standard

Jan-2014, Version 1.8 Copyright ©2005- 2014 GS1 AISBL, All Rights Reserved. Page 110 of 225

Partition
Value

(P)

Company Prefix Service Reference

 Bits
(M)

Digits
(L)

Bits
(N)

Digits

5 24 7 34 10

6 20 6 38 11

Table 32. GSRN Partition Table 2882

14.5.6.1. GSRN-96 Coding Table 2883
Scheme GSRN-96

URI
Template

urn:epc:tag:gsrn-96:F.C.S

Total Bits 96

Logical
Segment

EPC
Header

Filter Partition GS1
Company
Prefix

Extension
/ Serial
Reference

(Reserved)

Logical
Segment
Bit Count

8 3 3 20-40 38-18 24

Coding
Segment

EPC
Header

Filter GSRN (Reserved)

URI
portion

 F C.S

Coding
Segment
Bit Count

8 3 61 24

Bit
Position

b95b94…b88 b87b86b85 b84b83…b24 b23b22…b0

Coding
Method

00101101 Integer Partition Table 32 00…0
(24 zero
bits)

Table 33. GSRN-96 Coding Table 2884

14.5.7. Global Document Type Identifier (GDTI) 2885
Two coding schemes for the GDTI specified, a 96-bit encoding (GDTI-96) and a 113-bit 2886
encoding (GDTI-113). The GDTI-113 encoding allows for the full range of document serial 2887
numbers up to 17 numeric characters (including leading zeros) as specified in [GS1GS10.0]. 2888

 EPC Tag Data Standard

Jan-2014, Version 1.8 Copyright ©2005- 2014 GS1 AISBL, All Rights Reserved. Page 111 of 225

The GDTI-96 encoding allows for document serial numbers without leading zeros whose value 2889
is less than 241 (that is, from 0 through 2,199,023,255,551, inclusive). 2890

Only GDTIs that include the optional serial number may be represented as EPCs. A GDTI 2891
without a serial number represents a document class, rather than a specific document, and 2892
therefore may not be used as an EPC (just as a non-serialized GTIN may not be used as an EPC). 2893

Both GDTI coding schemes make reference to the following partition table. 2894

Partition
Value
(P)

Company Prefix Document Type

 Bits
(M)

Digits
(L)

Bits
(N)

Digits

0 40 12 1 0

1 37 11 4 1

2 34 10 7 2

3 30 9 11 3

4 27 8 14 4

5 24 7 17 5

6 20 6 21 6

Table 34. GDTI Partition Table 2895

 EPC Tag Data Standard

Jan-2014, Version 1.8 Copyright ©2005- 2014 GS1 AISBL, All Rights Reserved. Page 112 of 225

14.5.7.1. GDTI-96 Coding Table 2896
Scheme GDTI-96

URI
Template

urn:epc:tag:gdti-96:F.C.D.S

Total Bits 96

Logical
Segment

EPC
Header

Filter Partition GS1
Company
Prefix

Document
Type

Serial

Logical
Segment
Bit Count

8 3 3 20-40 21-1 41

Coding
Segment

EPC
Header

Filter Partition + Company Prefix +
Document Type

Serial

URI
portion

 F C.D S

Coding
Segment
Bit Count

8 3 44 41

Bit
Position

b95b94…b88 b87b86b85 b84b83…b41 b40b39…b0

Coding
Method

00101100 Integer Partition Table 34 Integer

Table 35. GDTI-96 Coding Table 2897

 EPC Tag Data Standard

Jan-2014, Version 1.8 Copyright ©2005- 2014 GS1 AISBL, All Rights Reserved. Page 113 of 225

14.5.7.2. GDTI-113 Coding Table 2898
Scheme GDTI-113

URI
Template

urn:epc:tag:gdti-113:F.C.D.S

Total
Bits

113

Logical
Segment

EPC Header Filter Partition GS1
Company
Prefix

Document
Type

Serial

Logical
Segment
Bit
Count

8 3 3 20-40 21-1 58

Coding
Segment

EPC Header Filter Partition + Company Prefix +
Document Type

Serial

URI
portion

 F C.D S

Coding
Segment
Bit
Count

8 3 44 58

Bit
Position

b112b111…b105 b104b103b102 b101b100…b58 b57b56…b0

Coding
Method

00111010 Integer Partition Table 34 Numeric
String

Table 36. GDTI-113 Coding Table 2899

14.5.8. General Identifier (GID) 2900
One coding scheme for the GID is specified: the 96-bit encoding GID-96. No partition table is 2901
required. 2902

 EPC Tag Data Standard

Jan-2014, Version 1.8 Copyright ©2005- 2014 GS1 AISBL, All Rights Reserved. Page 114 of 225

14.5.8.1. GID-96 Coding Table 2903
Scheme GID-96

URI Template urn:epc:tag:gid-96:M.C.S

Total Bits 96

Logical
Segment

EPC Header General
Manager
Number

Object Class Serial Number

Logical
Segment Bit
Count

8 28 24 36

Coding
Segment

EPC Header General
Manager
Number

Object Class Serial Number

URI portion M C S

Coding
Segment Bit
Count

8 28 24 36

Bit Position b95b94…b88 b87b86…b60 b59b58…b36 b35b34…b0

Coding Method 00110101 Integer Integer Integer

Table 37. GID-96 Coding Table 2904

14.5.9. DoD Identifier 2905
At the time of this writing, the details of the DoD encoding is explained in a document titled 2906
"United States Department of Defense Supplier's Passive RFID Information Guide" that can be 2907
obtained at the United States Department of Defense's web site 2908
(http://www.dodrfid.org/supplierguide.htm). 2909

14.5.10. ADI Identifier (ADI) 2910
One coding scheme for the ADI identifier is specified: the variable-length encoding ADI-var. 2911
No partition table is required. 2912

http://www.dodrfid.org/supplierguide.htm

 EPC Tag Data Standard

Jan-2014, Version 1.8 Copyright ©2005- 2014 GS1 AISBL, All Rights Reserved. Page 115 of 225

14.5.10.1. ADI-var Coding Table 2913
Scheme ADI-var

URI
Template

urn:epc:tag:adi-var:F.D.P.S

Total Bits Variable: between 68 and 434 bits (inclusive)

Logical
Segment

EPC Header Filter CAGE/
DoDAAC

Part
Number

Serial
Number

Logical
Segment
Bit Count

8 6 36 Variable Variable

Coding
Segment

EPC Header Filter CAGE/
DoDAAC

Part
Number

Serial
Number

URI
Portion

 F D P S

Coding
Segment
Bit Count

8 6 36 Variable (6
– 198)

Variable
(12 –
186)

Bit
Position

bB-1bB-2…bB-8 bB-9bB-10…bB-14 bB-15bB-16…bB-50 bB-51bB-52… …b1b0

Coding
Method

00111011 Integer 6-bit CAGE/
DoDAAC

6-bit
Variable
String

6-bit
Variable
String

Table 38. ADI-var Coding Table 2914
Notes: 2915

1. The number of characters in the Part Number segment must be greater than or equal to zero 2916
and less than or equal to 32. In the binary encoding, a 6-bit zero terminator is always 2917
present. 2918

2. The number of characters in the Serial Number segment must be greater than or equal to one 2919
and less than or equal to 30. In the binary encoding, a 6-bit zero terminator is always 2920
present. 2921

3. The “#” character (represented in the URI by the escape sequence %23) may appear as the 2922
first character of the Serial Number segment, but otherwise may not appear in the Part 2923
Number segment or elsewhere in the Serial Number segment. 2924

14.5.11. CPI Identifier (CPI) 2925
Two coding schemes for the CPI identifier are specified: the 96-bit scheme CPI-96 and the 2926
variable-length encoding CPI-var. CPI-96 makes use of Partition Table 39 and CPI-var makes 2927
use of Partition Table 40. 2928

 EPC Tag Data Standard

Jan-2014, Version 1.8 Copyright ©2005- 2014 GS1 AISBL, All Rights Reserved. Page 116 of 225

Partition
Value

(P)

GS1 Company Prefix Component/Part
Reference

 Bits
(M)

Digits
(L)

Bits
(N)

Maximum
Digits

0 40 12 11 3

1 37 11 14 4

2 34 10 17 5

3 30 9 21 6

4 27 8 24 7

5 24 7 27 8

6 20 6 31 9

Table 39. CPI-96 Partition Table 2929
 2930

Partition
Value

(P)

GS1 Company Prefix Component/Part
Reference

 Bits
(M)

Digits
(L)

Maximum
Bits **

(N)

Maximum
Characters

0 40 12 114 18

1 37 11 120 19

2 34 10 126 20

3 30 9 132 21

4 27 8 138 22

5 24 7 144 23

6 20 6 150 24

Table 40. CPI-var Partition Table 2931
** The number of bits depends on the number of characters in the Component/Part Reference; 2932
see Sections 14.3.9 and 14.4.9. 2933

 EPC Tag Data Standard

Jan-2014, Version 1.8 Copyright ©2005- 2014 GS1 AISBL, All Rights Reserved. Page 117 of 225

14.5.11.1. CPI-96 Coding Table 2934
Scheme CPI-96

URI
Templat
e

urn:epc:tag:cpi-96:F.C.P.S

Total
Bits

96

Logical
Segment

EPC Header Filter Partition GS1
Company
Prefix

Component/
Part
Reference

Serial

Logical
Segment
Bit
Count

8 3 3 20-37 31-14 31

Coding
Segment

EPC Header Filter Component/Part Identifier Component/
Part Serial
Number

URI
portion

 F C.P S

Coding
Segment
Bit
Count

8 3 54 31

Bit
Position

b95b94…b88 b87b86b85 b84b83…b31 b30b29…b0

Coding
Method

00111100 Integer Unpadded Partition Table 39 Integer

Table 41. CPI-96 Coding Table 2935

 EPC Tag Data Standard

Jan-2014, Version 1.8 Copyright ©2005- 2014 GS1 AISBL, All Rights Reserved. Page 118 of 225

14.5.11.2. CPI-var Coding Table 2936
Scheme CPI-var

URI
Template

urn:epc:tag:cpi-var:F.C.P.S

Total
Bits

Variable: between 86 and 224 bits (inclusive)

Logical
Segment

EPC Header Filter Partition GS1
Company
Prefix

Component/
Part
Reference

Serial

Logical
Segment
Bit
Count

8 3 3 20-40 12-150
(variable)

40 (fixed)

Coding
Segment

EPC Header Filter Component/Part Identifier Component/
Part Serial
Number

URI
portion

 F C.P S

Coding
Segment
Bit
Count

8 3 Up to 173 bits 40

Bit
Position

bB-1bB-2…
bB-8

bB-9bB-10bB-11 bB-12bB-13…b40 b39b38…b0

Coding
Method

00111101 Integer 6-Bit Variable String Partition
Table 40

Integer

Table 42. CPI-var Coding Table 2937

15. EPC Memory Bank Contents 2938
This section specifies how to translate the EPC Tag URI and EPC Raw URI into the binary 2939
contents of the EPC memory bank of a Gen 2 Tag, and vice versa. 2940

15.1. Encoding Procedures 2941
This section specifies how to translate the EPC Tag URI and EPC Raw URI into the binary 2942
contents of the EPC memory bank of a Gen 2 Tag. 2943

15.1.1. EPC Tag URI into Gen 2 EPC Memory Bank 2944
Given: 2945

• An EPC Tag URI beginning with urn:epc:tag: 2946

 EPC Tag Data Standard

Jan-2014, Version 1.8 Copyright ©2005- 2014 GS1 AISBL, All Rights Reserved. Page 119 of 225

Encoding procedure: 2947

1. If the URI is not syntactically valid according to Section 12.4, stop: this URI cannot be 2948
encoded. 2949

2. Apply the encoding procedure of Section 14.3 to the URI. The result is a binary string of N 2950
bits. If the encoding procedure fails, stop: this URI cannot be encoded. 2951

3. Fill in the Gen 2 EPC Memory Bank according to the following table: 2952

Bits Field Contents

00h –
0Fh

CRC CRC code calculated from the remainder of the memory bank.
(Normally, this is calculated automatically by the reader, and
so software that implements this procedure need not be
concerned with it.)

10h –
14h

Length The number of bits, N, in the EPC binary encoding
determined in Step 2 above, divided by 16, and rounded up to
the next higher integer if N was not a multiple of 16.

15h User
Memory
Indicator

If the EPC Tag URI includes a control field [umi=1], a one
bit.

If the EPC Tag URI includes a control field [umi=0] or
does not contain a umi control field, a zero bit.

Note that certain Gen 2 Tags may ignore the value written to
this bit, and instead calculate the value of the bit from the
contents of user memory. See [UHFC1G2].

16h XPC
Indicator

This bit is calculated by the tag and ignored by the tag when
the tag is written, and so is disregarded by this encoding
procedure.

17h Toggle 0, indicating that the EPC bank contains an EPC

18h –
1Fh

Attribute
Bits

If the EPC Tag URI includes a control field [att=xNN], the
value NN considered as an 8-bit hexadecimal number.

If the EPC Tag URI does not contain such a control field,
zero.

20h – ? EPC / UII The N bits obtained from the EPCbinary encoding procedure
in Step 2 above, followed by enough zero bits to bring the
total number of bits to a multiple of 16 (0 – 15 extra zero bits)

Table 43. Recipe to Fill In Gen 2 EPC Memory Bank from EPC Tag URI 2953
Explanation (non-normative): The XPC bits (bits 210h – 21Fh) are not included in this 2954
procedure, because the only XPC bits defined in [UHFC1G2] are bits which are written 2955
indirectly via recommissioning. Those bits are not intended to be written explicitly by an 2956
application. 2957

 EPC Tag Data Standard

Jan-2014, Version 1.8 Copyright ©2005- 2014 GS1 AISBL, All Rights Reserved. Page 120 of 225

15.1.2. EPC Raw URI into Gen 2 EPC Memory Bank 2958
Given: 2959

• An EPC Raw URI beginning with urn:epc:raw:. Such a URI has one of the following 2960
three forms: 2961
urn:epc:raw:OptionalControlFields:Length.xHexPayload 2962
urn:epc:raw:OptionalControlFields:Length.xAFI.xHexPayload 2963
urn:epc:raw:OptionalControlFields:Length.DecimalPayload 2964

Encoding procedure: 2965

1. If the URI is not syntactically valid according to the grammar in Section 12.4, stop: this URI 2966
cannot be encoded. 2967

2. Extract the leftmost NonZeroComponent according to the grammar (the Length field in 2968
the templates above). This component immediately follows the rightmost colon (:) 2969
character. Consider this as a decimal integer, N. This is the number of bits in the raw 2970
payload. 2971

3. Determine the toggle bit and AFI (if any): 2972

3.1. If the body of the URI matches the DecimalRawURIBody or HexRawURIBody 2973
production of the grammar (the first and third templates above), the toggle bit is zero. 2974

3.2. If the body of the URI matches the AFIRawURIBody production of the grammar (the 2975
second template above), the toggle bit is one. The AFI is the value of the leftmost 2976
HexComponent within the AFIRawURIBody (the AFI field in the template above), 2977
considered as an 8-bit unsigned hexadecimal integer. If the value of the 2978
HexComponent is greater than or equal to 256, stop: this URI cannot be encoded. 2979

4. Determine the EPC/UII payload: 2980

4.1. If the body of the URI matches the HexRawURIBody production of the grammar (first 2981
template above) or AFIRawURIBody production of the grammar (second template 2982
above), the payload is the rightmost HexComponent within the body (the 2983
HexPayload field in the templates above), considered as an N-bit unsigned 2984
hexadecimal integer, where N is as determined in Step 2 above. If the value of this 2985
HexComponent greater than or equal to 2N, stop: this URI cannot be encoded. 2986

4.2. If the body of the URI matches the DecimalRawURIBody production of the grammar 2987
(third template above), the payload is the rightmost NumericComponent within the 2988
body (the DecimalPayload field in the template above), considered as an N-bit 2989
unsigned decimal integer, where N is as determined in Step 2 above. If the value of this 2990
NumericComponent greater than or equal to 2N, stop: this URI cannot be encoded. 2991

5. Fill in the Gen 2 EPC Memory Bank according to the following table: 2992

 EPC Tag Data Standard

Jan-2014, Version 1.8 Copyright ©2005- 2014 GS1 AISBL, All Rights Reserved. Page 121 of 225

Bits Field Contents

00h –
0Fh

CRC CRC code calculated from the remainder of the memory bank.
(Normally, this is calculated automatically by the reader, and
so software that implements this procedure need not be
concerned with it.)

10h –
14h

Length The number of bits, N, in the EPC binary encoding
determined in Step 2 above, divided by 16, and rounded up to
the next higher integer if N was not a multiple of 16.

15h User
Memory
Indicator

This bit is calculated by the tag and ignored by the tag when
the tag is written, and so is disregarded by this encoding
procedure.

16h XPC
Indicator

This bit is calculated by the tag and ignored by the tag when
the tag is written, and so is disregarded by this encoding
procedure.

17h Toggle The value determined in Step 3, above.

18h –
1Fh

AFI /
Attribute
Bits

If the toggle determined in Step 3 is one, the value of the AFI
determined in Step 3.2. Otherwise,

If the URI includes a control field [att=xNN], the value NN
considered as an 8-bit hexadecimal number.

If the URI does not contain such a control field, zero.

20h – ? EPC / UII The N bits determined in Step 4 above, followed by enough
zero bits to bring the total number of bits to a multiple of 16
(0 – 15 extra zero bits)

Table 44. Recipe to Fill In Gen 2 EPC Memory Bank from EPC Raw URI 2993

15.2. Decoding Procedures 2994
This section specifies how to translate the binary contents of the EPC memory bank of a Gen 2 2995
Tag into the EPC Tag URI and EPC Raw URI. 2996

15.2.1. Gen 2 EPC Memory Bank into EPC Raw URI 2997
Given: 2998

• The contents of the EPC Memory Bank of a Gen 2 tag 2999
Procedure: 3000

1. Extract the length bits, bits 10h – 14h. Consider these bits to be an unsigned integer L. 3001

2. Calculate N = 16L. 3002

3. If bit 17h is set to one, extract bits 18h – 1Fh and consider them to be an unsigned integer A. 3003
Construct a string consisting of the letter “x”, followed by A as a 2-digit hexadecimal 3004
numeral (using digits and uppercase letters only), followed by a period (“.”). 3005

 EPC Tag Data Standard

Jan-2014, Version 1.8 Copyright ©2005- 2014 GS1 AISBL, All Rights Reserved. Page 122 of 225

4. Apply the decoding procedure of Section 15.2.4 to decode control fields. 3006

5. Extract N bits beginning at bit 20h and consider them to be an unsigned integer V. Construct 3007
a string consisting of the letter “x” followed by V as a (N/4)-digit hexadecimal numeral 3008
(using digits and uppercase letters only). 3009

6. Construct a string consisting of “urn:epc:raw:”, followed by the result from Step 4 (if 3010
not empty), followed by N as a decimal numeral without leading zeros, followed by a period 3011
(“.”), followed by the result from Step 3 (if not empty), followed by the result from Step 5. 3012
This is the final EPC Raw URI. 3013

15.2.2. Gen 2 EPC Memory Bank into EPC Tag URI 3014
This procedure decodes the contents of a Gen 2 EPC Memory bank into an EPC Tag URI 3015
beginning with urn:epc:tag: if the memory contains a valid EPC, or into an EPC Raw URI 3016
beginning urn:epc:raw: otherwise. 3017

Given: 3018

• The contents of the EPC Memory Bank of a Gen 2 tag 3019
Procedure: 3020

1. Extract the length bits, bits 10h – 14h. Consider these bits to be an unsigned integer L. 3021

2. Calculate N = 16L. 3022

3. Extract N bits beginning at bit 20h. Apply the decoding procedure of Section 14.3.9, passing 3023
the N bits as the input to that procedure. 3024

4. If the decoding procedure of Section 14.3.9 fails, continue with the decoding procedure of 3025
Section 15.2.1 to compute an EPC Raw URI. Otherwise, the decoding procedure of of 3026
Section 14.3.9 yielded an EPC Tag URI beginning urn:epc:tag:. Continue to the next 3027
step. 3028

5. Apply the decoding procedure of Section 15.2.4 to decode control fields. 3029

6. Insert the result from Section 15.2.4 (including any trailing colon) into the EPC Tag URI 3030
obtained in Step 4, immediately following the urn:epc:tag: prefix. (If Section 15.2.4 3031
yielded an empty string, this result is identical to what was obtained in Step 4.) The result is 3032
the final EPC Tag URI. 3033

15.2.3. Gen 2 EPC Memory Bank into Pure Identity EPC URI 3034
This procedure decodes the contents of a Gen 2 EPC Memory bank into a Pure Identity EPC URI 3035
beginning with urn:epc:id: if the memory contains a valid EPC, or into an EPC Raw URI 3036
beginning urn:epc:raw: otherwise. 3037

Given: 3038

• The contents of the EPC Memory Bank of a Gen 2 tag 3039
Procedure: 3040

 EPC Tag Data Standard

Jan-2014, Version 1.8 Copyright ©2005- 2014 GS1 AISBL, All Rights Reserved. Page 123 of 225

1. Apply the decoding procedure of Section 15.2.2 to obtain either an EPC Tag URI or an EPC 3041
Raw URI. If an EPC Raw URI is obtained, this is the final result. 3042

2. Otherwise, apply the procedure of Section 12.3.3 to the EPC Tag URI from Step 1 to obtain a 3043
Pure Identity EPC URI. This is the final result. 3044

15.2.4. Decoding of Control Information 3045
This procedure is used as a subroutine by the decoding procedures in Sections 15.2.1 and 15.2.2. 3046
It calculates a string that is inserted immediately following the urn:epc:tag: or 3047
urn:epc:raw: prefix, containing the values of all non-zero control information fields (apart 3048
from the filter value). If all such fields are zero, this procedure returns an empty string, in which 3049
case nothing additional is inserted after the urn:epc:tag: or urn:epc:raw: prefix. 3050

Given: 3051

• The contents of the EPC Memory Bank of a Gen 2 tag 3052

Procedure: 3053

1. If bit 17h is zero, extract bits 18h – 1Fh and consider them to be an unsigned integer A. If A is 3054
non-zero, append the string [att=xAA] (square brackets included) to CF, where AA is the 3055
value of A as a two-digit hexadecimal numeral. 3056

2. If bit 15h is non-zero, append the string [umi=1] (square brackets included) to CF. 3057

3. If bit 16h is non-zero, extract bits 210h – 21Fh and consider them to be an unsigned integer X. 3058
If X is non-zero, append the string [xpc=xXXXX] (square brackets included) to CF, where 3059
XXXX is the value of X as a four-digit hexadecimal numeral. Note that in the Gen 2 air 3060
interface, bits 210h – 21Fh are inserted into the backscattered inventory data immediately 3061
following bit 1Fh, when bit 16h is non-zero. See [UHFC1G2]. 3062

4. Return the resulting string (which may be empty). 3063

16. Tag Identification (TID) Memory Bank Contents 3064
To conform to this specification, the Tag Identification memory bank (bank 10) SHALL contain 3065
an 8 bit ISO/IEC 15963 allocation class identifier of E2h at memory locations 00h to 07h. TID 3066
memory locations 08h to 13h SHALL contain a 12 bit Tag mask designer identifier (MDID) 3067
obtainable from EPCglobal. TID memory locations 14h to 1Fh SHALL contain a 12-bit vendor-3068
defined Tag model number (TMN) as described below. 3069

EPCglobal will assign two MDIDs to each mask designer, one with bit 08h equal to one and one 3070
with bit 08h equal to zero. Readers and applications that are not configured to handle the 3071
extended TID will treat both of these numbers as a 12 bit MDID. Readers and applications that 3072
are configured to handle the extended TID will recognize the TID memory location 08h as the 3073
Extended Tag Identification bit. The value of this bit indicates the format of the rest of the TID. 3074
A value of zero indicates a short TID in which the values beyond address 1Fh are not defined. A 3075
value of one indicates an Extended Tag Identification (XTID) in which the memory locations 3076
beyond 1Fh contain additional data as specified in Section 16.2. 3077

 EPC Tag Data Standard

Jan-2014, Version 1.8 Copyright ©2005- 2014 GS1 AISBL, All Rights Reserved. Page 124 of 225

The Tag model number (TMN) may be assigned any value by the holder of a given MDID. 3078
However, [UHFC1G2] states “TID memory locations above 07h shall be defined according to the 3079
registration authority defined by this class identifier value and shall contain, at a minimum, 3080
sufficient identifying information for an Interrogator to uniquely identify the custom commands 3081
and/or optional features that a Tag supports.” For the allocation class identifier of E2h this 3082
information is the MDID and TMN, regardless of whether the extended TID is present or not. If 3083
two tags differ in custom commands and/or optional features, they must be assigned different 3084
MDID/TMN combinations. In particular, if two tags contain an extended TID and the values in 3085
their respective extended TIDs differ in any value other than the value of the serial number, they 3086
must be assigned a different MDID/TMN combination. (The serial number by definition must 3087
be different for any two tags having the same MDID and TMN, so that the Serialized Tag 3088
Identification specified in Section 16.3 is globally unique.) For tags that do not contain an 3089
extended TID, it should be possible in principle to use the MDID and TMN to look up the same 3090
information that would be encoded in the extended TID were it actually present on the tag, and 3091
so again a different MDID/TMN combination must be used if two tags differ in the capabilities 3092
as they would be described by the extended TID, were it actually present. 3093

16.1. Short Tag Identification 3094
If the XTID bit (bit 08h of the TID bank) is set to zero, the TID bank only contains the allocation 3095
class identifier, mask designer identifier (MDID), and Tag model number (TMN) as specified 3096
above. Readers and applications that are not configured to handle the extended TID will treat all 3097
TIDs as short tag identification, regardless of whether the XTID bit is zero or one. 3098

Note: The memory maps depicted in this document are identical to how they are depicted in 3099
[UHFC1G2]. The lowest word address starts at the bottom of the map and increases as you go 3100
up the map. The bit address reads from left to right starting with bit zero and ending with bit 3101
fifteen. The fields (MDID, TMN, etc) described in the document put their most significant bit 3102
(highest bit number) into the lowest bit address in memory and the least significant bit (bit zero) 3103
into the highest bit address in memory. Take the ISO/IEC 15963 allocation class identifier of 3104
E2h = 111000102 as an example. The most significant bit of this field is a one and it resides at 3105
address 00h of the TID memory bank. The least significant bit value is a zero and it resides at 3106
address 07h of the TID memory bank. When tags backscatter data in response to a read 3107
command they transmit each word starting from bit address zero and ending with bit address 3108
fifteen. 3109

 3110

TID MEM

BANK BIT
ADDRESS

BIT ADDRESS WITHIN WORD (In Hexadecimal)

0 1 2 3 4 5 6 7 8 9 A B C D E F

10h-1Fh TAG MDID[3:0] TAG MODEL NUMBER[11:0]

00h-0Fh E2h TAG MDID[11:4]

Table 45. Short TID format 3111

 EPC Tag Data Standard

Jan-2014, Version 1.8 Copyright ©2005- 2014 GS1 AISBL, All Rights Reserved. Page 125 of 225

16.2. Extended Tag Identification (XTID) 3112
The XTID is intended to provide more information to end users about the capabilities of tags that 3113
are observed in their RFID applications. The XTID extends the format by adding support for 3114
serialization and information about key features implemented by the tag. 3115

If the XTID bit (bit 08h of the TID bank) is set to one, the TID bank SHALL contain the 3116
allocation class identifier, mask designer identifier (MDID), and Tag model number (TMN) as 3117
specified above, and SHALL also contain additional information as specified in this section. 3118

If the XTID bit as defined above is one, TID memory locations 20h to 2Fh SHALL contain a 16-3119
bit XTID header as specified in Section 16.2.1. The values in the XTID header specify what 3120
additional information is present in memory locations 30h and above. TID memory locations 00h 3121
through 2Fh are the only fixed location fields in the extended TID; all fields following the XTID 3122
header can vary in their location in memory depending on the values in the XTID header. 3123

The information in the XTID following the XTID header SHALL consist of zero or more multi-3124
word “segments,” each segment being divided into one or more “fields,” each field providing 3125
certain information about the tag as specified below. The XTID header indicates which of the 3126
XTID segments the tag mask-designer has chosen to include. The order of the XTID segments 3127
in the TID bank shall follow the order that they are listed in the XTID header from most 3128
significant bit to least significant bit. If an XTID segment is not present then segments at less 3129
significant bits in the XTID header shall move to lower TID memory addresses to keep the XTID 3130
memory structure contiguous. In this way a minimum amount of memory is used to provide a 3131
serial number and/or describe the features of the tag. A fully populated XTID is shown in the 3132
table below. 3133

Informative: The XTID header corresponding to this memory map would be 3134
00111100000000002 . If the tag only contained a 48 bit serial number the XTID header would 3135
be 00100000000000002 . The serial number would start at bit address 30h and end at bit address 3136
5Fh. If the tag contained just the BlockWrite and BlockErase segment and the User Memory and 3137
BlockPermaLock segment the XTID header would be 00001100000000002 . The BlockWrite and 3138
BlockErase segment would start at bit address 30h and end at bit address 6Fh. The User 3139
Memory and BlockPermaLock segment would start at bit address 70h and end at bit address 8Fh. 3140

 TDS
Reference

Section

TID MEM

BANK BIT
ADDRESS

BIT ADDRESS WITHIN WORD (In Hexadecimal)

0 1 2 3 4 5 6 7 8 9 A B C D E F

16.2.5 C0h-CFh User Memory and BlockPermaLock Segment [15:0]

B0h-BFh User Memory and BlockPermaLock Segment [31:16]

16.2.4 A0h-AFh BlockWrite and BlockErase Segment [15:0]

90h-9Fh BlockWrite and BlockErase Segment [31:16]

80h-8Fh BlockWrite and BlockErase Segment [47:32]

70h-7Fh BlockWrite and BlockErase Segment [63:48]

16.2.3 60h-6Fh Optional Command Support Segment [15:0]

16.2.2 50h-5Fh Serial Number Segment [15:0]

 EPC Tag Data Standard

Jan-2014, Version 1.8 Copyright ©2005- 2014 GS1 AISBL, All Rights Reserved. Page 126 of 225

40h-4Fh Serial Number Segment [31:16]

30h-3Fh Serial Number Segment [47:32]

16.2.1 20h-2Fh XTID Header Segment [15:0]

16.1 and
16.2

10h-1Fh TAG MDID[3:0] TAG MODEL NUMBER[11:0]

00h-0Fh E2h TAG MDID[11:4]

Table 46. The Extended Tag Identification (XTID) format for the TID memory bank. Note that the table 3141
above is fully filled in and that the actual amount of memory used, presence of a segment, and address 3142

location of a segment depends on the XTID Header. 3143

16.2.1. XTID Header 3144
The XTID header is shown in Table 47. It contains defined and reserved for future use (RFU) 3145
bits. The extended header bit and RFU bits (bits 9 through 0) shall be set to zero to comply with 3146
this version of the specification. Bits 15 through 13 of the XTID header word indicate the 3147
presence and size of serialization on the tag. If they are set to zero then there is no serialization 3148
in the XTID. If they are not zero then there is a tag serial number immediately following the 3149
header. The optional features currently in bits 12 through 10 are handled differently. A zero 3150
indicates the reader needs to perform a database look up or that the tag does not support the 3151
optional feature. A one indicates that the tag supports the optional feature and that the XTID 3152
contains the segment describing this feature. 3153

Note that the contents of the XTID header uniquely determine the overall length of the XTID as 3154
well as the starting address for each included XTID segment. 3155

Bit
Position
in Word

Field Description

0 Extended Header
Present

If non-zero, specifies that additional XTID header bits
are present beyond the 16 XTID header bits specified
herein. This provides a mechanism to extend the XTID
in future versions of the EPC Tag Data Standard. This
bit SHALL be set to zero to comply with this version of
the EPC Tag Data Standard.

If zero, specifies that the XTID header only contains the
16 bits defined herein.

9 – 1 RFU Reserved for future use. These bits SHALL be zero to
comply with this version of the EPC Tag Data Standard

10 User Memory
and Block Perma
Lock Segment
Present

If non-zero, specifies that the XTID includes the User
Memory and Block PermaLock segment specified in
Section 16.2.5.

If zero, specifies that the XTID does not include the User
Memory and Block PermaLock words.

 EPC Tag Data Standard

Jan-2014, Version 1.8 Copyright ©2005- 2014 GS1 AISBL, All Rights Reserved. Page 127 of 225

Bit
Position
in Word

Field Description

11 BlockWrite and
BlockErase
Segment Present

If non-zero, specifies that the XTID includes the
BlockWrite and BlockErase segment specified in
Section 16.2.4.

If zero, specifies that the XTID does not include the
BlockWrite and BlockErase words.

12 Optional
Command
Support Segment
Present

If non-zero, specifies that the XTID includes the Optional
Command Support segment specified in Section 16.2.3.

If zero, specifies that the XTID does not include the
Optional Command Support word.

13 – 15 Serialization If non-zero, specifies that the XTID includes a unique
serial number, whose length in bits is 48 + 16(N – 1),
where N is the value of this field.

If zero, specifies that the XTID does not include a unique
serial number.

Table 47. The XTID header 3156

16.2.2. XTID Serialization 3157
The length of the XTID serialization is specified in the XTID header. The managing entity 3158
specified by the tag mask designer ID is responsible for assigning unique serial numbers for each 3159
tag model number. The length of the serial number uses the following algorithm: 3160

0: Indicates no serialization 3161

1-7: Length in bits = 48 + ((Value-1) * 16) 3162

16.2.3. Optional Command Support Segment 3163
If bit twelve is set in the XTID header then the following word is added to the XTID. Bit fields 3164
that are left as zero indicate that the tag does not support that feature. The description of the 3165
features is as follows. 3166

Bit
Position in
Segment

Field Description

4 – 0 Max EPC Size This five bit field shall indicate the maximum size that
can be programmed into the first five bits of the PC.

5 Recom Support If this bit is set the tag supports recommissioning as
specified in [UHFC1G2].

6 Access If this bit is set the it indicates that the tag supports the
access command.

 EPC Tag Data Standard

Jan-2014, Version 1.8 Copyright ©2005- 2014 GS1 AISBL, All Rights Reserved. Page 128 of 225

Bit
Position in
Segment

Field Description

7 Separate
Lockbits

If this bit is set it means that the tag supports lock bits for
each memory bank rather than the simplest
implementation of a single lock bit for the entire tag.

8 Auto UMI
Support

If this bit is set it means that the tag automatically sets its
user memory indicator bit in the PC word.

9 PJM Support If this bit is set it indicates that the tag supports phase
jitter modulation. This is an optional modulation mode
supported only in Gen 2 HF tags.

10 BlockErase
Supported

If set this indicates that the tag supports the BlockErase
command. How the tag supports the BlockErase
command is described in Section 16.2.4. A manufacture
may choose to set this bit, but not include the BlockWrite
and BlockErase field if how to use the command needs
further explanation through a database lookup.

11 BlockWrite
Supported

If set this indicates that the tag supports the BlockWrite
command. How the tag supports the BlockErase
command is described in Section 16.2.4. A manufacture
may choose to set this bit, but not include the BlockWrite
and BlockErase field if how to use the command needs
further explanation through a database lookup.

12 BlockPermaLo
ck Supported

If set this indicates that the tag supports the
BlockPermaLock command. How the tag supports the
BlockPermaLock command is described in
Section 16.2.5. A manufacture may choose to set this bit,
but not include the BlockPermaLock and User Memory
field if how to use the command needs further
explanation through a database lookup.

15 – 13 [RFU] These bits are RFU and should be set to zero.

Table 48. Optional Command Support XTID Word 3167

16.2.4. BlockWrite and BlockErase Segment 3168
If bit eleven of the XTID header is set then the XTID shall include the four-word BlockWrite 3169
and BlockErase segment. To indicate that a command is not supported, the tag shall have all 3170
fields related to that command set to zero. This SHALL always be the case when the Optional 3171
Command Support Segment (Section 16.2.3) is present and it indicates that BlockWrite or 3172
BlockErase is not supported. The descriptions of the fields are as follows. 3173

 EPC Tag Data Standard

Jan-2014, Version 1.8 Copyright ©2005- 2014 GS1 AISBL, All Rights Reserved. Page 129 of 225

Bit
Position in
Segment

Field Description

7 – 0 Block Write
Size

Max block size that the tag supports for the BlockWrite
command. This value should be between 1-255 if the
BlockWrite command is described in this field.

8 Variable Size
Block Write

This bit is used to indicate if the tag supports BlockWrite
commands with variable sized blocks.

• If the value is zero the tag only supports writing
blocks exactly the maximum block size indicated in
bits [7-0].

• If the value is one the tag supports writing blocks less
than the maximum block size indicated in bits [7-0].

16 – 9 Block Write
EPC Address
Offset

This indicates the starting word address of the first full
block that may be written to using BlockWrite in the
EPC memory bank.

17 No Block
Write EPC
address
alignment

This bit is used to indicate if the tag memory architecture
has hard block boundaries in the EPC memory bank.

• If the value is zero the tag has hard block boundaries
in the EPC memory bank. The tag will not accept
BlockWrite commands that start in one block and end
in another block. These block boundaries are
determined by the max block size and the starting
address of the first full block. All blocks have the
same maximum size.

• If the value is one the tag has no block boundaries in
the EPC memory bank. It will accept all BlockWrite
commands that are within the memory bank.

25 – 18 Block Write
User Address
Offset

This indicates the starting word address of the first full
block that may be written to using BlockWrite in the
User memory.

 EPC Tag Data Standard

Jan-2014, Version 1.8 Copyright ©2005- 2014 GS1 AISBL, All Rights Reserved. Page 130 of 225

Bit
Position in
Segment

Field Description

26 No Block
Write User
Address
Alignment

This bit is used to indicate if the tag memory architecture
has hard block boundaries in the USER memory bank.

• If the value is zero the tag has hard block boundaries
in the USER memory bank. The tag will not accept
BlockWrite commands that start in one block and end
in another block. These block boundaries are
determined by the max block size and the starting
address of the first full block. All blocks have the
same maximum size.

• If the value is one the tag has no block boundaries in
the USER memory bank. It will accept all
BlockWrite commands that are within the memory
bank.

31 – 27 [RFU] These bits are RFU and should be set to zero.

39 –32 Size of Block
Erase

Max block size that the tag supports for the BlockErase
command. This value should be between 1-255 if the
BlockErase command is described in this field.

40 Variable Size
Block Erase

This bit is used to indicate if the tag supports BlockErase
commands with variable sized blocks.

• If the value is zero the tag only supports erasing
blocks exactly the maximum block size indicated in
bits [39-32].

• If the value is one the tag supports erasing blocks less
than the maximum block size indicated in bits [39-
32].

48 – 41 Block Erase
EPC Address
Offset

This indicates the starting address of the first full block
that may be erased in EPC memory bank.

 EPC Tag Data Standard

Jan-2014, Version 1.8 Copyright ©2005- 2014 GS1 AISBL, All Rights Reserved. Page 131 of 225

Bit
Position in
Segment

Field Description

49 No Block
Erase EPC
Address
Alignment

This bit is used to indicate if the tag memory architecture
has hard block boundaries in the EPC memory bank.

• If the value is zero the tag has hard block boundaries
in the EPC memory bank. The tag will not accept
BlockErase commands that start in one block and end
in another block. These block boundaries are
determined by the max block size and the starting
address of the first full block. All blocks have the
same maximum size.

• If the value is one the tag has no block boundaries in
the EPC memory bank. It will accept all BlockErase
commands that are within the memory bank.

57 – 50 Block Erase
User Address
Offset

This indicates the starting address of the first full block
that may be erased in User memory bank.

58 No Block
Erase User
Address
Alignment

Bit 58: This bit is used to indicate if the tag memory
architecture has hard block boundaries in the USER
memory bank.

• If the value is zero the tag has hard block boundaries
in the USER memory bank. The tag will not accept
BlockErase commands that start in one block and end
in another block. These block boundaries are
determined by the max block size and the starting
address of the first full block. All blocks have the
same maximum size.

• If the value is one the tag has no block boundaries in
the USER memory bank. It will accept all
BlockErase commands that are within the memory
bank.

63 – 59 [RFU] These bits are reserved for future use and should be set to
zero.

Table 49. XTID Block Write and Block Erase Information 3174

16.2.5. User Memory and BlockPermaLock Segment 3175
This two-word segment is present in the XTID if bit 10 of the XTID header is set. Bits 15-0 3176
shall indicate the size of user memory in words. Bits 31-16 shall indicate the size of the blocks 3177
in the USER memory bank in words for the BlockPermaLock command. Note: These block 3178
sizes only apply to the BlockPermaLock command and are independent of the BlockWrite and 3179
BlockErase commands. 3180

 EPC Tag Data Standard

Jan-2014, Version 1.8 Copyright ©2005- 2014 GS1 AISBL, All Rights Reserved. Page 132 of 225

Bit
Position in
Segment

Field Description

15 – 0 User Memory
Size

Number of 16-bit words in user memory.

31 –16 BlockPermaLock
Block Size

If non-zero, the size in words of each block that may
be block permalocked. That is, the block permalock
feature allows blocks of N*16 bits to be locked, where
N is the value of this field.

If zero, then the XTID does not describe the block size
for the BlockPermaLock feature. The tag may or may
not support block permalocking.

This field SHALL be zero if the Optional Command
Support Segment (Section 16.2.3) is present and its
BlockPermaLockSupported bit is zero.

Table 50. XTID Block PermaLock and User Memory Information 3181

16.3. Serialized Tag Identification (STID) 3182
This section specifies a URI form for the serialization encoded within an XTID, called the 3183
Serialized Tag Identifier (STID). The STID URI form may be used by business applications that 3184
use the serialized TID to uniquely identify the tag onto which an EPC has been programmed. 3185
The STID URI is intended to supplement, not replace, the EPC for those applications that make 3186
use of RFID tag serialization in addition to the EPC that uniquely identifies the physical object to 3187
which the tag is affixed; e.g., in an application that uses the STID to help ensure a tag has not 3188
been counterfeited. 3189

16.3.1. STID URI Grammar 3190
The syntax of the STID URI is specified by the following grammar: 3191
STID-URI ::= "urn:epc:stid:" 2*("x" HexComponent ".") "x" 3192
HexComponent 3193

where the first and second HexComponents SHALL consist of exactly three 3194
UpperHexChars and the third HexComponent SHALL consist of 12, 16, 20, 24, 28, 32, or 3195
36 UpperHexChars. 3196

The first HexComponent is the value of the Tag Mask Designer ID (MDID) as specified in 3197
Sections 16.1 and 16.2. The second HexComponent is the value of the Tag Model Number as 3198
specified in Sections 16.1 and 16.2. The third HexComponent is the value of the XTID serial 3199
number as specified in Sections 16.2 and 16.2.2. The number of UpperHexChars in the third 3200
HexComponent is equal to the number of bits in the XTID serial number divided by four. 3201

 EPC Tag Data Standard

Jan-2014, Version 1.8 Copyright ©2005- 2014 GS1 AISBL, All Rights Reserved. Page 133 of 225

16.3.2. Decoding Procedure: TID Bank Contents to STID URI 3202
The following procedure specifies how to construct an STID URI given the contents of the TID 3203
bank of a Gen 2 Tag. 3204

Given: 3205

• The contents of the TID memory bank of a Gen 2 Tag, as a bit string b0b1…bN-1, where the 3206
number of bits N is at least 48. 3207

Yields: 3208

• An STID-URI 3209

Procedure: 3210

1. Bits b0…b7 should match the value 11100010. If not, stop: this TID bank contents does not 3211
contain an XTID as specified herein. 3212

2. Bit b8 should be set to one. If not, stop: this TID bank contents does not contain an XTID as 3213
specified herein. 3214

3. Consider bits b8…b19 as a 12 bit unsigned integer. This is the Tag Mask Designer ID 3215
(MDID). 3216

4. Consider bits b20…b31 as a 12 bit unsigned integer. This is the Tag Model Number. 3217

5. Consider bits b32…b34 as a 3-bit unsigned integer V. If V equals zero, stop: this TID bank 3218
contents does not contain a serial number. Otherwise, calculate the length of the serial 3219
number L = 48 + 16(V − 1). Consider bits b48b49…b48+L-1 as an L-bit unsigned integer. This 3220
is the serial number. 3221

6. Construct the STID-URI by concatenating the following strings: the prefix 3222
urn:epc:stid:, the lowercase letter x, the value of the MDID from Step 3 as a 3-3223
character hexadecimal numeral, a dot (.) character, the lowercase letter x, the value of the 3224
Tag Model Number from Step 4 as a 3-character hexadecimal numeral, a dot (.) character, 3225
the lowercase letter x, and the value of the serial number from Step 5 as a (L/4)-character 3226
hexadecimal numeral. Only uppercase letters A through F shall be used in constructing the 3227
hexadecimal numerals. 3228

17. User Memory Bank Contents 3229
The EPCglobal User Memory Bank provides a variable size memory to store additional data 3230
attributes related to the object identified in the EPC Memory Bank of the tag. 3231

User memory may or may not be present on a given tag. When user memory is not present, bit 3232
15h of the EPC memory bank SHALL be set to zero. When user memory is present and 3233
uninitialized, bit 15h of the EPC memory bank SHALL be set to zero and bits 03h through 07h of 3234
the User Memory bank SHALL be set to zero. When user memory is present and initialized, bit 3235
15h of the Protocol Control Word in EPC memory SHALL be set to one to indicate the presence 3236
of encoded data in User Memory, and the user memory bank SHALL be programmed as 3237
specified herein. 3238

 EPC Tag Data Standard

Jan-2014, Version 1.8 Copyright ©2005- 2014 GS1 AISBL, All Rights Reserved. Page 134 of 225

To conform with this specification, the first eight bits of the User Memory Bank SHALL contain 3239
a Data Storage Format Identifier (DSFID) as specified in [ISO15962]. This maintains 3240
compatibility with other standards. The DSFID consists of three logical fields: Access Method, 3241
Extended Syntax Indicator, and Data Format. The Access Method is specified in the two most 3242
significant bits of the DSFID, and is encoded with the value “10” to designate the “Packed 3243
Objects” Access Method as specified in Appendix I herein if the “Packed Objects” Access 3244
Method is employed, and is encoded with the value “00” to designate the “No-Directory” Access 3245
Method as specified in [ISO15962] if the “No-Directory” Access Method is employed. The next 3246
bit is set to one if there is a second DSFID byte present. The five least significant bits specify 3247
the Data Format, which indicates what data system predominates in the memory contents. If 3248
GS1 Application Identifiers (AIs) predominate, the value of “01001” specifies the GS1 Data 3249
Format 09 as registered with ISO, which provides most efficient support for the use of AI data 3250
elements. Appendix I through Appendix M of this specification contain the complete 3251
specification of the “Packed Objects” Access Method; it is expected that this content will appear 3252
as Annex I through Annex M, respectively, of ISO/IEC 15962, 2nd Edition [ISO15962], when the 3253
latter becomes available A complete definition of the DSFID is specified in ISO/IEC 15962 3254
[ISO15962]. A complete definition of the table that governs the Packed Objects encoding of 3255
Application Identifiers (AIs) is specified by GS1 and registered with ISO under the procedures of 3256
ISO/IEC 15961, and is reproduced in E.3. This table is similar in format to the hypothetical 3257
example shown as Table L-1 in Appendix L, but with entries to accommodate encoding of all 3258
valid Application Identifiers. 3259

A tag whose User Memory Bank programming conforms to this specification SHALL be 3260
encoded using either the Packed Objects Access Method or the No-Directory Access Method, 3261
provided that if the No-Directory Access Method is used that the “application-defined” 3262
compaction mode as specified in [ISO15962] SHALL NOT be used. A tag whose User Memory 3263
Bank programming conforms to this specification MAY use any registered Data Format 3264
including Data Format 09. 3265

Where the Packged Objects specification in Appendix I makes reference to Extensible Bit 3266
Vectors (EBVs), the format specified in Appendix D SHALL be used. 3267

A hardware or software component that conforms to this specification for User Memory Bank 3268
reading and writing SHALL fully implement the Packed Objects Access Method as specified in 3269
Appendix I through Appendix M of this specification (implying support for all registered Data 3270
Formats), SHALL implement the No-Directory Access Method as specified in [ISO15962], and 3271
MAY implement other Access Methods defined in [ISO15962] and subsequent versions of that 3272
standard. A hardware or software component NEED NOT, however, implement the“application-3273
defined” compaction mode of the No-Directory Access Method as specified in [ISO15962]. A 3274
hardware or software component whose intended function is only to initialize tags (e.g., a 3275
printer) may conform to a subset of this specification by implementing either the Packed Objects 3276
or the No-Directory access method, but in this case NEED NOT implement both. 3277

Explanation (non-normative): This specification allows two methods of encoding data in user 3278
memory. The ISO/IEC 15962 “No-Directory” Access Method has an installed base owing to its 3279
longer history and acceptance within certain end user communities. The Packed Objects Access 3280
Method was developed to provide for more efficient reading and writing of tags, and less tag 3281
memory consumption. 3282

 EPC Tag Data Standard

Jan-2014, Version 1.8 Copyright ©2005- 2014 GS1 AISBL, All Rights Reserved. Page 135 of 225

The “application-defined” compaction mode of the No-Directory Access Method is not allowed 3283
because it cannot be understood by a receiving system unless both sides have the same definition 3284
of how the compaction works. 3285

Note that the Packed Objects Access Method supports the encoding of data either with or 3286
without a directory-like structure for random access. The fact that the other access method is 3287
named “No-Directory” in [ISO15962] should not be taken to imply that the Packed Objects 3288
Access Method always includes a directory. 3289

18. Conformance 3290
The EPC Tag Data Standard by its nature has an impact on many parts of the EPCglobal 3291
Architecture Framework. Unlike other standards that define a specific hardware or software 3292
interface, the Tag Data Standard defines data formats, along with procedures for converting 3293
between equivalent formats. Both the data formats and the conversion procedures are employed 3294
by a variety of hardware, software, and data components in any given system. 3295

This section defines what it means to conform to the EPC Tag Data Standard. As noted above, 3296
there are many types of system components that have the potential to conform to various parts of 3297
the EPC Tag Data Standard, and these are enumerated below. 3298

18.1. Conformance of RFID Tag Data 3299
The data programmed on a Gen 2 RFID Tag may be in conformance with the EPC Tag Data 3300
Standard as specified below. Conformance may be assessed separately for the contents of each 3301
memory bank. 3302

Each memory bank may be in an “uninitialized” state or an “initialized” state. The uninitialized 3303
state indicates that the memory bank contains no data, and is typically only used between the 3304
time a tag is manufactured and the time it is first programmed for use by an application. The 3305
conformance requirements are given separately for each state, where applicable. 3306

18.1.1. Conformance of Reserved Memory Bank (Bank 00) 3307
The contents of the Reserved memory bank (Bank 00) of a Gen 2 tag is not subject to 3308
conformance to the EPC Tag Data Standard. The contents of the Reserved memory bank is 3309
specified in [UHFC1G2]. 3310

18.1.2. Conformance of EPC Memory Bank (Bank 01) 3311
The contents of the EPC memory bank (Bank 01) of a Gen 2 tag is subject to conformance to the 3312
EPC Tag Data Standard as follows. 3313

The contents of the EPC memory bank conforms to the EPC Tag Data Standard in the 3314
uninitialized state if all of the following are true: 3315

• Bit 17h SHALL be set to zero. 3316

• Bits 18h through 1Fh (inclusive), the attribute bits, SHALL be set to zero. 3317

• Bits 20h through 27h (inclusive) SHALL be set to zero, indicating an unitialized EPC 3318
Memory Bank. 3319

 EPC Tag Data Standard

Jan-2014, Version 1.8 Copyright ©2005- 2014 GS1 AISBL, All Rights Reserved. Page 136 of 225

• All other bits of the EPC memory bank SHALL be as specified in Section 9 and/or 3320
[UHFC1G2], as applicable. 3321

The contents of the EPC memory bank conforms to the EPC Tag Data Standard in the initialized 3322
state if all of the following are true: 3323

• Bit 17h SHALL be set to zero. 3324

• Bits 18h through 1Fh (inclusive), the attribute bits, SHALL be as specified in Section 11. 3325

• Bits 20h through 27h (inclusive) SHALL be set to a valid EPC header value as specified in 3326
Table 16; that is, a header value not marked as “reserved” or “unprogrammed tag” in the 3327
table. 3328

• Let N be the value of the “encoding length” column of the row of Table 16 corresponding to 3329
the header value, and let M be equal to 20h + N – 1. Bits 20h through M SHALL be a valid 3330
EPC binary encoding; that is, the decoding procedure of Section 14.3.7 when applied to these 3331
bits SHALL NOT raise an exception. 3332

• Bits M+1 through the end of the EPC memory bank or bit 20Fh
 (whichever occurs first) 3333

SHALL be set to zero. 3334

• All other bits of the EPC memory bank SHALL be as specified in Section 9 and/or 3335
[UHFC1G2], as applicable. 3336

Explanation (non-normative): A consequence of the above requirements is that to conform to 3337
this specification, no additional application data (such as a second EPC) may be put in the EPC 3338
memory bank beyond the EPC that begins at bit 20h. 3339

18.1.3. Conformance of TID Memory Bank (Bank 10) 3340
The contents of the TID memory bank (Bank 10) of a Gen 2 tag is subject to conformance to the 3341
EPC Tag Data Standard, as specified in Section 16. 3342

18.1.4. Conformance of User Memory Bank (Bank 11) 3343
The contents of the User memory bank (Bank 11) of a Gen 2 tag is subject to conformance to the 3344
EPC Tag Data Standard, as specified in Section 17. 3345

18.2. Conformance of Hardware and Software Components 3346
Hardware and software components may process data that is read from or written to Gen 2 RFID 3347
tags. Hardware and software components may also manipulate Electronic Product Codes in 3348
various forms regardless of whether RFID tags are involved. All such uses may be subject to 3349
conformance to the EPC Tag Data Standard as specified below. Exactly what is required to 3350
conform depends on what the intended or claimed function of the hardware or software 3351
component is. 3352

 EPC Tag Data Standard

Jan-2014, Version 1.8 Copyright ©2005- 2014 GS1 AISBL, All Rights Reserved. Page 137 of 225

18.2.1. Conformance of Hardware and Software Components That 3353
Produce or Consume Gen 2 Memory Bank Contents 3354

This section specifies conformance of hardware and software components that produce and 3355
consume the contents of a memory bank of a Gen 2 tag. This includes components that interact 3356
directly with tags via the Gen 2 Air Interface as well as components that manipulate a software 3357
representation of raw memory contents 3358

Definitions: 3359

• Bank X Consumer (where X is a specific memory bank of a Gen 2 tag) A hardware or 3360
software component that accepts as input via some external interface the contents of Bank X 3361
of a Gen 2 tag. This includes components that read tags via the Gen 2 Air Interface (i.e., 3362
readers), as well as components that manipulate a software representation of raw memory 3363
contents (e.g., “middleware” software that receives a hexadecimal-formatted image of tag 3364
memory from an interrogator as input). 3365

• Bank X Producer (where X is a specific memory bank of a Gen 2 tag) A hardware or 3366
software component that outputs via some external interface the contents of Bank X of a Gen 3367
2. This includes components that interact directly with tags via the Gen 2 Air Interface (i.e., 3368
write-capable interrogators and printers – the memory contents delivered to the tag is an 3369
output via the air interface), as well as components that manipulate a software representation 3370
of raw memory contents (e.g., software that outputs a “write” command to an interrogator, 3371
delivering a hexadecimal-formatted image of tag memory as part of the command). 3372

A hardware or software component that “passes through” the raw contents of tag memory Bank 3373
X from one external interface to another is simultaneously a Bank X Consumer and a Bank X 3374
Producer. For example, consider a reader device that accepts as input from an application via its 3375
network “wire protocol” a command to write EPC tag memory, where the command includes a 3376
hexadecimal-formatted image of the tag memory that the application wishes to write, and then 3377
writes that image to a tag via the Gen 2 Air Interface. That device is a Bank 01 Consumer with 3378
respect to its “wire protocol,” and a Bank 01 Producer with respect to the Gen 2 Air Interface. 3379
The conformance requirements below insure that such a device is capable of accepting from an 3380
application and writing to a tag any EPC bank contents that is valid according to this 3381
specification. 3382

The following conformance requirements apply to Bank X Consumers and Producers as defined 3383
above: 3384

• A Bank 01 (EPC bank) Consumer SHALL accept as input any memory contents that 3385
conforms to this specification, as conformance is specified in Section 18.1.2. 3386

• If a Bank 01 Consumer interprets the contents of the EPC memory bank received as input, it 3387
SHALL do so in a manner consistent with the definitions of EPC memory bank contents in 3388
this specification. 3389

• A Bank 01 (EPC bank) Producer SHALL produce as output memory contents that conforms 3390
to this specification, as conformance is specified in Section 18.1.2, whenever the hardware or 3391
software component produces output for Bank 01 containing an EPC.. A Bank 01 Producer 3392
MAY produce output containing a non-EPC if it sets bit 17h

 to one. 3393

 EPC Tag Data Standard

Jan-2014, Version 1.8 Copyright ©2005- 2014 GS1 AISBL, All Rights Reserved. Page 138 of 225

• If a Bank 01 Producer constructs the contents of the EPC memory bank from component 3394
parts, it SHALL do so in a manner consistent with this. 3395

• A Bank 10 (TID Bank) Consumer SHALL accept as input any memory contents that 3396
conforms to this specification, as conformance is specified in Section 18.1.3. 3397

• If a Bank 10 Consumer interprets the contents of the TID memory bank received as input, it 3398
SHALL do so in a manner consistent with the definitions of TID memory bank contents in 3399
this specification. 3400

• A Bank 10 (TID bank) Producer SHALL produce as output memory contents that conforms 3401
to this specification, as conformance is specified in Section 18.1.3. 3402

• If a Bank 10 Producer constructs the contents of the TID memory bank from component 3403
parts, it SHALL do so in a manner consistent with this specification. 3404

• Conformance for hardware or software components that read or write the User memory bank 3405
(Bank 11) SHALL be as specified in Section 17. 3406

18.2.2. Conformance of Hardware and Software Components that 3407
Produce or Consume URI Forms of the EPC 3408

This section specifies conformance of hardware and software components that use URIs as 3409
specified herein as inputs or outputs. 3410

Definitions: 3411

• EPC URI Consumer A hardware or software component that accepts an EPC URI as input 3412
via some external interface. An EPC URI Consumer may be further classified as a Pure 3413
Identity URI EPC Consumer if it accepts an EPC Pure Identity URI as an input, or an EPC 3414
Tag/Raw URI Consumer if it accepts an EPC Tag URI or EPC Raw URI as input. 3415

• EPC URI Producer A hardware or software component that produces an EPC URI as output 3416
via some external interface. An EPC URI Producer may be further classified as a Pure 3417
Identity URI EPC Producer if it produces an EPC Pure Identity URI as an output, or an EPC 3418
Tag/Raw URI Producer if it produces an EPC Tag URI or EPC Raw URI as output. 3419

A given hardware or software component may satisfy more than one of the above definitions, in 3420
which case it is subject to all of the relevant conformance tests below. 3421

The following conformance requirements apply to Pure Identity URI EPC Consumers: 3422

• A Pure Identity URI EPC Consumer SHALL accept as input any string that satisfies the 3423
grammar of Section 6, including all constraints on the number of characters in various 3424
components. 3425

• A Pure Identity URI EPC Consumer SHALL reject as invalid any input string that begins 3426
with the characters urn:epc:id: that does not satisfy the grammar of Section 6, including 3427
all constraints on the number of characters in various components. 3428

• If a Pure Identity URI EPC Consumer interprets the contents of a Pure Identity URI, it 3429
SHALL do so in a manner consistent with the definitions of the Pure Identity EPC URI in 3430
this specification and the specifications referenced herein (including the GS1 General 3431
Specifications). 3432

 EPC Tag Data Standard

Jan-2014, Version 1.8 Copyright ©2005- 2014 GS1 AISBL, All Rights Reserved. Page 139 of 225

The following conformance requirements apply to Pure Identity URI EPC Producers: 3433

• A Pure Identity EPC URI Producer SHALL produce as output strings that satisfy the 3434
grammar in Section 6, including all constraints on the number of characters in various 3435
components. 3436

• A Pure Identity EPC URI Producer SHALL NOT produce as output a string that begins with 3437
the characters urn:epc:id: that does not satisfy the grammar of Section 6, including all 3438
constraints on the number of characters in various components. 3439

• If a Pure Identity EPC URI Producer constructs a Pure Identity EPC URI from component 3440
parts, it SHALL do so in a manner consistent with this specification. 3441

The following conformance requirements apply to EPC Tag/Raw URI Consumers: 3442

• An EPC Tag/Raw URI Consumer SHALL accept as input any string that satisfies the 3443
TagURI production of the grammar of Section 12.4, and that can be encoded according to 3444
Section 14.3 without causing an exception. 3445

• An EPC Tag/Raw URI Consumer MAY accept as input any string that satisfies the RawURI 3446
production of the grammar of Section 12.4. 3447

• An EPC Tag/Raw URI Consumer SHALL reject as invalid any input string that begins with 3448
the characters urn:epc:tag: that does not satisfy the grammar of Section 12.4, or that 3449
causes the encoding procedure of Section 14.3 to raise an exception. 3450

• An EPC Tag/Raw URI Consumer that accepts EPC Raw URIs as input SHALL reject as 3451
invalid any input string that begins with the characters urn:epc:raw: that does not satisfy 3452
the grammar of Section 12.4. 3453

• To the extent that an EPC Tag/Raw URI Consumer interprets the contents of an EPC Tag 3454
URI or EPC Raw URI, it SHALL do so in a manner consistent with the definitions of the 3455
EPC Tag URI and EPC Raw URI in this specification and the specifications referenced 3456
herein (including the GS1 General Specifications). 3457

The following conformance requirements apply to EPC Tag/Raw URI Producers: 3458

• An EPC Tag/Raw URI Producer SHALL produce as output strings that satisfy the TagURI 3459
production or the RawURI production of the grammar of Seciton 12.4, provided that any 3460
output string that satisfies the TagURI production must be encodable according to the 3461
encoding procedure of Section 14.3 without raising an exception. 3462

• An EPC Tag/Raw URI Producer SHALL NOT produce as output a string that begins with 3463
the characters urn:epc:tag: or urn:epc:raw: except as specified in the previous 3464
bullet. 3465

• If an EPC Tag/Raw URI Producer constructs an EPC Tag URI or EPC Raw URI.from 3466
component parts, it SHALL do so in a manner consistent with this specification. 3467

 EPC Tag Data Standard

Jan-2014, Version 1.8 Copyright ©2005- 2014 GS1 AISBL, All Rights Reserved. Page 140 of 225

18.2.3. Conformance of Hardware and Software Components that 3468
Translate Between EPC Forms 3469

This section specifies conformance for hardware and software components that translate between 3470
EPC forms, such as translating an EPC binary encoding to an EPC Tag URI, an EPC Tag URI to 3471
a Pure Identity EPC URI, a Pure Identity EPC URI to an EPC Tag URI, or an EPC Tag URI to 3472
the contents of the EPC memory bank of a Gen 2 tag. Any such component by definition accepts 3473
these forms as inputs or outputs, and is therefore also subject to the relevant parts of 3474
Sections 18.2.1 and 18.2.2. 3475

• A hardware or software component that takes the contents of the EPC memory bank of a 3476
Gen 2 tag as input and produces the corresponding EPC Tag URI or EPC Raw URI as output 3477
SHALL produce an output equivalent to applying the decoding procedure of Section 15.2.2 3478
to the input. 3479

• A hardware or software component that takes the contents of the EPC memory bank of a 3480
Gen 2 tag as input and produces the corresponding EPC Tag URI or EPC Raw URI as output 3481
SHALL produce an output equivalent to applying the decoding procedure of Section 15.2.3 3482
to the input. 3483

• A hardware or software component that takes an EPC Tag URI as input and produces the 3484
corresponding Pure Identity EPC URI as output SHALL produce an output equivalent to 3485
applying the procedure of Section 12.3.3 to the input. 3486

• A hardware or software component that takes an EPC Tag URI as input and produces the 3487
contents of the EPC memory bank of a Gen 2 tag as output (whether by actually writing a tag 3488
or by producing a software representation of raw memory contents as output) SHALL 3489
produce an output equivalent to applying the procedure of Section 15.1.1 to the input. 3490

18.3. Conformance of Human Readable Forms of the EPC and of EPC 3491
Memory Bank Contents 3492

This section specifies conformance for human readable representations of an EPC. Human 3493
readable representations may be used on printed labels, in documents, etc. This section does not 3494
specify the conditions under which a human readable representation of an EPC or RFID tag 3495
contents shall or should be printed on any label, packaging, or other medium; it only specifies 3496
what is a conforming human readable representation when it is desired to include one. 3497

• To conform to this specification, a human readable representation of an electronic product 3498
code SHALL be a Pure Identity EPC URI as specified in Section 6. 3499

• To conform to this specification, a human readable representation of the entire contents of 3500
the EPC memory bank of a Gen 2 tag SHALL be an EPC Tag URI or an EPC Raw URI as 3501
specified in Section 12. An EPC Tag URI SHOULD be used when it is possible to do so 3502
(that is, when the memory bank contents contains a valid EPC). 3503

 EPC Tag Data Standard

Jan-2014, Version 1.8 Copyright ©2005- 2014 GS1 AISBL, All Rights Reserved. Page 141 of 225

Appendix A Character Set for Alphanumeric Serial 3504
Numbers 3505

The following table specifies the characters that are permitted by the GS1 General Specifications 3506
[GS1GS10.0] for use in alphanumeric serial numbers. The columns are as follows: 3507

• Graphic Symbol The printed representation of the character as used in human-readable 3508
forms. 3509

• Name The common name for the character 3510

• Hex Value A hexadecimal numeral that gives the 7-bit binary value for the character as 3511
used in EPC binary encodings. This hexadecimal value is always equal to the ISO 646 3512
(ASCII) code for the character. 3513

• URI Form The representation of the character within Pure Identity EPC URI and EPC Tag 3514
URI forms. This is either a single character whose ASCII code is equal to the value in the 3515
“hex value” column, or an escape triplet consisting of a percent character followed by two 3516
characters giving the hexadecimal value for the character. 3517

Graphic
Symbol

Name Hex
Value

URI
Form

Graphic
Symbol

Name Hex
Value

URI
Form

! Exclamation
Mark

21 ! M Capital
Letter M

4D M

" Quotation
Mark

22 %22 N Capital
Letter N

4E N

% Percent
Sign

25 %25 O Capital
Letter O

4F O

& Ampersand 26 %26 P Capital
Letter P

50 P

' Apostrophe 27 ' Q Capital
Letter Q

51 Q

(Left
Parenthesis

28 (R Capital
Letter R

52 R

) Right
Parenthesis

29) S Capital
Letter S

53 S

* Asterisk 2A * T Capital
Letter T

54 T

+ Plus sign 2B + U Capital
Letter U

55 U

, Comma 2C , V Capital
Letter V

56 V

 EPC Tag Data Standard

Jan-2014, Version 1.8 Copyright ©2005- 2014 GS1 AISBL, All Rights Reserved. Page 142 of 225

Graphic
Symbol

Name Hex
Value

URI
Form

Graphic
Symbol

Name Hex
Value

URI
Form

- Hyphen/
Minus

2D - W Capital
Letter
W

57 W

. Full Stop 2E . X Capital
Letter X

58 X

/ Solidus 2F %2F Y Capital
Letter Y

59 Y

0 Digit Zero 30 0 Z Capital
Letter Z

5A Z

1 Digit One 31 1 _ Low
Line

5F _

2 Digit Two 32 2 a Small
Letter a

61 a

3 Digit Three 33 3 b Small
Letter b

62 b

4 Digit Four 34 4 c Small
Letter c

63 c

5 Digit Five 35 5 d Small
Letter d

64 d

6 Digit Six 36 6 e Small
Letter e

65 e

7 Digit Seven 37 7 f Small
Letter f

66 f

8 Digit Eight 38 8 g Small
Letter g

67 g

9 Digit Nine 39 9 h Small
Letter h

68 h

: Colon 3A : i Small
Letter i

69 i

; Semicolon 3B ; j Small
Letter j

6A j

< Less-than
Sign

3C %3C k Small
Letter k

6B k

= Equals Sign 3D = l Small
Letter l

6C l

 EPC Tag Data Standard

Jan-2014, Version 1.8 Copyright ©2005- 2014 GS1 AISBL, All Rights Reserved. Page 143 of 225

Graphic
Symbol

Name Hex
Value

URI
Form

Graphic
Symbol

Name Hex
Value

URI
Form

> Greater-than
Sign

3E %3E m Small
Letter m

6D m

? Question
Mark

3F %3F n Small
Letter n

6E n

A Capital
Letter A

41 A o Small
Letter o

6F o

B Capital
Letter B

42 B p Small
Letter p

70 p

C Capital
Letter C

43 C q Small
Letter q

71 q

D Capital
Letter D

44 D r Small
Letter r

72 r

E Capital
Letter E

45 E s Small
Letter s

73 s

F Capital
Letter F

46 F t Small
Letter t

74 t

G Capital
Letter G

47 G u Small
Letter u

75 u

H Capital
Letter H

48 H v Small
Letter v

76 v

I Capital
Letter I

49 I w Small
Letter w

77 w

J Capital
Letter J

4A J x Small
Letter x

78 x

K Capital
Letter K

4B K y Small
Letter y

79 y

L Capital
Letter L

4C L z Small
Letter z

7A z

Table 51. Characters Permitted in Alphanumeric Serial Numbers 3518

Appendix B Glossary (non-normative) 3519
Term Defined

Where
Meaning

Application
Identifier (AI)

[GS1GS10.0] A numeric code that identifies a data element within a
GS1 Element String.

 EPC Tag Data Standard

Jan-2014, Version 1.8 Copyright ©2005- 2014 GS1 AISBL, All Rights Reserved. Page 144 of 225

Term Defined
Where

Meaning

Attribute Bits Section 11 An 8-bit field of control information that is stored in
the EPC Memory Bank of a Gen 2 RFID Tag when the
tag contains an EPC. The Attribute Bits includes data
that guides the handling of the object to which the tag
is affixed, for example a bit that indicates the presence
of hazardous material.

Bar Code A data carrier that holds text data in the form of light
and dark markings which may be read by an optical
reader device.

Control
Information

Section 9.1 Information that is used by data capture applications to
help control the process of interacting with RFID
Tags. Control Information includes data that helps a
capturing application filter out tags from large
populations to increase read efficiency, special
handling information that affects the behavior of
capturing application, information that controls tag
security features, and so on. Control Information is
typically not passed directly to business applications,
though Control Information may influence how a
capturing application presents business data to the
business application level. Unlike Business Data,
Control Information has no equivalent in bar codes or
other data carriers.

Data Carrier Generic term for a marking or device that is used to
physically attach data to a physical object. Examples
of data carriers include Bar Codes and RFID Tags.

Electronic
Product Code
(EPC)

Section 4 A universal identifier for any physical object. The
EPC is designed so that every physical object of
interest to information systems may be given an EPC
that is globally unique and persistent through time.

The primary representation of an EPC is in the form of
a Pure Identity EPC URI (q.v.), which is a unique
string that may be used in information systems,
electronic messages, databases, and other contexts. A
secondary representation, the EPC Binary Encoding
(q.v.) is available for use in RFID Tags and other
settings where a compact binary representation is
required.

EPC Section 4 See Electronic Product Code

 EPC Tag Data Standard

Jan-2014, Version 1.8 Copyright ©2005- 2014 GS1 AISBL, All Rights Reserved. Page 145 of 225

Term Defined
Where

Meaning

EPC Bank (of a
Gen 2 RFID
Tag)

[UHFC1G2] Bank 01 of a Gen 2 RFID Tag as specified in
[UHFC1G2]. The EPC Bank holds the EPC Binary
Encoding of an EPC, together with additional control
information as specified in Section 7.8.

EPC Binary
Encoding

Section 13 A compact encoding of an Electronic Product Code,
together with a filter value (if the encoding scheme
includes a filter value), into a binary bit string that is
suitable for storage in RFID Tags, including the EPC
Memory Bank of a Gen 2 RFID Tag. Owing to
tradeoffs between data capacity and the number of bits
in the encoded value, more than one binary encoding
scheme exists for certain EPC schemes.

EPC Binary
Encoding
Scheme

Section 13 A particular format for the encoding of an Electronic
Product Code, together with a Filter Value in some
cases, into an EPC Binary Encoding. Each EPC
Scheme has at least one corresponding EPC Binary
Encoding Scheme. from a specified combination of
data elements. Owing to tradeoffs between data
capacity and the number of bits in the encoded value,
more than one binary encoding scheme exists for
certain EPC schemes. An EPC Binary Encoding
begins with an 8-bit header that identifies which
binary encoding scheme is used for that binary
encoding; this serves to identify how the remainder of
the binary encoding is to be interpreted.

EPC Pure
Identity URI

Section 6 See Pure Identity EPC URI.

EPC Raw URI Section 12 A representation of the complete contents of the EPC
Memory Bank of a Gen 2 RFID Tag,

EPC Scheme Section 6 A particular format for the construction of an
Electronic Product Code from a specified
combination of data elements. A Pure Identity EPC
URI begins with the name of the EPC Scheme used
for that URI, which both serves to ensure global
uniqueness of the complete URI as well as identify
how the remainder of the URI is to be interpreted.
Each type of GS1 Key has a corresponding EPC
Scheme that allows for the construction of an EPC that
corresponds to the value of a GS1 Key, under certain
conditions. Other EPC Schemes exist that allow for
construction of EPCs not related to GS1 keys.

 EPC Tag Data Standard

Jan-2014, Version 1.8 Copyright ©2005- 2014 GS1 AISBL, All Rights Reserved. Page 146 of 225

Term Defined
Where

Meaning

EPC Tag URI Section 12 A representation of the complete contents of the EPC
Memory Bank of a Gen 2 RFID Tag, in the form of an
Internet Uniform Resource Identifier that includes a
decoded representation of EPC data fields, usable
when the EPC Memory Bank contains a valid EPC
Binary Encoding. Because the EPC Tag URI
represents the complete contents of the EPC Memory
Bank, it includes control information in addition to the
EPC, in contrast to the Pure Identity EPC URI.

Extended Tag
Identification
(XTID)

Section 16 Information that may be included in the TID Bank of a
Gen 2 RFID Tag in addition to the make and model
information. The XTID may include a manufacturer-
assigned unique serial number and may also include
other information that describes the capabilities of the
tag.

Filter Value Section 10 A 3-bit field of control information that is stored in the
EPC Memory Bank of a Gen 2 RFID Tag when the tag
contains certain types of EPCs. The filter value makes
it easier to read desired RFID Tags in an environment
where there may be other tags present, such as reading
a pallet tag in the presence of a large number of item-
level tags.

Gen 2 RFID Tag Section 7.8 An RFID Tag that conforms to one of the EPCglobal
Gen 2 family of air interface protocols. This includes
the UHF Class 1 Gen 2 Air Interface [UHFC1G2], and
other standards currently under development within
EPCglobal.

GS1 Company
Prefix

[GS1GS10.0] Part of the GS1 System identification number
consisting of a GS1 Prefix and a Company Number,
both of which are allocated by GS1 Member
Organisations.

GS1 Element
String

[GS1GS10.0] The combination of a GS1 Application Identifier and
GS1 Application Identifier Data Field.

GS1 Key [GS1GS10.0] A generic term for nine different identification keys
defined in the GS1 General Specifications
[GS1GS10.0], namely the GTIN, SSCC, GLN, GRAI,
GIAI, GSRN, GDTI, GSIN, and GINC.

 EPC Tag Data Standard

Jan-2014, Version 1.8 Copyright ©2005- 2014 GS1 AISBL, All Rights Reserved. Page 147 of 225

Term Defined
Where

Meaning

Pure Identity
EPC URI

Section 6 The primary concrete representation of an Electronic
Product Code. The Pure Identity EPC URI is an
Internet Uniform Resource Identifier that contains an
Electronic Product Code and no other information.

Radio-Frequency
Identification
(RFID) Tag

 A data carrier that holds binary data, which may be
affixed to a physical object, and which communicates
the data to a interrogator (“reader”) device through
radio.

Reserved Bank
(of a Gen 2
RFID Tag)

[UHFC1G2] Bank 00 of a Gen 2 RFID Tag as specified in
[UHFC1G2]. The Reserved Bank holds the access
password and the kill password.

Tag
Identification
(TID)

[UHFC1G2] Information that describes a Gen 2 RFID Tag itself, as
opposed to describing the physical object to which the
tag is affixed. The TID includes an indication of the
make and model of the tag, and may also include
Extended TID (XTID) information.

TID Bank (of a
Gen 2 RFID
Tag)

[UHFC1G2] Bank 10 of a Gen 2 RFID Tag as specified in
[UHFC1G2]. The TID Bank holds the TID and XTID
(q.v.).

Uniform
Resource
Identifier (URI)

[RFC3986] A compact sequence of characters that identifies an
abstract or physical resource. A URI may be further
classified as a Uniform Resource Name (URN) or a
Uniform Resource Locator (URL), q.v.

Uniform
Resource
Locator (URL)

[RFC3986] A Uniform Resource Identifier (URI) that, in addition
to identifying a resource, provides a means of locating
the resource by describing its primary access
mechanism (e.g., its network "location").

Uniform
Resource Name
(URN)

[RFC3986],
[RFC2141]

A Uniform Resource Identifier (URI) that is part of the
urn scheme as specified by [RFC2141]. Such URIs
refer to a specific resource independent of its network
location or other method of access, or which may not
have a network location at all. The term URN may
also refer to any other URI having similar properties.

Because an Electronic Product Code is a unique
identifier for a physical object that does not
necessarily have a network locatin or other method of
access, URNs are used to represent EPCs.

User Memory
Bank (of a Gen 2
RFID Tag)

[UHFC1G2] Bank 11 of a Gen 2 RFID Tag as specified in
[UHFC1G2]. The User Memory may be used to hold
additional business data elements beyond the EPC.

 EPC Tag Data Standard

Jan-2014, Version 1.8 Copyright ©2005- 2014 GS1 AISBL, All Rights Reserved. Page 148 of 225

 3520

Appendix C References 3521
[ASN.1] CCITT, “Specification of Basic Encoding Rules for Abstract Syntax Notation One 3522
(ASN.1)", CCITT Recommendation X.209, January 1988. 3523

[EPCAF] F. Armenio et al, “EPCglobal Architecture Framework,” EPCglobal Final 3524
Version 1.3, March 2009, http://www.epcglobalinc.org/standards/architecture/architecture_1_3-3525
framework-20090319.pdf. 3526

[GS1GS10.0] “GS1 General Specifications,- Version 10.0, Issue 1” January 2010, Published by 3527
GS1, Blue Tower, Avenue Louise 326, bte10, Brussels 1009, B-1050, Belgium, www.gs1.org. 3528

[ISO15961] ISO/IEC, “Information technology – Radio frequency identification (RFID) for 3529
item management – Data protocol: application interface,” ISO/IEC 15961:2004, October 2004. 3530

[ISO15962] ISO/IEC, “Information technology – Radio frequency identification (RFID) for 3531
item management – Data protocol: data encoding rules and logical memory functions,” ISO/IEC 3532
15962:2004, October 2004. (When ISO/IEC 15962, 2nd Edition, is published, it should be used 3533
in prefrence to the earlier version. References herein to Annex D of [15962] refer only to 3534
ISO/IEC 15962, 2nd Edition or later.) 3535

[ISODir2] ISO, “Rules for the structure and drafting of International Standards (ISO/IEC 3536
Directives, Part 2, 2001, 4th edition),” July 2002. 3537

[RFC2141] R. Moats, “URN Syntax,” RFC2141, May 1997, http://www.ietf.org/rfc/rfc2141. 3538

[RFC3986] T. Berners-Lee, R. Fielding, L. Masinter, “Uniform Resource Identifier (URI): 3539
Generic Syntax,” RFC3986, January 2005, http://www.ietf.org/rfc/rfc3986. 3540

[ONS1.0.1] EPCglobal, “EPCglobal Object Naming Service (ONS), Version 1.0.1,” EPCglobal 3541
Ratified Standard, May 2008, http://www.epcglobalinc.org/standards/ons/ons_1_0_1-standard-3542
20080529.pdf. 3543

[SPEC2000] Air Transport Association, “Spec 2000 E-Business Specification for Materiels 3544
Management,” May 2009, http://www.spec2000.com. 3545

[UHFC1G2] EPCglobal, “EPC™ Radio-Frequency Identity Protocols Class-1 Generation-2 3546
UHF RFID Protocol for Communications at 860 MHz – 960 MHz Version 1.2.0,” EPCglobal 3547
Specification, May 2008, http://www.epcglobalinc.org/standards/uhfc1g2/uhfc1g2_1_2_0-3548
standard-20080511.pdf. 3549

[UID] "United States Department of Defense Guide to Uniquely Identifying Items" v2.0 (1st 3550
October 2008), http://www.acq.osd.mil/dpap/UID/attachments/DoDUIDGuide.pdf 3551

[USDOD] “United States Department of Defense Suppliers’ Passive RFID Information Guide,” 3552
http://www.dodrfid.org/supplierguide.htm 3553

Appendix D Extensible Bit Vectors 3554
An Extensible Bit Vector (EBV) is a data structure with an extensible data range. 3555

http://www.epcglobalinc.org/standards/architecture/architecture_1_3-framework-20090319.pdf
http://www.epcglobalinc.org/standards/architecture/architecture_1_3-framework-20090319.pdf
http://www.gs1.org/
http://www.ietf.org/rfc/rfc2141
http://www.ietf.org/rfc/rfc3986
http://www.epcglobalinc.org/standards/ons/ons_1_0_1-standard-20080529.pdf
http://www.epcglobalinc.org/standards/ons/ons_1_0_1-standard-20080529.pdf
http://www.spec2000.com/
http://www.epcglobalinc.org/standards/uhfc1g2/uhfc1g2_1_2_0-standard-20080511.pdf
http://www.epcglobalinc.org/standards/uhfc1g2/uhfc1g2_1_2_0-standard-20080511.pdf
http://www.dodrfid.org/supplierguide.htm

 EPC Tag Data Standard

Jan-2014, Version 1.8 Copyright ©2005- 2014 GS1 AISBL, All Rights Reserved. Page 149 of 225

An EBV is an array of blocks. Each block contains a single extension bit followed by a specific 3556
number of data bits. If B is the total number of bits in one block, then a block contains B − 1 3557
data bits. The notation EBV-n used in this specification indicates an EBV with a block size of n; 3558
e.g., EBV-8 denotes an EBV with B=8. 3559

The data value represented by an EBV is simply the bit string formed by the data bits as read 3560
from left to right, ignoring all extension bits. The last block of an EBV has an extension bit of 3561
zero, and all blocks of an EBV preceding the last block (if any) have an extension bit of one. 3562

The following table illustrates different values represented in EBV-6 format and EBV-8 format. 3563
Spaces are added to the EBVs for visual clarity. 3564

Value EBV-6 EBV-8

0 000000 00000000

1 000001 00000001

31 (25−1) 011111 00011111

32 (25) 100001 000000 00100000

33 (25+1) 100001 000001 00100001

127 (27−1) 100011 011111 01111111

128 (27) 100100 000000 10000001 00000000

129 (27+1) 100100 000001 10000001 00000001

16384 (214) 110000 100000 000000 10000001 10000000 00000000

 3565

The Packed Objects specification in Appendix I makes use of EBV-3, EBV-6, and EBV-8. 3566

Appendix E (non-normative) Examples: EPC Encoding 3567
and Decoding 3568

This section presents two detailed examples showing encoding and decoding between the 3569
Serialized Global Identification Number (SGTIN) and the EPC memory bank of a Gen 2 RFID 3570
tag, and summary examples showing various encodings of all EPC schemes. 3571

As these are merely illustrative examples, in all cases the indicated normative sections of this 3572
specification should be consulted for the definitive rules for encoding and decoding. The 3573
diagrams and accompanying notes in this section are not intended to be a complete specification 3574
for encoding or decoding, but instead serve only to illustrate the highlights of how the normative 3575
encoding and decoding procedures function. The procedures for encoding other types of 3576
identifiers are different in significant ways, and the appropriate sections of this specification 3577
should be consulted. 3578

 EPC Tag Data Standard

Jan-2014, Version 1.8 Copyright ©2005- 2014 GS1 AISBL, All Rights Reserved. Page 150 of 225

E.1 Encoding a Serialized Global Trade Item Number (SGTIN) to 3579
SGTIN-96 3580

This example illustrates the encoding of a GS1 Element String containing a Serialized Global 3581
Trade Item Number (SGTIN) into an EPC Gen 2 RFID tag using the SGTIN-96 EPC scheme, 3582
with intermediate steps including the EPC URI, the EPC Tag URI, and the EPC Binary 3583
Encoding. 3584

In some applications, only a part of this illustration is relevant. For example, an application may 3585
only need to transform a GS1 Element String into an EPC URI, in which case only the top of the 3586
illustration is needed. 3587

The illustration below makes reference to the following notes: 3588

• Note 1: The step of converting a GS1 Element String into the EPC Pure Identity URI 3589
requires that the number of digits in the GS1 Company Prefix be determined; e.g., by 3590
reference to an external table of company prefixes. In this example, the GS1 Company 3591
Prefix is shown to be seven digits. 3592

• Note 2: The check digit in GTIN as it appears in the GS1 Element String is not included in 3593
the EPC Pure Identity URI. 3594

• Note 3: The SGTIN-96 EPC scheme may only be used if the Serial Number meets certain 3595
constraints. Specifically, the serial number must (a) consist only of digit characters; (b) not 3596
begin with a zero digit (unless the entire serial number is the single digit ‘0’); and (c) 3597
correspond to a decimal numeral whose numeric value that is less than 238 (less than 3598
274,877,906,944). For all other serial numbers, the SGTIN-198 EPC scheme must be used. 3599
Note that the EPC URI is identical regardless of whether SGTIN-96 or SGTIN-198 is used in 3600
the RFID Tag. 3601

• Note 4: EPC Binary Encoding header values are defined in Section 14.2. 3602

• Note 5: The number of bits in the GS1 Company Prefix and Indicator/Item Reference fields 3603
in the EPC Binary Encoding depends on the number of digits in the GS1 Company Prefix 3604
portion of the EPC URI, and this is indicated by a code in the Partition field of the EPC 3605
Binary Encoding. See Table 17 (for the SGTIN EPC only). 3606

• Note 6: The Serial field of the EPC Binary Encoding for SGTIN-96 is 38 bits; not all bits are 3607
shown here due to space limitations. 3608

 3609

 EPC Tag Data Standard

Jan-2014, Version 1.8 Copyright ©2005- 2014 GS1 AISBL, All Rights Reserved. Page 151 of 225

 3610

(01)80614141123458(21)6789

(01) 8 0614141 12345 8 (21) 6789

urn:epc:id:sgtin: 0614141 . 8 12345 . 6789

urn:epc:id:sgtin:0614141.812345.6789

GS1 Element String

GS1 Element String to
EPC Pure Identity URI
(Section 7.1)

urn:epc:id:sgtin: 0614141.812345.6789
EPC Pure Identity URI
to EPC Tag URI
(Section 12.3.2)

urn:epc:tag:sgtin-96: 3 .0614141.812345.6789

EPC Pure Identity URI

Filter Value = 3
(Section 10.2)

urn:epc:tag:sgtin-96:3.0614141.812345.6789 EPC Tag URI

urn:epc:tag:sgtin-96:3.0614141.812345.6789
EPC Tag URI
to EPC Binary Encoding
(Section 14.3)

001100000111010000100101011110111111011100011001010011100100000000000
000000000000001101010000101

EPC Binary

00110000

Header

011

Filter

101

Partition

000010010101111011111101

GS1 Company Prefix

11000110010100111001

Indicator/Item Ref

000…01101010000101

Serial (38 bits)

EPC Binary Encoding
to Gen 2 memory
(Section 15.1)

…

CRC (16 bits)

0

Toggle

00000000

AttributeBits

00110000…10000101

EPC binary

0

XPC

0

UMI

00110

Length

00h 15h 16h 17h 20h 18h 1Fh 0Fh 7Fh Memory Address

Note 1 Note 2

Note 5 Note 6

96-bit EPC
Scheme Selected

Note 3

Note 4

 EPC Tag Data Standard

Jan-2014, Version 1.8 Copyright ©2005- 2014 GS1 AISBL, All Rights Reserved. Page 152 of 225

E.2 Decoding an SGTIN-96 to a Serialized Global Trade Item Number 3611
(SGTIN) 3612

This example illustrates the decoding of an EPC Gen 2 RFID tag containing an SGTIN-96 EPC 3613
Binary Encoding into a GS1 Element String containing a Serialized Global Trade Item Number 3614
(SGTIN), with intermediate steps including the EPC Binary Encoding, the EPC Tag URI, and 3615
the EPC URI. 3616

In some applications, only a part of this illustration is relevant. For example, an application may 3617
only need to convert an EPC binary encoding to an EPC URI, in which case only the top of the 3618
illustration is needed. 3619

The illustration below makes reference to the following notes: 3620

• Note 1: The EPC Binary Encoding header indicates how to interpret the remainder of the 3621
binary data, and the EPC scheme name to be included in the EPC Tag URI. EPC Binary 3622
Encoding header values are defined in Section 14.2. 3623

• Note 2: The Partition field of the EPC Binary Encoding contains a code that indicates the 3624
number of bits in the GS1 Company Prefix field and the Indicator/Item Reference field. The 3625
partition code also determines the number of decimal digits to be used for those fields in the 3626
EPC Tag URI (the decimal representation for those two fields is padded on the left with zero 3627
characters as necessary). See Table 17 (for the SGTIN EPC only). 3628

• Note 3: For the SGTIN-96 EPC scheme, the Serial Number field is decoded by interpreting 3629
the bits as a binary integer and converting to a decimal numeral without leading zeros (unless 3630
all serial number bits are zero, which decodes as the string “0”). Serial numbers containing 3631
non-digit characters or that begin with leading zero characters may only be encoded in the 3632
SGTIN-198 EPC scheme. 3633

• Note 4: The check digit in the GS1 Element String is calculated from other digits in the EPC 3634
Pure Identity URI, as specified in Section 7.1. 3635

 EPC Tag Data Standard

Jan-2014, Version 1.8 Copyright ©2005- 2014 GS1 AISBL, All Rights Reserved. Page 153 of 225

 3636

urn:epc:tag:sgtin-96:3.0614141.812345.6789

EPC Binary
Encoding to EPC
Tag URI
(Section 14.3.7)

00110000

Header

011

Filter

101

Partition

000010010101111011111101

GS1 Company Prefix

11000110010100111001

Indicator/Item Ref

000…01101010000101

Serial (38 bits)

Gen 2 memory to
EPC Binary Enco-
ding (Section 15.2)

…

CRC (16 bits)

0

Toggle

00000000

AttributeBits

00110000…10000101

EPC binary

0

XPC

0

UMI

00110

Length

00h 15h 16h 17h 20h 18h 1Fh 0Fh 7Fh Memory Address

(01)80614141123458(21)6789 GS1 Element String

urn:epc:id:sgtin:0614141.812345.6789 EPC Pure Identity URI

Filter Value = 3
(Section 10.2)

urn:epc:tag:sgtin-96:3.0614141.812345.6789 EPC Tag URI

001100000111010000100101011110111111011100011001010011100100000000000
000000000000001101010000101

EPC Binary

(01) 8 0614141 12345 8 (21) 6789
EPC Pure Identity URI
to GS1 Element String
(Section 7.1)

Note 1

Note 2

96-bit EPC
Scheme Selected

urn:epc:id:sgtin: 0614141.812345.6789

EPC Tag URI to EPC
Pure Identity URI
(Section 12.3)

urn:epc:tag:sgtin-96: 3 .0614141.812345.6789

urn:epc:id:sgtin: 0614141 . 8 12345 . 6789

Σ Note 4

Note 3

 EPC Tag Data Standard

Jan-2014, Version 1.8 Copyright ©2005- 2014 GS1 AISBL, All Rights Reserved. Page 154 of 225

E.3 Summary Examples of All EPC Schemes 3637
In all examples below, GS1 Company Prefix 0614141 is presumed to be seven digits long. Filter 3638
value 3 is arbitrarily used in all examples. 3639

SGTIN-96

GS1 Element String (01) 80614141123458 (21) 6789

EPC URI urn:epc:id:sgtin:0614141.812345.6789

EPC Tag URI urn:epc:tag:sgtin-96:3.0614141.812345.6789

EPC Binary Encoding (hex) 3074257BF7194E4000001A85

 3640

SGTIN-198

GS1 Element String (01) 70614141123451 (21) 32a/b

EPC URI urn:epc:id:sgtin:0614141.812345.32a%2Fb

EPC Tag URI urn:epc:tag:sgtin-198:3.0614141.712345.32a%2Fb

EPC Binary Encoding
(hex)

3674257BF6B7A659B2C2BF1000000000000000000000000000

 3641

SSCC-96

GS1 Element String (00) 106141412345678908

EPC URI urn:epc:id:sscc:0614141.1234567890

EPC Tag URI urn:epc:tag:sscc-96:3.0614141.1234567890

EPC Binary Encoding (hex) 3174257BF4499602D2000000

 3642

SGLN-96

GS1 Element String (414) 0614141123452 (254) 5678

EPC URI urn:epc:id:sgln:0614141.12345.5678

EPC Tag URI urn:epc:tag:sgln-96:3.0614141.12345.5678

EPC Binary Encoding (hex) 3274257BF46072000000162E

 3643

 EPC Tag Data Standard

Jan-2014, Version 1.8 Copyright ©2005- 2014 GS1 AISBL, All Rights Reserved. Page 155 of 225

SGLN-195

GS1 Element String (414) 0614141123452 (254) 32a/b

EPC URI urn:epc:id:sgln:0614141.12345.32a%2Fb

EPC Tag URI urn:epc:tag:sgln-195:3.0614141.12345.32a%2Fb

EPC Binary Encoding (hex) 3974257BF46072CD9615F8800000000000000000000000000

 3644

GRAI-96

GS1 Element String (8003) 006141411234525678

EPC URI urn:epc:id:grai:0614141.12345.5678

EPC Tag URI urn:epc:tag:grai-96:3.0614141.12345.5678

EPC Binary Encoding (hex) 3374257BF40C0E400000162E

 3645

GRAI-170

GS1 Element String (8003) 0061414112345232a/b

EPC URI urn:epc:id:grai:0614141.12345.32a%2Fb

EPC Tag URI urn:epc:tag:grai-170:3.0614141.12345.32a%2Fb

EPC Binary Encoding (hex) 3774257BF40C0E59B2C2BF100000000000000000000

 3646

GIAI-96

GS1 Element String (8004) 06141415678

EPC URI urn:epc:id:giai:0614141.5678

EPC Tag URI urn:epc:tag:giai-96:3.0614141.5678

EPC Binary Encoding (hex) 3474257BF40000000000162E

 3647

GIAI-202

GS1 Element String (8004) 0061414132a/b

EPC URI urn:epc:id:giai:0614141.32a%2Fb

EPC Tag URI urn:epc:tag:giai-202:3.0614141.32a%2Fb

EPC Binary Encoding (hex) 3874257BF59B2C2BF1000000000000000000000000000000000

 3648

 EPC Tag Data Standard

Jan-2014, Version 1.8 Copyright ©2005- 2014 GS1 AISBL, All Rights Reserved. Page 156 of 225

GSRN-96

GS1 Element String (8018) 061414112345678902

EPC URI urn:epc:id:gsrn:0614141.1234567890

EPC Tag URI urn:epc:tag:gsrn-96:3.0614141.1234567890

EPC Binary Encoding (hex) 2D74257BF4499602D2000000

 3649

GDTI-96

GS1 Element String (253) 06141411234525678

EPC URI urn:epc:id:gdti:0614141.12345.5678

EPC Tag URI urn:epc:tag:gdti-96:3.0614141.12345.5678

EPC Binary Encoding (hex) 2C74257BF46072000000162E

 3650

GIAI-202

GS1 Element String (253) 0614141123452006847

EPC URI urn:epc:id:gdti:0614141.12345.006847

EPC Tag URI urn:epc:tag:gdti-113:3.0614141.12345.006847

EPC Binary Encoding (hex) 3A74257BF460720000000007AE7F8

 3651

GID-96

EPC URI urn:epc:id:gid:31415.271828.1414

EPC Tag URI urn:epc:tag:gid-96:31415.271828.1414

EPC Binary Encoding (hex) 350007AB70425D4000000586

 3652

USDOD-96

EPC URI urn:epc:id:usdod:CAGEY.5678

EPC Tag URI urn:epc:tag:usdod-96:3.CAGEY.5678

EPC Binary Encoding (hex) 2F320434147455900000162E

 3653

ADI-var

EPC URI urn:epc:id:adi:35962.PQ7VZ4.M37GXB92

EPC Tag URI urn:epc:tag:adi-var:3.35962.PQ7VZ4.M37GXB92

EPC Binary Encoding (hex) 3B0E0CF5E76C9047759AD00373DC7602E7200

 EPC Tag Data Standard

Jan-2014, Version 1.8 Copyright ©2005- 2014 GS1 AISBL, All Rights Reserved. Page 157 of 225

 3654

CPI-96

GS1 Element String (8010) 061414198765 (8011) 12345

EPC URI urn:epc:id:cpi:0614141.98765.12345

EPC Tag URI urn:epc:tag:cpi-96:3.0614141.98765.12345

EPC Binary Encoding (hex) 3C74257BF400C0E680003039

 3655

CPI-var

GS1 Element String (8010) 06141415PQ/Z43 (8011) 12345

EPC URI urn:epc:id:cpi:0614141.5PQ7%2FZ43.12345

EPC Tag URI urn:epc:tag:cpi-var:3.0614141.5PQ7%2FZ43.12345

EPC Binary Encoding (hex) 3D74257BF75411DEF6B4CC00000003039

 3656

Appendix F Packed Objects ID Table for Data Format 9 3657
This section provides the Packed Objects ID Table for Data Format 9, which defines Packed 3658
Objects ID values, OIDs, and format strings for GS1 Application Identifiers. 3659

Section F.1 is a non-normative listing of the content of the ID Table for Data Format 9, in a 3660
human readable, tabular format. Section F.2 is the normative table, in machine readable, 3661
comma-separated-value format, as registered with ISO. 3662

F.1 Tabular Format (non-normative) 3663
This section is a non-normative listing of the content of the ID Table for Data Format 9, in a 3664
human readable, tabular format. See Section F.2 for the normative, machine readable, comma-3665
separated-value format, as registered with ISO. 3666
K-Text = GS1 AI ID Table for ISO/IEC 15961 Format 9

K-Version = 1.00

K-ISO15434=05

K-Text = Primary Base Table

K-TableID = F9B0

K-RootOID = urn:oid:1.0.15961.9

K-IDsize = 90

AI or
AIs

IDvalue OIDs IDstring Name Data Title FormatString

00 1 0 00 SSCC (Serial Shipping
Container Code)

SSCC 18n

01 2 1 01 Global Trade Item Number GTIN 14n

 EPC Tag Data Standard

Jan-2014, Version 1.8 Copyright ©2005- 2014 GS1 AISBL, All Rights Reserved. Page 158 of 225

02 + 37 3 (2)(37) (02)(37) GTIN + Count of trade
items contained in a
logistic unit

CONTENT +
COUNT

(14n)(1*8n)

10 4 10 10 Batch or lot number BATCH/LOT 1*20an
11 5 11 11 Production date

(YYMMDD)
PROD DATE 6n

12 6 12 12 Due date (YYMMDD) DUE DATE 6n
13 7 13 13 Packaging date

(YYMMDD)
PACK DATE 6n

15 8 15 15 Best before date
(YYMMDD)

BEST BEFORE
OR SELL BY

6n

17 9 17 17 Expiration date
(YYMMDD)

USE BY OR
EXPIRY

6n

20 10 20 20 Product variant VARIANT 2n
21 11 21 21 Serial number SERIAL 1*20an
22 12 22 22 Secondary data for

specific health industry
products

QTY/DATE/BATCH 1*29an

240 13 240 240 Additional product
identification assigned by
the manufacturer

ADDITIONAL ID 1*30an

241 14 241 241 Customer part number CUST. PART NO. 1*30an
242 15 242 242 Made-to-Order Variation

Number
VARIATION
NUMBER

1*6n

250 16 250 250 Secondary serial number SECONDARY
SERIAL

1*30an

251 17 251 251 Reference to source entity REF. TO SOURCE 1*30an
253 18 253 253 Global Document Type

Identifier
DOC. ID 13n 0*17an

30 19 30 30 Variable count VAR. COUNT 1*8n
310n
320n

etc

20 K-Secondary
= S00

 Net weight, kilograms or
pounds or troy oz
(Variable Measure Trade
Item)

311n
321n

etc

21 K-Secondary
= S01

 Length of first dimension
(Variable Measure Trade
Item)

312n
324n

etc

22 K-Secondary
= S02

 Width, diameter, or
second dimension
(Variable Measure Trade
Item)

313n
327n

etc

23 K-Secondary
= S03

 Depth, thickness, height,
or third dimension
(Variable Measure Trade
Item)

314n
350n

etc

24 K-Secondary
= S04

 Area (Variable Measure
Trade Item)

315n
316n

etc

25 K-Secondary
= S05

 Net volume (Variable
Measure Trade Item)

330n or
340n

26 330%x30-36 /
340%x30-36

330%x30-36 /
340%x30-36

Logistic weight, kilograms
or pounds

GROSS WEIGHT
(kg) or (lb)

6n / 6n

 EPC Tag Data Standard

Jan-2014, Version 1.8 Copyright ©2005- 2014 GS1 AISBL, All Rights Reserved. Page 159 of 225

331n,
341n,

etc

27 K-Secondary
= S09

 Length or first dimension

332n,
344n,

etc

28 K-Secondary
= S10

 Width, diameter, or
second dimension

333n,
347n,

etc

29 K-Secondary
= S11

 Depth, thickness, height,
or third dimension

334n
353n

etc

30 K-Secondary
= S07

 Logistic Area

335n
336n

etc

31 K-Secondary
= S06

335%x30-36 Logistic volume

337(***) 32 337%x30-36 337%x30-36 Kilograms per square
metre

KG PER m² 6n

390n or
391n

33 390%x30-39 /
391%x30-39

390%x30-39 /
391%x30-39

Amount payable – single
monetary area or with ISO
currency code

AMOUNT 1*15n / 4*18n

392n or
393n

34 392%x30-39 /
393%x30-39

392%x30-39 /
393%x30-39

Amount payable for
Variable Measure Trade
Item – single monetary
unit or ISO cc

 PRICE 1*15n / 4*18n

400 35 400 400 Customer's purchase
order number

ORDER NUMBER 1*30an

401 36 401 401 Global Identification
Number for Consignment

GINC 1*30an

402 37 402 402 Global Shipment
Identification Number

GSIN 17n

403 38 403 403 Routing code ROUTE 1*30an
410 39 410 410 Ship to - deliver to Global

Location Number
SHIP TO LOC 13n

411 40 411 411 Bill to - invoice to Global
Location Number

BILL TO 13n

412 41 412 412 Purchased from Global
Location Number

PURCHASE
FROM

13n

413 42 413 413 Ship for - deliver for -
forward to Global Location
Number

SHIP FOR LOC 13n

414
and
254

43 (414) [254] (414) [254] Identification of a physical
location GLN, and optional
Extension

LOC No + GLN
EXTENSION

(13n)
[1*20an]

415
and

8020

44 (415) (8020) (415) (8020) Global Location Number
of the Invoicing Party and
Payment Slip Reference
Number

PAY + REF No (13n)
(1*25an)

420 or
421

45 (420/421) (420/421) Ship to - deliver to postal
code

SHIP TO POST (1*20an / 3n
1*9an)

422 46 422 422 Country of origin of a trade
item

ORIGIN 3n

423 47 423 423 Country of initial
processing

COUNTRY -
INITIAL
PROCESS.

3*15n

 EPC Tag Data Standard

Jan-2014, Version 1.8 Copyright ©2005- 2014 GS1 AISBL, All Rights Reserved. Page 160 of 225

424 48 424 424 Country of processing COUNTRY -
PROCESS.

3n

425 49 425 425 Country of disassembly COUNTRY -
DISASSEMBLY

3n

426 50 426 426 Country covering full
process chain

COUNTRY – FULL
PROCESS

3n

7001 51 7001 7001 NATO stock number NSN 13n
7002 52 7002 7002 UN/ECE meat carcasses

and cuts classification
MEAT CUT 1*30an

7003 53 7003 7003 Expiration Date and Time EXPIRY
DATE/TIME

10n

7004 54 7004 7004 Active Potency ACTIVE
POTENCY

1*4n

703s 55 7030 7030 Approval number of
processor with ISO
country code

PROCESSOR # s 3n 1*27an

703s 56 7031 7031 Approval number of
processor with ISO
country code

PROCESSOR # s 3n 1*27an

703s 57 7032 7032 Approval number of
processor with ISO
country code

PROCESSOR # s 3n 1*27an

703s 58 7033 7033 Approval number of
processor with ISO
country code

PROCESSOR # s 3n 1*27an

703s 59 7034 7034 Approval number of
processor with ISO
country code

PROCESSOR # s 3n 1*27an

703s 60 7035 7035 Approval number of
processor with ISO
country code

PROCESSOR # s 3n 1*27an

703s 61 7036 7036 Approval number of
processor with ISO
country code

PROCESSOR # s 3n 1*27an

703s 62 7037 7037 Approval number of
processor with ISO
country code

PROCESSOR # s 3n 1*27an

703s 63 7038 7038 Approval number of
processor with ISO
country code

PROCESSOR # s 3n 1*27an

703s 64 7039 7039 Approval number of
processor with ISO
country code

PROCESSOR # s 3n 1*27an

8001 65 8001 8001 Roll products - width,
length, core diameter,
direction, and splices

DIMENSIONS 14n

8002 66 8002 8002 Electronic serial identifier
for cellular mobile
telephones

CMT No 1*20an

8003 67 8003 8003 Global Returnable Asset
Identifier

GRAI 14n 0*16an

8004 68 8004 8004 Global Individual Asset
Identifier

GIAI 1*30an

8005 69 8005 8005 Price per unit of measure PRICE PER UNIT 6n

 EPC Tag Data Standard

Jan-2014, Version 1.8 Copyright ©2005- 2014 GS1 AISBL, All Rights Reserved. Page 161 of 225

8006 70 8006 8006 Identification of the
component of a trade item

GCTIN 18n

8007 71 8007 8007 International Bank
Account Number

IBAN 1*30an

8008 72 8008 8008 Date and time of
production

PROD TIME 8*12n

8018 73 8018 8018 Global Service Relation
Number

GSRN 18n

8100
8101

etc

74 K-Secondary
= S08

 Coupon Codes

90 75 90 90 Information mutually
agreed between trading
partners (including FACT
DIs)

INTERNAL 1*30an

91 76 91 91 Company internal
information

INTERNAL 1*30an

92 77 92 92 Company internal
information

INTERNAL 1*30an

93 78 93 93 Company internal
information

INTERNAL 1*30an

94 79 94 94 Company internal
information

INTERNAL 1*30an

95 80 95 95 Company internal
information

INTERNAL 1*30an

96 81 96 96 Company internal
information

INTERNAL 1*30an

97 82 97 97 Company internal
information

INTERNAL 1*30an

98 83 98 98 Company internal
information

INTERNAL 1*30an

99 84 99 99 Company internal
information

INTERNAL 1*30an

K-TableEnd = F9B0

 3667
K-Text = Sec. IDT - Net weight, kilograms or pounds or troy oz (Variable Measure Trade Item)

K-TableID = F9S00

K-RootOID = urn:oid:1.0.15961.9

K-IDsize = 4

AI or
AIs

IDvalue OIDs IDstring Name Data Title FormatString

310(***) 0 310%x30-36 310%x30-36 Net weight, kilograms
(Variable Measure Trade
Item)

NET WEIGHT (kg) 6n

320(***) 1 320%x30-36 320%x30-36 Net weight, pounds
(Variable Measure Trade
Item)

NET WEIGHT (lb) 6n

356(***) 2 356%x30-36 356%x30-36 Net weight, troy ounces
(Variable Measure Trade
Item)

NET WEIGHT (t) 6n

K-TableEnd = F9S00

 EPC Tag Data Standard

Jan-2014, Version 1.8 Copyright ©2005- 2014 GS1 AISBL, All Rights Reserved. Page 162 of 225

 3668
K-Text = Sec. IDT - Length of first dimension (Variable Measure Trade Item)

K-TableID = F9S01

K-RootOID = urn:oid:1.0.15961.9

K-IDsize = 4

AI or
AIs

IDvalue OIDs IDstring Name Data Title FormatString

311(***) 0 311%x30-36 311%x30-36 Length of first dimension,
metres (Variable Measure
Trade Item)

LENGTH (m) 6n

321(***) 1 321%x30-36 321%x30-36 Length or first dimension,
inches (Variable Measure
Trade Item)

LENGTH (i) 6n

322(***) 2 322%x30-36 322%x30-36 Length or first dimension,
feet (Variable Measure
Trade Item)

LENGTH (f) 6n

323(***) 3 323%x30-36 323%x30-36 Length or first dimension,
yards (Variable Measure
Trade Item)

LENGTH (y) 6n

K-TableEnd = F9S01

 3669
K-Text = Sec. IDT - Width, diameter, or second dimension (Variable Measure Trade Item)

K-TableID = F9S02

K-RootOID = urn:oid:1.0.15961.9

K-IDsize = 4

AI or
AIs

IDvalue OIDs IDstring Name Data Title FormatString

312(***) 0 312%x30-36 312%x30-36 Width, diameter, or
second dimension, metres
(Variable Measure Trade
Item)

WIDTH (m) 6n

324(***) 1 324%x30-36 324%x30-36 Width, diameter, or
second dimension, inches
(Variable Measure Trade
Item)

WIDTH (i) 6n

325(***) 2 325%x30-36 325%x30-36 Width, diameter, or
second dimension,
(Variable Measure Trade
Item)

WIDTH (f) 6n

326(***) 3 326%x30-36 326%x30-36 Width, diameter, or
second dimension, yards
(Variable Measure Trade
Item)

WIDTH (y) 6n

K-TableEnd = F9S02

 3670

 EPC Tag Data Standard

Jan-2014, Version 1.8 Copyright ©2005- 2014 GS1 AISBL, All Rights Reserved. Page 163 of 225

K-Text = Sec. IDT - Depth, thickness, height, or third dimension (Variable Measure Trade Item)

K-TableID = F9S03

K-RootOID = urn:oid:1.0.15961.9

K-IDsize = 4

AI or
AIs

IDvalue OIDs IDstring Name Data Title FormatString

313(***) 0 313%x30-36 313%x30-36 Depth, thickness, height,
or third dimension, metres
(Variable Measure Trade
Item)

HEIGHT (m) 6n

327(***) 1 327%x30-36 327%x30-36 Depth, thickness, height,
or third dimension, inches
(Variable Measure Trade
Item)

HEIGHT (i) 6n

328(***) 2 328%x30-36 328%x30-36 Depth, thickness, height,
or third dimension, feet
(Variable Measure Trade
Item)

HEIGHT (f) 6n

329(***) 3 329%x30-36 329%x30-36 Depth, thickness, height,
or third dimension, yards
(Variable Measure Trade
Item)

HEIGHT (y) 6n

K-TableEnd = F9S03

 3671
K-Text = Sec. IDT - Area (Variable Measure Trade Item)

K-TableID = F9S04

K-RootOID = urn:oid:1.0.15961.9

K-IDsize = 4

AI or
AIs

IDvalue OIDs IDstring Name Data Title FormatString

314(***) 0 314%x30-36 314%x30-36 Area, square metres
(Variable Measure Trade
Item)

AREA (m2) 6n

350(***) 1 350%x30-36 350%x30-36 Area, square inches
(Variable Measure Trade
Item)

AREA (i2) 6n

351(***) 2 351%x30-36 351%x30-36 Area, square feet
(Variable Measure Trade
Item)

AREA (f2) 6n

352(***) 3 352%x30-36 352%x30-36 Area, square yards
(Variable Measure Trade
Item)

AREA (y2) 6n

K-TableEnd = F9S04

 3672

 EPC Tag Data Standard

Jan-2014, Version 1.8 Copyright ©2005- 2014 GS1 AISBL, All Rights Reserved. Page 164 of 225

K-Text = Sec. IDT - Net volume (Variable Measure Trade Item)

K-TableID = F9S05

K-RootOID = urn:oid:1.0.15961.9

K-IDsize = 8

AI or
AIs

IDvalue OIDs IDstring Name Data Title FormatString

315(***) 0 315%x30-36 315%x30-36 Net volume, litres
(Variable Measure Trade
Item)

NET VOLUME (l) 6n

316(***) 1 316%x30-36 316%x30-36 Net volume, cubic metres
(Variable Measure Trade
Item)

NET VOLUME
(m3)

6n

357(***) 2 357%x30-36 357%x30-36 Net weight (or volume),
ounces (Variable Measure
Trade Item)

NET VOLUME (oz) 6n

360(***) 3 360%x30-36 360%x30-36 Net volume, quarts
(Variable Measure Trade
Item)

NET VOLUME (q) 6n

361(***) 4 361%x30-36 361%x30-36 Net volume, gallons U.S.
(Variable Measure Trade
Item)

NET VOLUME (g) 6n

364(***) 5 364%x30-36 364%x30-36 Net volume, cubic inches VOLUME (i3), log 6n
365(***) 6 365%x30-36 365%x30-36 Net volume, cubic feet

(Variable Measure Trade
Item)

VOLUME (f3), log 6n

366(***) 7 366%x30-36 366%x30-36 Net volume, cubic yards
(Variable Measure Trade
Item)

VOLUME (y3), log 6n

K-TableEnd = F9S05

 3673
K-Text = Sec. IDT - Logistic Volume

K-TableID = F9S06

K-RootOID = urn:oid:1.0.15961.9

K-IDsize = 8

AI or
AIs

IDvalue OIDs IDstring Name Data Title FormatString

335(***) 0 335%x30-36 335%x30-36 Logistic volume, litres VOLUME (l), log 6n
336(***) 1 336%x30-36 336%x30-36 Logistic volume, cubic

meters
VOLUME (m3), log 6n

362(***) 2 362%x30-36 362%x30-36 Logistic volume, quarts VOLUME (q), log 6n
363(***) 3 363%x30-36 363%x30-36 Logistic volume, gallons VOLUME (g), log 6n
367(***) 4 367%x30-36 367%x30-36 Logistic volume, cubic

inches
VOLUME (q), log 6n

368(***) 5 368%x30-36 368%x30-36 Logistic volume, cubic feet VOLUME (g), log 6n
369(***) 6 369%x30-36 369%x30-36 Logistic volume, cubic

yards
VOLUME (i3), log 6n

K-TableEnd = F9S06

 EPC Tag Data Standard

Jan-2014, Version 1.8 Copyright ©2005- 2014 GS1 AISBL, All Rights Reserved. Page 165 of 225

 3674
K-Text = Sec. IDT - Logistic Area

K-TableID = F9S07

K-RootOID = urn:oid:1.0.15961.9

K-IDsize = 4

AI or
AIs

IDvalue OIDs IDstring Name Data Title FormatString

334(***) 0 334%x30-36 334%x30-36 Area, square metres AREA (m2), log 6n
353(***) 1 353%x30-36 353%x30-36 Area, square inches AREA (i2), log 6n
354(***) 2 354%x30-36 354%x30-36 Area, square feet AREA (f2), log 6n
355(***) 3 355%x30-36 355%x30-36 Area, square yards AREA (y2), log 6n
K-TableEnd = F9S07

 3675
K-Text = Sec. IDT - Coupon Codes

K-TableID = F9S08

K-RootOID = urn:oid:1.0.15961.9

K-IDsize = 8

AI or
AIs

IDvalue OIDs IDstring Name Data Title FormatString

8100 0 8100 8100 GS1-128 Coupon
Extended Code - NSC +
Offer Code

- 6n

8101 1 8101 8101 GS1-128 Coupon
Extended Code - NSC +
Offer Code + end of offer
code

- 10n

8102 2 8102 8102 GS1-128 Coupon
Extended Code – NSC

- 2n

8110 3 8110 8110 Coupon Code
Identification for Use in
North America

 1*70an

K-TableEnd = F9S08

 3676
K-Text = Sec. IDT - Length or first dimension

K-TableID = F9S09

K-RootOID = urn:oid:1.0.15961.9

K-IDsize = 4

AI or
AIs

IDvalue OIDs IDstring Name Data Title FormatString

331(***) 0 331%x30-36 331%x30-36 Length or first dimension,
metres

LENGTH (m), log 6n

341(***) 1 341%x30-36 341%x30-36 Length or first dimension,
inches

LENGTH (i), log 6n

 EPC Tag Data Standard

Jan-2014, Version 1.8 Copyright ©2005- 2014 GS1 AISBL, All Rights Reserved. Page 166 of 225

342(***) 2 342%x30-36 342%x30-36 Length or first dimension,
feet

LENGTH (f), log 6n

343(***) 3 343%x30-36 343%x30-36 Length or first dimension,
yards

LENGTH (y), log 6n

K-TableEnd = F9S09

 3677
K-Text = Sec. IDT - Width, diameter, or second dimension

K-TableID = F9S10

K-RootOID = urn:oid:1.0.15961.9

K-IDsize = 4

AI or
AIs

IDvalue OIDs IDstring Name Data Title FormatString

332(***) 0 332%x30-36 332%x30-36 Width, diameter, or
second dimension, metres

WIDTH (m), log 6n

344(***) 1 344%x30-36 344%x30-36 Width, diameter, or
second dimension

WIDTH (i), log 6n

345(***) 2 345%x30-36 345%x30-36 Width, diameter, or
second dimension

WIDTH (f), log 6n

346(***) 3 346%x30-36 346%x30-36 Width, diameter, or
second dimension

WIDTH (y), log 6n

K-TableEnd = F9S10

 3678
K-Text = Sec. IDT - Depth, thickness, height, or third dimension

K-TableID = F9S11

K-RootOID = urn:oid:1.0.15961.9

K-IDsize = 4

AI or
AIs

IDvalue OIDs IDstring Name Data Title FormatString

333(***) 0 333%x30-36 333%x30-36 Depth, thickness, height,
or third dimension, metres

HEIGHT (m), log 6n

347(***) 1 347%x30-36 347%x30-36 Depth, thickness, height,
or third dimension

HEIGHT (i), log 6n

348(***) 2 348%x30-36 348%x30-36 Depth, thickness, height,
or third dimension

HEIGHT (f), log 6n

349(***) 3 349%x30-36 349%x30-36 Depth, thickness, height,
or third dimension

HEIGHT (y), log 6n

K-TableEnd = F9S11

 3679

F.2 Comma-Separated-Value (CSV) Format 3680
This section is the Packed Objects ID Table for Data Format 9 (GS1 Application Identifiers) in 3681
machine readable, comma-separated-value format, as registered with ISO. See Section F.1 for a 3682
non-normative listing of the content of the ID Table for Data Format 9, in a human readable, 3683
tabular format. 3684

 EPC Tag Data Standard

Jan-2014, Version 1.8 Copyright ©2005- 2014 GS1 AISBL, All Rights Reserved. Page 167 of 225

In the comma-separated-value format, line breaks are significant. However, certain lines are too 3685
long to fit within the margins of this document. In the listing below, the symbol █ at the end of 3686
line indicates that the ID Table line is continued on the following line. Such a line shall be 3687
interpreted by concatenating the following line and omitting the █ symbol. 3688
K-Text = GS1 AI ID Table for ISO/IEC 15961 Format 9,,,,,, 3689
K-Version = 1.00,,,,,, 3690
K-ISO15434=05,,,,,, 3691
K-Text = Primary Base Table,,,,,, 3692
K-TableID = F9B0,,,,,, 3693
K-RootOID = urn:oid:1.0.15961.9,,,,,, 3694
K-IDsize = 90,,,,,, 3695
AI or AIs,IDvalue,OIDs,IDstring,Name,Data Title,FormatString 3696
00,1,0,"00",SSCC (Serial Shipping Container Code),SSCC,18n 3697
01,2,1,"01",Global Trade Item Number,GTIN,14n 3698
02 + 37,3,(2)(37),(02)(37),GTIN + Count of trade items contained in a logistic unit,CONTENT + COUNT,(14n)(1*8n) 3699
10,4,10,10,Batch or lot number,BATCH/LOT,1*20an 3700
11,5,11,11,Production date (YYMMDD),PROD DATE,6n 3701
12,6,12,12,Due date (YYMMDD),DUE DATE,6n 3702
13,7,13,13,Packaging date (YYMMDD),PACK DATE,6n 3703
15,8,15,15,Best before date (YYMMDD),BEST BEFORE OR SELL BY,6n 3704
17,9,17,17,Expiration date (YYMMDD),USE BY OR EXPIRY,6n 3705
20,10,20,20,Product variant,VARIANT,2n 3706
21,11,21,21,Serial number,SERIAL,1*20an 3707
22,12,22,22,Secondary data for specific health industry products ,QTY/DATE/BATCH,1*29an 3708
240,13,240,240,Additional product identification assigned by the manufacturer,ADDITIONAL ID,1*30an 3709
241,14,241,241,Customer part number,CUST. PART NO.,1*30an 3710
242,15,242,242,Made-to-Order Variation Number,VARIATION NUMBER,1*6n 3711
250,16,250,250,Secondary serial number,SECONDARY SERIAL,1*30an 3712
251,17,251,251,Reference to source entity,REF. TO SOURCE ,1*30an 3713
253,18,253,253,Global Document Type Identifier,DOC. ID,13n 0*17an 3714
30,19,30,30,Variable count,VAR. COUNT,1*8n 3715
310n 320n etc,20,K-Secondary = S00,,"Net weight, kilograms or pounds or troy oz (Variable Measure Trade Item)",, 3716
311n 321n etc,21,K-Secondary = S01,,Length of first dimension (Variable Measure Trade Item),, 3717
312n 324n etc,22,K-Secondary = S02,,"Width, diameter, or second dimension (Variable Measure Trade Item)",, 3718
313n 327n etc,23,K-Secondary = S03,,"Depth, thickness, height, or third dimension (Variable Measure Trade Item)",, 3719
314n 350n etc,24,K-Secondary = S04,,Area (Variable Measure Trade Item),, 3720
315n 316n etc,25,K-Secondary = S05,,Net volume (Variable Measure Trade Item),, 3721
330n or 340n,26,330%x30-36 / 340%x30-36,330%x30-36 / 340%x30-36,"Logistic weight, kilograms or pounds",█ 3722
GROSS WEIGHT (kg) or (lb),6n / 6n 3723
"331n, 341n, etc",27,K-Secondary = S09,,Length or first dimension,, 3724
"332n, 344n, etc",28,K-Secondary = S10,,"Width, diameter, or second dimension",, 3725
"333n, 347n, etc",29,K-Secondary = S11,,"Depth, thickness, height, or third dimension",, 3726
334n 353n etc,30,K-Secondary = S07,,Logistic Area,, 3727
335n 336n etc,31,K-Secondary = S06,335%x30-36,Logistic volume,, 3728
337(***),32,337%x30-36,337%x30-36,Kilograms per square metre,KG PER m2,6n 3729
390n or 391n,33,390%x30-39 / 391%x30-39,390%x30-39 / 391%x30-39,Amount payable – single monetary area or with █ 3730
ISO currency code,AMOUNT,1*15n / 4*18n 3731
392n or 393n,34,392%x30-39 / 393%x30-39,392%x30-39 / 393%x30-39,Amount payable for Variable Measure Trade Item – █ 3732
single monetary unit or ISO cc, PRICE,1*15n / 4*18n 3733
400,35,400,400,Customer's purchase order number,ORDER NUMBER,1*30an 3734
401,36,401,401,Global Identification Number for Consignment,GINC,1*30an 3735
402,37,402,402,Global Shipment Identification Number,GSIN,17n 3736
403,38,403,403,Routing code,ROUTE,1*30an 3737
410,39,410,410,Ship to - deliver to Global Location Number ,SHIP TO LOC,13n 3738
411,40,411,411,Bill to - invoice to Global Location Number,BILL TO ,13n 3739
412,41,412,412,Purchased from Global Location Number,PURCHASE FROM,13n 3740
413,42,413,413,Ship for - deliver for - forward to Global Location Number,SHIP FOR LOC,13n 3741
414 and 254,43,(414) [254],(414) [254],"Identification of a physical location GLN, and optional Extension",LOC No + █ 3742
GLN EXTENSION,(13n) [1*20an] 3743
415 and 8020,44,(415) (8020),(415) (8020),Global Location Number of the Invoicing Party and Payment Slip Reference █ 3744
Number,PAY + REF No,(13n) (1*25an) 3745
420 or 421,45,(420/421),(420/421),Ship to - deliver to postal code,SHIP TO POST,(1*20an / 3n 1*9an) 3746
422,46,422,422,Country of origin of a trade item,ORIGIN,3n 3747
423,47,423,423,Country of initial processing,COUNTRY - INITIAL PROCESS.,3*15n 3748
424,48,424,424,Country of processing,COUNTRY - PROCESS.,3n 3749
425,49,425,425,Country of disassembly,COUNTRY - DISASSEMBLY,3n 3750
426,50,426,426,Country covering full process chain,COUNTRY – FULL PROCESS,3n 3751
7001,51,7001,7001,NATO stock number,NSN,13n 3752
7002,52,7002,7002,UN/ECE meat carcasses and cuts classification,MEAT CUT,1*30an 3753
7003,53,7003,7003,Expiration Date and Time,EXPIRY DATE/TIME,10n 3754
7004,54,7004,7004,Active Potency,ACTIVE POTENCY,1*4n 3755
703s,55,7030,7030,Approval number of processor with ISO country code,PROCESSOR # s,3n 1*27an 3756
703s,56,7031,7031,Approval number of processor with ISO country code,PROCESSOR # s,3n 1*27an 3757
703s,57,7032,7032,Approval number of processor with ISO country code,PROCESSOR # s,3n 1*27an 3758
703s,58,7033,7033,Approval number of processor with ISO country code,PROCESSOR # s,3n 1*27an 3759
703s,59,7034,7034,Approval number of processor with ISO country code,PROCESSOR # s,3n 1*27an 3760
703s,60,7035,7035,Approval number of processor with ISO country code,PROCESSOR # s,3n 1*27an 3761
703s,61,7036,7036,Approval number of processor with ISO country code,PROCESSOR # s,3n 1*27an 3762
703s,62,7037,7037,Approval number of processor with ISO country code,PROCESSOR # s,3n 1*27an 3763
703s,63,7038,7038,Approval number of processor with ISO country code,PROCESSOR # s,3n 1*27an 3764
703s,64,7039,7039,Approval number of processor with ISO country code,PROCESSOR # s,3n 1*27an 3765
8001,65,8001,8001,"Roll products - width, length, core diameter, direction, and splices",DIMENSIONS,14n 3766
8002,66,8002,8002,Electronic serial identifier for cellular mobile telephones,CMT No,1*20an 3767
8003,67,8003,8003,Global Returnable Asset Identifier,GRAI,14n 0*16an 3768
8004,68,8004,8004,Global Individual Asset Identifier,GIAI,1*30an 3769
8005,69,8005,8005,Price per unit of measure,PRICE PER UNIT,6n 3770
8006,70,8006,8006,Identification of the component of a trade item,GCTIN,18n 3771
8007,71,8007,8007,International Bank Account Number ,IBAN,1*30an 3772
8008,72,8008,8008,Date and time of production,PROD TIME,8*12n 3773
8018,73,8018,8018,Global Service Relation Number ,GSRN,18n 3774

 EPC Tag Data Standard

Jan-2014, Version 1.8 Copyright ©2005- 2014 GS1 AISBL, All Rights Reserved. Page 168 of 225

8100 8101 etc,74,K-Secondary = S08,,Coupon Codes,, 3775
90,75,90,90,Information mutually agreed between trading partners (including FACT DIs),INTERNAL,1*30an 3776
91,76,91,91,Company internal information,INTERNAL,1*30an 3777
92,77,92,92,Company internal information,INTERNAL,1*30an 3778
93,78,93,93,Company internal information,INTERNAL,1*30an 3779
94,79,94,94,Company internal information,INTERNAL,1*30an 3780
95,80,95,95,Company internal information,INTERNAL,1*30an 3781
96,81,96,96,Company internal information,INTERNAL,1*30an 3782
97,82,97,97,Company internal information,INTERNAL,1*30an 3783
98,83,98,98,Company internal information,INTERNAL,1*30an 3784
99,84,99,99,Company internal information,INTERNAL,1*30an 3785
 3786
K-TableEnd = F9B0,,,,,, 3787
 3788
 3789
"K-Text = Sec. IDT - Net weight, kilograms or pounds or troy oz (Variable Measure Trade Item)",,,,,, 3790
K-TableID = F9S00,,,,,, 3791
K-RootOID = urn:oid:1.0.15961.9,,,,,, 3792
K-IDsize = 4,,,,,, 3793
AI or AIs,IDvalue,OIDs,IDstring,Name,Data Title,FormatString 3794
310(***),0,310%x30-36,310%x30-36,"Net weight, kilograms (Variable Measure Trade Item)",NET WEIGHT (kg),6n 3795
320(***),1,320%x30-36,320%x30-36,"Net weight, pounds (Variable Measure Trade Item)",NET WEIGHT (lb),6n 3796
356(***),2,356%x30-36,356%x30-36,"Net weight, troy ounces (Variable Measure Trade Item)",NET WEIGHT (t),6n 3797
K-TableEnd = F9S00,,,,,, 3798
 3799
 3800
K-Text = Sec. IDT - Length of first dimension (Variable Measure Trade Item),,,,,, 3801
K-TableID = F9S01,,,,,, 3802
K-RootOID = urn:oid:1.0.15961.9,,,,,, 3803
K-IDsize = 4,,,,,, 3804
AI or AIs,IDvalue,OIDs,IDstring,Name,Data Title,FormatString 3805
311(***),0,311%x30-36,311%x30-36,"Length of first dimension, metres (Variable Measure Trade Item)",LENGTH (m),6n 3806
321(***),1,321%x30-36,321%x30-36,"Length or first dimension, inches (Variable Measure Trade Item)",LENGTH (i),6n 3807
322(***),2,322%x30-36,322%x30-36,"Length or first dimension, feet (Variable Measure Trade Item)",LENGTH (f),6n 3808
323(***),3,323%x30-36,323%x30-36,"Length or first dimension, yards (Variable Measure Trade Item)",LENGTH (y),6n 3809
K-TableEnd = F9S01,,,,,, 3810
 3811
 3812
"K-Text = Sec. IDT - Width, diameter, or second dimension (Variable Measure Trade Item)",,,,,, 3813
K-TableID = F9S02,,,,,, 3814
K-RootOID = urn:oid:1.0.15961.9,,,,,, 3815
K-IDsize = 4,,,,,, 3816
AI or AIs,IDvalue,OIDs,IDstring,Name,Data Title,FormatString 3817
312(***),0,312%x30-36,312%x30-36,"Width, diameter, or second dimension, metres (Variable Measure Trade Item)", █ 3818
WIDTH (m),6n 3819
324(***),1,324%x30-36,324%x30-36,"Width, diameter, or second dimension, inches (Variable Measure Trade Item)", █ 3820
WIDTH (i),6n 3821
325(***),2,325%x30-36,325%x30-36,"Width, diameter, or second dimension, (Variable Measure Trade Item)", █ 3822
WIDTH (f),6n 3823
326(***),3,326%x30-36,326%x30-36,"Width, diameter, or second dimension, yards (Variable Measure Trade Item)", █ 3824
WIDTH (y),6n 3825
K-TableEnd = F9S02,,,,,, 3826
 3827
 3828
"K-Text = Sec. IDT - Depth, thickness, height, or third dimension (Variable Measure Trade Item)",,,,,, 3829
K-TableID = F9S03,,,,,, 3830
K-RootOID = urn:oid:1.0.15961.9,,,,,, 3831
K-IDsize = 4,,,,,, 3832
AI or AIs,IDvalue,OIDs,IDstring,Name,Data Title,FormatString 3833
313(***),0,313%x30-36,313%x30-36,"Depth, thickness, height, or third dimension, metres (Variable Measure █ 3834
Trade Item)",HEIGHT (m),6n 3835
327(***),1,327%x30-36,327%x30-36,"Depth, thickness, height, or third dimension, inches (Variable Measure █ 3836
Trade Item)",HEIGHT (i),6n 3837
328(***),2,328%x30-36,328%x30-36,"Depth, thickness, height, or third dimension, feet (Variable Measure █ 3838
Trade Item)",HEIGHT (f),6n 3839
329(***),3,329%x30-36,329%x30-36,"Depth, thickness, height, or third dimension, yards (Variable Measure █ 3840
Trade Item)",HEIGHT (y),6n 3841
K-TableEnd = F9S03,,,,,, 3842
 3843
 3844
K-Text = Sec. IDT - Area (Variable Measure Trade Item),,,,,, 3845
K-TableID = F9S04,,,,,, 3846
K-RootOID = urn:oid:1.0.15961.9,,,,,, 3847
K-IDsize = 4,,,,,, 3848
AI or AIs,IDvalue,OIDs,IDstring,Name,Data Title,FormatString 3849
314(***),0,314%x30-36,314%x30-36,"Area, square metres (Variable Measure Trade Item)",AREA (m2),6n 3850
350(***),1,350%x30-36,350%x30-36,"Area, square inches (Variable Measure Trade Item)",AREA (i2),6n 3851
351(***),2,351%x30-36,351%x30-36,"Area, square feet (Variable Measure Trade Item)",AREA (f2),6n 3852
352(***),3,352%x30-36,352%x30-36,"Area, square yards (Variable Measure Trade Item)",AREA (y2),6n 3853
K-TableEnd = F9S04,,,,,, 3854
 3855
 3856
K-Text = Sec. IDT - Net volume (Variable Measure Trade Item),,,,,, 3857
K-TableID = F9S05,,,,,, 3858
K-RootOID = urn:oid:1.0.15961.9,,,,,, 3859
K-IDsize = 8,,,,,, 3860
AI or AIs,IDvalue,OIDs,IDstring,Name,Data Title,FormatString 3861
315(***),0,315%x30-36,315%x30-36,"Net volume, litres (Variable Measure Trade Item)",NET VOLUME (l),6n 3862
316(***),1,316%x30-36,316%x30-36,"Net volume, cubic metres (Variable Measure Trade Item)",NET VOLUME (m3),6n 3863
357(***),2,357%x30-36,357%x30-36,"Net weight (or volume), ounces (Variable Measure Trade Item)",NET VOLUME (oz),6n 3864
360(***),3,360%x30-36,360%x30-36,"Net volume, quarts (Variable Measure Trade Item)",NET VOLUME (q),6n 3865
361(***),4,361%x30-36,361%x30-36,"Net volume, gallons U.S. (Variable Measure Trade Item)",NET VOLUME (g),6n 3866
364(***),5,364%x30-36,364%x30-36,"Net volume, cubic inches","VOLUME (i3), log",6n 3867
365(***),6,365%x30-36,365%x30-36,"Net volume, cubic feet (Variable Measure Trade Item)","VOLUME (f3), log",6n 3868
366(***),7,366%x30-36,366%x30-36,"Net volume, cubic yards (Variable Measure Trade Item)","VOLUME (y3), log",6n 3869

 EPC Tag Data Standard

Jan-2014, Version 1.8 Copyright ©2005- 2014 GS1 AISBL, All Rights Reserved. Page 169 of 225

K-TableEnd = F9S05,,,,,, 3870
 3871
 3872
K-Text = Sec. IDT - Logistic Volume,,,,,, 3873
K-TableID = F9S06,,,,,, 3874
K-RootOID = urn:oid:1.0.15961.9,,,,,, 3875
K-IDsize = 8,,,,,, 3876
AI or AIs,IDvalue,OIDs,IDstring,Name,Data Title,FormatString 3877
335(***),0,335%x30-36,335%x30-36,"Logistic volume, litres","VOLUME (l), log",6n 3878
336(***),1,336%x30-36,336%x30-36,"Logistic volume, cubic metres","VOLUME (m3), log",6n 3879
362(***),2,362%x30-36,362%x30-36,"Logistic volume, quarts","VOLUME (q), log",6n 3880
363(***),3,363%x30-36,363%x30-36,"Logistic volume, gallons","VOLUME (g), log",6n 3881
367(***),4,367%x30-36,367%x30-36,"Logistic volume, cubic inches","VOLUME (q), log",6n 3882
368(***),5,368%x30-36,368%x30-36,"Logistic volume, cubic feet","VOLUME (g), log",6n 3883
369(***),6,369%x30-36,369%x30-36,"Logistic volume, cubic yards","VOLUME (i3), log",6n 3884
K-TableEnd = F9S06,,,,,, 3885
 3886
 3887
K-Text = Sec. IDT - Logistic Area,,,,,, 3888
K-TableID = F9S07,,,,,, 3889
K-RootOID = urn:oid:1.0.15961.9,,,,,, 3890
K-IDsize = 4,,,,,, 3891
AI or AIs,IDvalue,OIDs,IDstring,Name,Data Title,FormatString 3892
334(***),0,334%x30-36,334%x30-36,"Area, square metres","AREA (m2), log",6n 3893
353(***),1,353%x30-36,353%x30-36,"Area, square inches","AREA (i2), log",6n 3894
354(***),2,354%x30-36,354%x30-36,"Area, square feet","AREA (f2), log",6n 3895
355(***),3,355%x30-36,355%x30-36,"Area, square yards","AREA (y2), log",6n 3896
K-TableEnd = F9S07,,,,,, 3897
 3898
 3899
K-Text = Sec. IDT - Coupon Codes,,,,,, 3900
K-TableID = F9S08,,,,,, 3901
K-RootOID = urn:oid:1.0.15961.9,,,,,, 3902
K-IDsize = 8,,,,,, 3903
AI or AIs,IDvalue,OIDs,IDstring,Name,Data Title,FormatString 3904
8100,0,8100,8100,GS1-128 Coupon Extended Code - NSC + Offer Code,-,6n 3905
8101,1,8101,8101,GS1-128 Coupon Extended Code - NSC + Offer Code + end of offer code,-,10n 3906
8102,2,8102,8102,GS1-128 Coupon Extended Code – NSC,-,2n 3907
8110,3,8110,8110,Coupon Code Identification for Use in North America,,1*70an 3908
 3909
 3910
 3911
 3912
K-TableEnd = F9S08,,,,,, 3913
 3914
 3915
K-Text = Sec. IDT - Length or first dimension,,,,,, 3916
K-TableID = F9S09,,,,,, 3917
K-RootOID = urn:oid:1.0.15961.9,,,,,, 3918
K-IDsize = 4,,,,,, 3919
AI or AIs,IDvalue,OIDs,IDstring,Name,Data Title,FormatString 3920
331(***),0,331%x30-36,331%x30-36,"Length or first dimension, metres","LENGTH (m), log",6n 3921
341(***),1,341%x30-36,341%x30-36,"Length or first dimension, inches","LENGTH (i), log",6n 3922
342(***),2,342%x30-36,342%x30-36,"Length or first dimension, feet","LENGTH (f), log",6n 3923
343(***),3,343%x30-36,343%x30-36,"Length or first dimension, yards","LENGTH (y), log",6n 3924
K-TableEnd = F9S09,,,,,, 3925
 3926
 3927
"K-Text = Sec. IDT - Width, diameter, or second dimension",,,,,, 3928
K-TableID = F9S10,,,,,, 3929
K-RootOID = urn:oid:1.0.15961.9,,,,,, 3930
K-IDsize = 4,,,,,, 3931
AI or AIs,IDvalue,OIDs,IDstring,Name,Data Title,FormatString 3932
332(***),0,332%x30-36,332%x30-36,"Width, diameter, or second dimension, metres","WIDTH (m), log",6n 3933
344(***),1,344%x30-36,344%x30-36,"Width, diameter, or second dimension","WIDTH (i), log",6n 3934
345(***),2,345%x30-36,345%x30-36,"Width, diameter, or second dimension","WIDTH (f), log",6n 3935
346(***),3,346%x30-36,346%x30-36,"Width, diameter, or second dimension","WIDTH (y), log",6n 3936
K-TableEnd = F9S10,,,,,, 3937
 3938
 3939
"K-Text = Sec. IDT - Depth, thickness, height, or third dimension",,,,,, 3940
K-TableID = F9S11,,,,,, 3941
K-RootOID = urn:oid:1.0.15961.9,,,,,, 3942
K-IDsize = 4,,,,,, 3943
AI or AIs,IDvalue,OIDs,IDstring,Name,Data Title,FormatString 3944
333(***),0,333%x30-36,333%x30-36,"Depth, thickness, height, or third dimension, metres","HEIGHT (m), log",6n 3945
347(***),1,347%x30-36,347%x30-36,"Depth, thickness, height, or third dimension","HEIGHT (i), log",6n 3946
348(***),2,348%x30-36,348%x30-36,"Depth, thickness, height, or third dimension","HEIGHT (f), log",6n 3947
349(***),3,349%x30-36,349%x30-36,"Depth, thickness, height, or third dimension","HEIGHT (y), log",6n 3948
K-TableEnd = F9S11,,,,,, 3949

Appendix G 6-Bit Alphanumeric Character Set 3950
The following table specifies the characters that are used in the Component / Part Reference in 3951
CPI EPCs and in the original part number and serial number in ADI EPCs. A subset of these 3952
characters are also used for the CAGE/DoDAAC code in ADI EPCs. The columns are as 3953
follows: 3954

 EPC Tag Data Standard

Jan-2014, Version 1.8 Copyright ©2005- 2014 GS1 AISBL, All Rights Reserved. Page 170 of 225

• Graphic Symbol The printed representation of the character as used in human-readable 3955
forms. 3956

• Name The common name for the character 3957

• Binary Value A Binary numeral that gives the 6-bit binary value for the character as used in 3958
EPC binary encodings. This binary value is always equal to the least significant six bits of 3959
the ISO 646 (ASCII) code for the character. 3960

• URI Form The representation of the character within Pure Identity EPC URI and EPC Tag 3961
URI forms. This is either a single character whose ASCII code’s least significant six bits is 3962
equal to the value in the “binary value” column, or an escape triplet consisting of a percent 3963
character followed by two characters giving the hexadecimal value for the character. 3964

Graphic
Symbol

Name Binary
Value

URI
Form

Graphic
Symbol

Name Binary
Value

URI
Form

Pound/
Number Sign

100011 %23 H Capital
H

001000 H

- Hyphen/
Minus Sign

101101 - I Capital
I

001001 I

/ Forward
Slash

101111 %2F J Capital
J

001010 J

0 Zero Digit 110000 0 K Capital
K

001011 K

1 One Digit 110001 1 L Capital
L

001100 L

2 Two Digit 110010 2 M Capital
M

001101 M

3 Three Digit 110011 3 N Capital
N

001110 N

4 Four Digit 110100 4 O Capital
O

001111 O

5 Five Digit 110101 5 P Capital
P

010000 P

6 Six Digit 110110 6 Q Capital
Q

010001 Q

7 Seven Digit 110111 7 R Capital
R

010010 R

8 Eight Digit 111000 8 S Capital
S

010011 S

9 Nine Digit 111001 9 T Capital
T

010100 T

 EPC Tag Data Standard

Jan-2014, Version 1.8 Copyright ©2005- 2014 GS1 AISBL, All Rights Reserved. Page 171 of 225

Graphic
Symbol

Name Binary
Value

URI
Form

Graphic
Symbol

Name Binary
Value

URI
Form

A Capital A 000001 A U Capital
U

010101 U

B Capital B 000010 B V Capital
V

010110 V

C Capital C 000011 C W Capital
W

010111 W

D Capital D 000100 D X Capital
X

011000 X

E Capital E 000101 E Y Capital
Y

011001 Y

F Capital F 000110 F Z Capital
Letter Z

011010 Z

G Capital G 000111 G

Table 52. Characters Permitted in 6-bit Alphanumeric Fields 3965

Appendix H (Intentionally Omitted) 3966
[This appendix is omitted so that Appendices I through M, which specify packed objects, have 3967
the same appendix letters as the corresponding annexes of ISO/IEC 15962 , 2nd Edition.] 3968

Appendix I Packed Objects Structure 3969

I.1 Overview 3970
The Packed Objects format provides for efficient encoding and access of user data. The Packed 3971
Objects format offers increased encoding efficiency compared to the No-Directory and Directory 3972
Access-Methods partly by utilizing sophisticated compaction methods, partly by defining an 3973
inherent directory structure at the front of each Packed Object (before any of its data is encoded) 3974
that supports random access while reducing the fixed overhead of some prior methods, and partly 3975
by utilizing data-system-specific information (such as the GS1 definitions of fixed-length 3976
Application Identifiers). 3977

I.2 Overview of Packed Objects Documentation 3978
The formal description of Packed Objects is presented in this Appendix and Appendices J, K, L, 3979
and M, as follows: 3980

• The overall structure of Packed Objects is described in Section I.3. 3981

• The individual sections of a Packed Object are described in Sections I.4 through I.9. 3982

• The structure and features of ID Tables (utilized by Packed Objects to represent various data 3983
system identifiers) are described in Appendix J. 3984

 EPC Tag Data Standard

Jan-2014, Version 1.8 Copyright ©2005- 2014 GS1 AISBL, All Rights Reserved. Page 172 of 225

• The numerical bases and character sets used in Packed Objects are described in Appendix K. 3985

• An encoding algorithm and worked example are described in Appendix L. 3986

• The decoding algorithm for Packed Objects is described in Appendix M. 3987
In addition, note that all descriptions of specific ID Tables for use with Packed Objects are 3988
registered separately, under the procedures of ISO/IEC 15961-2 as is the complete formal 3989
description of the machine-readable format for registered ID Tables. 3990

I.3 High-Level Packed Objects Format Design 3991

I.3.1 Overview 3992
The Packed Objects memory format consists of a sequence in memory of one or more “Packed 3993
Objects” data structures. Each Packed Object may contain either encoded data or directory 3994
information, but not both. The first Packed Object in memory is preceded by a DSFID. The 3995
DSFID indicates use of Packed Objects as the memory’s Access Method, and indicates the 3996
registered Data Format that is the default format for every Packed Object in that memory. Every 3997
Packed Object may be optionally preceded or followed by padding patterns (if needed for 3998
alignment on word or block boundaries). In addition, at most one Packed Object in memory may 3999
optionally be preceded by a pointer to a Directory Packed Object (this pointer may itself be 4000
optionally followed by padding). This series of Packed Objects is terminated by optional 4001
padding followed by one or more zero-valued octets aligned on byte boundaries. See Figure I 3-4002
1, which shows this sequence when appearing in an RFID tag. 4003

NOTE: Because the data structures within an encoded Packed Object are bit-aligned rather than 4004
byte-aligned, this Appendix use the term ‘octet’ instead of ‘byte’ except in case where an eight-4005
bit quantity must be aligned on a byte boundary. 4006

Figure I 3-1: Overall Memory structure when using Packed Objects 4007

DSFID Optional

Pointer*

And/Or

Padding

First
Packed

Object

Optional

Pointer*

And/Or

Padding

Optional

Second
Packed

Object

…

Optional

Packed

Object

Optional

Pointer*

And/Or

Padding

Zero

Octet(s)

*Note: the Optional Pointer to a Directory Packed Object may appear at most only once in 4008
memory 4009

Every Packed Object represents a sequence of one or more data system Identifiers, each 4010
specified by reference to an entry within a Base ID Table from a registered data format. The 4011
entry is referenced by its relative position within the Base Table; this relative position or Base 4012
Table index is referred to throughout this specification as an “ID Value.” There are two different 4013
Packed Objects methods available for representing a sequence of Identifiers by reference to their 4014
ID Values: 4015

• An ID List Packed Object (IDLPO) encodes a series of ID Values as a list, whose length 4016
depends on the number of data items being represented; 4017

 EPC Tag Data Standard

Jan-2014, Version 1.8 Copyright ©2005- 2014 GS1 AISBL, All Rights Reserved. Page 173 of 225

• An ID Map Packed Object (IDMPO) instead encodes a fixed-length bit array, whose length 4018
depends on the total number of entries defined in the registered Base Table. Each bit in the 4019
array is ‘1’ if the corresponding table entry is represented by the Packed Object, and is ‘0’ 4020
otherwise. 4021

An ID List is the default Packed Objects format, because it uses fewer bits than an ID Map, if the 4022
list contains only a small percentage of the data system’s defined ID Values. However, if the 4023
Packed Object includes more than about one-quarter of the defined entries, then an ID Map 4024
requires fewer bits. For example, if a data system has sixteen entries, then each ID Value (table 4025
index) is a four bit quantity, and a list of four ID Values takes as many bits as would the 4026
complete ID Map. An ID Map’s fixed-length characteristic makes it especially suitable for use 4027
in a Directory Packed Object, which lists all of the Identifiers in all of the Packed Objects in 4028
memory (see section I.9). The overall structure of a Packed Object is the same, whether an 4029
IDLPO or an IDMPO, as shown in Figure I 3-2 and as described in the next subsection. 4030

Figure I 3-2 Packed Object Structure 4031

Optional

Format

Flags

Object Info Section

(IDLPO or IDMPO)

Secondary

ID Section

(if needed)

Aux Format

Section

(if needed)

Data Section

(if needed)

 4032

Packed Objects may be made “editable”, by adding an optional Addendum subsection to the end 4033
of the Object Info section, which includes a pointer to an “Addendum Packed Object” where 4034
additions and/or deletions have been made. One or more such “chains” of editable “parent” and 4035
“child” Packed Objects may be present within the overall sequence of Packed Objects in 4036
memory, but no more than one chain of Directory Packed Objects may be present. 4037

I.3.2 Descriptions of each section of a Packed Object’s structure 4038
Each Packed Object consists of several bit-aligned sections (that is, no pad bits between sections 4039
are used), carried in a variable number of octets. All required and optional Packed Objects 4040
formats are encompassed by the following ordered list of Packed Objects sections. Following 4041
this list, each Packed Objects section is introduced, and later sections of this Annex describe 4042
each Packed Objects section in detail. 4043

• Format Flags: A Packed Object may optionally begin with the pattern ‘0000’ which is 4044
reserved to introduce one or more Format Flags, as described in I.4.2. These flags may 4045
indicate use of the non-default ID Map format. If the Format Flags are not present, then the 4046
Packed Object defaults to the ID List format. 4047

• Certain flag patterns indicate an inter-Object pattern (Directory Pointer or Padding) 4048

• Other flag patterns indicate the Packed Object’s type (Map or. List), and may indicated 4049
the presence of an optional Addendum subsection for editing. 4050

• Object Info: All Packed Objects contain an Object Info Section which includes Object 4051
Length Information and ID Value Information: 4052

 EPC Tag Data Standard

Jan-2014, Version 1.8 Copyright ©2005- 2014 GS1 AISBL, All Rights Reserved. Page 174 of 225

• Object Length Information includes an ObjectLength field (indicating the overall length 4053
of the Packed Object in octets) followed by Pad Indicator bit, so that the number of 4054
significant bits in the Packed Object can be determined. 4055

• ID Value Information indicates which Identifiers are present and in what order, and (if an 4056
IDLPO) also includes a leading NumberOfIDs field, indicating how many ID Values are 4057
encoded in the ID List. 4058

The Object Info section is encoded in one of the following formats, as shown in Figure I 3-3 4059
and Figure I 3-4. 4060

• ID List (IDLPO) Object Info format: 4061

• Object Length (EBV-6) plus Pad Indicator bit 4062

• A single ID List or an ID Lists Section (depending on Format Flags) 4063

• ID Map (IDMPO) Object Info format: 4064

• One or more ID Map sections 4065

• Object Length (EBV-6) plus Pad Indicator bit 4066
For either of these Object Info formats, an Optional Addendum subsection may be present at 4067
the end of the Object Info section. 4068

• Secondary ID Bits: A Packed Object may include a Secondary ID section, if needed to 4069
encode additional bits that are defined for some classes of IDs (these bits complete the 4070
definition of the ID). 4071

• Aux Format Bits: A Data Packed Object may include an Aux Format Section, which if 4072
present encodes one or more bits that are defined to support data compression, but do not 4073
contribute to defining the ID. 4074

• Data Section: A Data Packed Object includes a Data Section, representing the compressed 4075
data associated with each of the identifiers listed within the Packed Object. This section is 4076
omitted in a Directory Packed Object, and in a Packed Object that uses No-directory 4077
compaction (see I.7.1). Depending on the declaration of data format in the relevant ID table, 4078
the Data section will contain either or both of two subsections: 4079

• Known-Length Numerics subsection: this subsection compacts and concatenates all of 4080
the non-empty data strings that are known a priori to be numeric. 4081

• AlphaNumeric subsection: this subsection concatenates and compacts all of the non-4082
empty data strings that are not a priori known to be all-numeric. 4083

Figure I 3-3: IDLPO Object Info Structure 4084

Object Info, in a Default ID List PO Object Info, in a Non-default ID List PO

Object

Length

Number

Of IDs

ID

List

Optional

Addendum

or Object

Length

ID Lists Section

(one or more lists)

Optional

Addendum

 4085

 EPC Tag Data Standard

Jan-2014, Version 1.8 Copyright ©2005- 2014 GS1 AISBL, All Rights Reserved. Page 175 of 225

Figure I 3-4: IDMPO Object Info Structure 4086

Object Info, in an ID Map PO

ID Map Section

(one or more maps)

Object

Length

Optional

Addendum

I.4 Format Flags section 4087
The default layout of memory, under the Packed Objects access method, consists of a leading 4088
DSFID, immediately followed by an ID List Packed Object (at the next byte boundary), then 4089
optionally additional ID List Packed Objects (each beginning at the next byte boundary), and 4090
terminated by a zero-valued octet at the next byte boundary (indicating that no additional Packed 4091
Objects are encoded). This section defines the valid Format Flags patterns that may appear at the 4092
expected start of a Packed Object to override the default layout if desired (for example, by 4093
changing the Packed Object’s format, or by inserting padding patterns to align the next Packed 4094
Object on a word or block boundary). The set of defined patterns are shown in Table I 4-1. 4095

Table I 4-1: Format Flags 4096

Bit Pattern Description Additional Info See Section

0000 0000 Termination Pattern No more packed objects follow I.4.1

LLLLLL xx First octet of an IDLPO For any LLLLLL > 3 I.5

0000 Format Flags starting
pattern

(if the full EBV-6 is non-zero) I.4.2

0000 10NA IDLPO with:

 N = 1: non-default Info

 A = 1: Addendum
Present

If N = 1: allows multiple ID tables

If A = 1: Addendum ptr(s) at end of
Object Info section

I.4.3

0000 01xx Inter-PO pattern A Directory Pointer, or padding I.4.4

0000 0100 Signifies a padding octet No padding length indicator
follows

I.4.4

0000 0101 Signifies run-length
padding

An EBV-8 padding length follows I.4.4

0000 0110 RFU I.4.4

0000 0111 Directory pointer Followed by EBV-8 pattern I.4.4

0000 11xx ID Map Packed Object I.4.2

0000 0001
0000 0010
0000 0011

[Invalid] Invalid pattern

 EPC Tag Data Standard

Jan-2014, Version 1.8 Copyright ©2005- 2014 GS1 AISBL, All Rights Reserved. Page 176 of 225

I.4.1 Data Terminating Flag Pattern 4097
A pattern of eight or more ‘0’ bits at the expected start of a Packed Object denotes that no more 4098
Packed Objects are present in the remainder of memory. 4099

NOTE: Six successive ‘0’ bits at the expect start of a Packed Object would (if interpreted as a 4100
Packed Object) indicate an ID List Packed Object of length zero. 4101

I.4.2 Format Flag section starting bit patterns 4102
A non-zero EBV-6 with a leading pattern of “0000” is used as a Format Flags section Indication 4103
Pattern. The additional bits following an initial ‘0000’ format Flag Indicating Pattern are defined 4104
as follows: 4105

• A following two-bit pattern of ‘10’ (creating an initial pattern of ‘000010’) indicates an 4106
IDLPO with at least one non-default optional feature (see I.4.3) 4107

• A following two-bit pattern of ‘11’ indicates an IDMPO, which is a Packed Object using an 4108
ID Map format instead of ID List-format The ID Map section (see I.9) immediately follows 4109
this two-bit pattern. 4110

• A following two-bit pattern of ‘01’ signifies an External pattern (Padding pattern or Pointer) 4111
prior to the start of the next Packed Object (see I.4.4) 4112

A leading EBV-6 Object Length of less than four is invalid as a Packed Objects length. 4113

NOTE: the shortest possible Packed Object is an IDLPO, for a data system using four bits 4114
per ID Value, encoding a single ID Value. This Packed Object has a total of 14 fixed 4115
bits. Therefore, a two-octet Packed Object would only contain two data bits, and is 4116
invalid. A three-octet Packed Object would be able to encode a single data item up to 4117
three digits long. In order to preserve “3” as an invalid length in this scenario, the Packed 4118
Objects encoder shall encode a leading Format Flags section (with all options set to zero, 4119
if desired) in order to increase the object length to four. 4120

 4121

I.4.3 IDLPO Format Flags 4122
The appearance of ‘000010’ at the expected start of a Packed Object is followed by two 4123
additional bits, to form a complete IDLPO Format Flags section of “000010NA”, where: 4124

• If the first additional bit ‘N’ is ‘1’, then a non-default format is employed for the IDLPO 4125
Object Info section. Whereas the default IDLPO format allows for only a single ID List 4126
(utilizing the registration’s default Base ID Table), the optional non-default IDLPO Object 4127
Info format supports a sequence of one or more ID Lists, and each such list begins with 4128
identifying information as to which registered table it represents (see I.5.1). 4129

• If the second additional bit ‘A’ is ‘1’, then an Addendum subsection is present at the end of 4130
the Object Info section (see I.5.6). 4131

 EPC Tag Data Standard

Jan-2014, Version 1.8 Copyright ©2005- 2014 GS1 AISBL, All Rights Reserved. Page 177 of 225

I.4.4 Patterns for use between Packed Objects 4132
The appearance of ‘000001’ at the expected start of a Packed Object is used to indicate either 4133
padding or a directory pointer, as follows: 4134

• A following two-bit pattern of ‘11’ indicates that a Directory Packed Object Pointer follows 4135
the pattern. The pointer is one or more octets in length, in EBV-8 format. This pointer may 4136
be Null (a value of zero), but if non-zero, indicates the number of octets from the start of the 4137
pointer to the start of a Directory Packed Object (which if editable, shall be the first in its 4138
“chain”). For example, if the Format Flags byte for a Directory Pointer is encoded at byte 4139
offset 1, the Pointer itself occupies bytes beginning at offset 2, and the Directory starts at 4140
byte offset 9, then the Dir Ptr encodes the value “7” in EBV-8 format. A Directory Packed 4141
Object Pointer may appear before the first Packed Object in memory, or at any other position 4142
where a Packed Object may begin, but may only appear once in a given data carrier memory, 4143
and (if non-null) must be at a lower address than the Directory it points to. The first octet 4144
after this pointer may be padding (as defined immediately below), a new set of Format Flag 4145
patterns, or the start of an ID List Packed Object. 4146

• A following two-bit pattern of ‘00’ indicates that the full eight-bit pattern of ‘00000100’ 4147
serves as a padding byte, so that the next Packed Object may begin on a desired word or 4148
block boundary. This pattern may repeat as necessary to achieve the desired alignment. 4149

• A following two-bit pattern of ‘01’ as a run-length padding indicator, and shall be 4150
immediately followed by an EBV-8 indicating the number of octets from the start of the 4151
EBV-8 itself to the start of the next Packed Object (for example, if the next Packed Object 4152
follows immediately, the EBV-8 has a value of one). This mechanism eliminates the need to 4153
write many words of memory in order to pad out a large memory block. 4154

• A following two-bit pattern of ‘10’ is Reserved. 4155

I.5 Object Info section 4156
Each Packed Object’s Object Info section contains both Length Information (the size of the 4157
Packed Object, in bits and in octets), and ID Values Information. A Packed Object encodes 4158
representations of one or more data system Identifiers and (if a Data Packed Object) also encodes 4159
their associated data elements (AI strings, DI strings, etc). The ID Values information encodes a 4160
complete listing of all the Identifiers (AIs, DIs, etc) encoded in the Packed Object, or (in a 4161
Directory Packed Object) all the Identifiers encoded anywhere in memory. 4162

To conserve encoded and transmitted bits, data system Identifiers (each typically represented in 4163
data systems by either two, three, or four ASCII characters) is represented within a Packed 4164
Object by an ID Value, representing an index denoting an entry in a registered Base Table of ID 4165
Values. A single ID Value may represent a single Object Identifier, or may represent a 4166
commonly-used sequence of Object Identifiers. In some cases, the ID Value represents a “class” 4167
of related Object Identifiers, or an Object Identifier sequence in which one or more Object 4168
Identifiers are optionally encoded; in these cases, Secondary ID Bits (see I.6) are encoded in 4169
order to specify which selection or option was chosen when the Packed Object was encoded. A 4170
“fully-qualified ID Value” (FQIDV) is an ID Value, plus a particular choice of associated 4171
Secondary ID bits (if any are invoked by the ID Value’s table entry). Only one instance of a 4172
particular fully-qualified ID Value may appear in a data carrier’s Data Packed Objects, but a 4173

 EPC Tag Data Standard

Jan-2014, Version 1.8 Copyright ©2005- 2014 GS1 AISBL, All Rights Reserved. Page 178 of 225

particular ID Value may appear more than once, if each time it is “qualified” by different 4174
Secondary ID Bits. If an ID Value does appear more than once, all occurrences shall be in a 4175
single Packed Object (or within a single “chain” of a Packed Object plus its Addenda). 4176

There are two methods defined for encoding ID Values: an ID List Packed Object uses a 4177
variable-length list of ID Value bit fields, whereas an ID Map Packed Object uses a fixed-length 4178
bit array. Unless a Packed Object’s format is modified by an initial Format Flags pattern, the 4179
Packed Object’s format defaults to that of an ID List Packed Object (IDLPO), containing a single 4180
ID List, whose ID Values correspond to the default Base ID Table of the registered Data Format. 4181
Optional Format Flags can change the format of the ID Section to either an IDMPO format, or to 4182
an IDLPO format encoding an ID Lists section (which supports multiple ID Tables, including 4183
non-default data systems). 4184

Although the ordering of information within the Object Info section varies with the chosen 4185
format (see I.5.1), the Object Info section of every Packed Object shall provide Length 4186
information as defined in I.5.2, and ID Values information (see I.5.3) as defined in I.5.4, or I.5.5. 4187
The Object Info section (of either an IDLPO or an IDMPO) may conclude with an optional 4188
Addendum subsection (see I.5.6). 4189

I.5.1 Object Info formats 4190

I.5.1.1 IDLPO default Object Info format 4191
The default IDLPO Object Info format is used for a Packed Object either without a leading 4192
Format Flags section, or with a Format Flags section indicating an IDLPO with a possible 4193
Addendum and a default Object Info section. The default IDLPO Object Info section contains a 4194
single ID List (optionally followed by an Addendum subsection if so indicated by the Format 4195
Flags). The format of the default IDLPO Object Info section is shown in Table I 5-1. 4196

Table I 5-1: Default IDLPO Object Info format 4197

Field Name: Length Information NumberOfIDs ID Listing Addendum
subsection

Usage: The number of octets
in this Object, plus a
last-octet pad
indicator

number of ID
Values in this
Object (minus
one)

A single list of ID
Values; value size
depends on
registered Data
Format

Optional
pointer(s) to
other Objects
containing Edit
information

Structure: Variable: see I.5.2 Variable:EBV-3 See I.5.4 See I.5.6

 4198

In a IDLPO’s Object Info section, the NumberOfIDs field is an EBV-3 Extensible Bit Vector, 4199
consisting of one or more repetitions of an Extension Bit followed by 2 value bits. This EBV-3 4200
encodes one less than the number of ID Values on the associated ID Listing. For example, an 4201
EBV-3 of ‘101 000’ indicates (4 + 0 +1) = 5 IDs values. The Length Information is as described 4202
in I.5.2 for all Packed Objects The next fields are an ID Listing (see I.5.4) and an optional 4203
Addendum subsection (see I.5.6). 4204

 EPC Tag Data Standard

Jan-2014, Version 1.8 Copyright ©2005- 2014 GS1 AISBL, All Rights Reserved. Page 179 of 225

I.5.1.2 IDLPO non-default Object Info format 4205
Leading Format Flags may modify the Object Info structure of an IDLPO, so that it may contain 4206
more than one ID Listing, in an ID Lists section (which also allows non-default ID tables to be 4207
employed). The non-default IDLPO Object Info structure is shown in Table I 5-2. 4208

Table I 5-2: Non-Default IDLPO Object Info format 4209

Field
Name:

Length
Info

ID Lists Section, first List Optional
Additional
ID List(s)

Null App
Indicator
(single
zero bit)

Addendum
Subsection Application

Indicator
Number
of IDs

ID
Listing

Usage: The
number
of octets
in this
Object,
plus a
last-
octet
pad
indicator

Indicates
the selected
ID Table
and the size
of each
entry

Number
Of ID
Values
on the
list
(minus
one)

Listing
of ID
Values,
then
one
F/R
Use bit

Zero or
more
repeated
lists, each
for a
different
ID Table

Optional
pointer(s)
to other
Objects
containing
Edit
information

Structure: see I.5.2 see I.5.3.1 See
I.5.1.1

See
I.5.4

and I
.5.3.2

References
in previous
columns

See
I.5.3.1

See I.5.6

I.5.1.3 IDMPO Object Info format 4210
Leading Format Flags may define the Object Info structure to be an IDMPO, in which the 4211
Length Information (and optional Addendum subsection) follow an ID Map section (see I.5.5). 4212
This arrangement ensures that the ID Map is in a fixed location for a given application, of benefit 4213
when used as a Directory. The IDMPO Object Info structure is shown in Table I 5-3. 4214

Table I 5-3: IDMPO Object Info format 4215

Field Name: ID Map section Length Information Addendum

Usage: One or more ID Map
structures, each using a
different ID Table

The number of octets in
this Object, plus a last-
octet pad indicator

Optional
pointer(s) to
other Objects
containing
Edit
information

Structure: see I.9.1 See I.5.2 See I.5.6

 EPC Tag Data Standard

Jan-2014, Version 1.8 Copyright ©2005- 2014 GS1 AISBL, All Rights Reserved. Page 180 of 225

I.5.2 Length Information 4216
The format of the Length information, always present in the Object Info section of any Packed 4217
Object, is shown in table I 5-4. 4218

Table I 5-4: Packed Object Length information 4219

Field Name: ObjectLength Pad Indicator

Usage: The number of 8-bit bytes in this Object
This includes the 1st byte of this Packed
Object, including its IDLPO/IDMPO
format flags if present. It excludes
patterns for use between packed objects,
as specified in I.4.4

If ‘1’: the
Object’s last byte
contains at least
1 pad

Structure: Variable: EBV-6 Fixed: 1 bit

The first field, ObjectLength, is an EBV-6 Extensible Bit Vector, consisting of one or more 4220
repetitions of an Extension Bit and 5 value bits. An EBV-6 of ‘000100’ (value of 4) indicates a 4221
four-byte Packed Object, An EBV-6 of ‘100001 000000’ (value of 32) indicates a 32-byte 4222
Object, and so on. 4223

The Pad Indicator bit immediately follows the end of the EBV-6 ObjectLength. This bit is set to 4224
‘0’ if there are no padding bits in the last byte of the Packed Object. If set to ‘1’, then bitwise 4225
padding begins with the least-significant or rightmost ‘1’ bit of the last byte, and the padding 4226
consists of this rightmost ‘1’ bit, plus any ‘0’ bits to the right of that bit. This method effectively 4227
uses a single bit to indicate a three-bit quantity (i.e., the number of trailing pad bits). When a 4228
receiving system wants to determine the total number of bits (rather than bytes) in a Packed 4229
Object, it would examine the ObjectLength field of the Packed Object (to determine the number 4230
of bytes) and multiply the result by eight, and (if the Pad Indicator bit is set) examine the last 4231
byte of the Packed Object and decrement the bit count by (1 plus the number of ‘0’ bits 4232
following the rightmost ‘1’ bit of that final byte). 4233

I.5.3 General description of ID values 4234
A registered data format defines (at a minimum) a Primary Base ID Table (a detailed 4235
specification for registered ID tables may be found in Annex J). This base table defines the data 4236
system Identifier(s) represented by each row of the table, any Secondary ID Bits or Aux Format 4237
bits invoked by each table entry, and various implicit rules (taken from a predefined rule set) that 4238
decoding systems shall use when interpreting data encoded according to each entry. When a data 4239
item is encoded in a Packed Object, its associated table entry is identified by the entry’s relative 4240
position in the Base Table. This table position or index is the ID Value that is represented in 4241
Packed Objects. 4242

A Base Table containing a given number of entries inherently specifies the number of bits 4243
needed to encode a table index (i.e., an ID Value) in an ID List Packed Object (as the Log (base 4244
2) of the number of entries). Since current and future data system ID Tables will vary in 4245
unpredictable ways in terms of their numbers of table entries, there is a need to pre-define an ID 4246
Value Size mechanism that allows for future extensibility to accommodate new tables, while 4247
minimizing decoder complexity and minimizing the need to upgrade decoding software (other 4248

 EPC Tag Data Standard

Jan-2014, Version 1.8 Copyright ©2005- 2014 GS1 AISBL, All Rights Reserved. Page 181 of 225

than the addition of new tables). Therefore, regardless of the exact number of Base Table entries 4249
defined, each Base Table definition shall utilize one of the predefined sizes for ID Value 4250
encodings defined in Table I 5-5 (any unused entries shall be labeled as reserved, as provided in 4251
Annex J). The ID Size Bit pattern is encoded in a Packed Object only when it uses a non-default 4252
Base ID Table. Some entries in the table indicate a size that is not an integral power of two. 4253
When encoding (into an IDLPO) ID Values from tables that utilize such sizes, each pair of ID 4254
Values is encoded by multiplying the earlier ID of the pair by the base specified in the fourth 4255
column of Table I-5-5 and adding the later ID of the pair, and encoding the result in the number 4256
of bits specified in the fourth column. If there is a trailing single ID Value for this ID Table, it is 4257
encoded in the number of bits specified in the third column of Table I-5-5. 4258

Table I 5-5: Defined ID Value sizes 4259
ID Size Bit
pattern

Maximum number
of Table Entries

Number of Bits per single or
trailing ID Value, and how encoded

Number of Bits per pair of
ID Values, and how encoded

000 Up to 16 4, as 1 Base 16 value 8, as 2 Base 16 values

001 Up to 22 5, as 1 Base 22 value 9, as 2 Base 22 values

010 Up to 32 5, as 1 Base 32 value 10, as 2 Base 32 values

011 Up to 45 6, as 1 Base 45 value 11, as 2 Base 45 values

100 Up to 64 6, as 1 Base 64 value 12, as 2 Base 64 values

101 Up to 90 7, as 1 Base 90 value 13, as 2 Base 90 values

110 Up to 128 7, as 1 Base 128 value 14, as 2 Base 128 values

1110 Up to 256 8, as 1 Base 256 value 16, as 2 Base 256 values

111100 Up to 512 9, as 1 Base 512 value 18, as 2 Base 512 values

111101 Up to 1024 10, as 1 Base 1024 value 20, as 2 Base 1024 values

111110 Up to 2048 11, as 1 Base 2048 value 22, as 2 Base 2048 values

111111 Up to 4096 12, as 1 Base 4096 value 24, as 2 Base 4096 values

 4260

I.5.3.1 Application Indicator subsection 4261
An Application Indicator subsection can be utilized to indicate use of ID Values from a default 4262
or non-default ID Table. This subsection is required in every IDMPO, but is only required in an 4263
IDLPO that uses the non-default format supporting multiple ID Lists. 4264

An Application Indicator consists of the following components: 4265

• A single AppIndicatorPresent bit, which if ‘0’ means that no additional ID List or Map 4266
follows. Note that this bit is always omitted for the first List or Map in an Object Info 4267
section. When this bit is present and ‘0’, then none of the following bit fields are encoded. 4268

• A single ExternalReg bit that, if ‘1’, indicates use of an ID Table from a registration other 4269
than the memory’s default. If ‘1’, this bit is immediately followed by a 9-bit representation 4270
of a Data Format registered under ISO/IEC 15961. 4271

 EPC Tag Data Standard

Jan-2014, Version 1.8 Copyright ©2005- 2014 GS1 AISBL, All Rights Reserved. Page 182 of 225

• An ID Size pattern which denotes a table size (and therefore an ID Map bit length, when used 4272
in an IDMPO), which shall be one of the patterns defined by Table I 5-5. The table size 4273
indicated in this field must be less than or equal to the table size indicated in the selected ID 4274
table. The purpose of this field is so that the decoder can parse past the ID List or ID Map, 4275
even if the ID Table is not available to the decoder. 4276

• a three-bit ID Subset pattern. The registered data format’s Primary Base ID Table, if used by 4277
the current Packed Object, shall always be indicated by an encoded ID Subset pattern of 4278
‘000’. However, up to seven Alternate Base Tables may also be defined in the registration 4279
(with varying ID Sizes), and a choice from among these can be indicated by the encoded 4280
Subset pattern. This feature can be useful to define smaller sector-specific or application-4281
specific subsets of a full data system, thus substantially reducing the size of the encoded ID 4282
Map. 4283

I.5.3.2 Full/Restricted Use bits 4284
When contemplating the use of new ID Table registrations, or registrations for external data 4285
systems, application designers may utilize a “restricted use” encoding option that adds some 4286
overhead to a Packed Object but in exchange results in a format that can be fully decoded by 4287
receiving systems not in possession of the new or external ID table. With the exception of a 4288
IDLPO using the default Object Info format, one Full/Restricted Use bit is encoded immediately 4289
after each ID table is represented in the ID Map section or ID Lists section of a Data or Directory 4290
Packed Object. In a Directory Packed object, this bit shall always be set to '0' and its value 4291
ignored. If an encoder wishes to utilize the “restricted use” option in an IDLPO, it shall preface 4292
the IDLPO with a Format Flags section invoking the non-default Object Info format. 4293

If a “Full/Restricted Use” bit is ‘0’ then the encoding of data strings from the corresponding 4294
registered ID Table makes full use of the ID Table’s IDstring and FormatString information. If 4295
the bit is ‘1’, then this signifies that some encoding overhead was added to the Secondary ID 4296
section and (in the case of Packed-Object compaction) the Aux Format section, so that a decoder 4297
without access to the table can nonetheless output OIDs and data from the Packed Object 4298
according to the scheme specified in J.4.1. Specifically, a Full/Restricted Use bit set to ‘1’ 4299
indicates that: 4300

• for each encoded ID Value, the encoder added an EBV-3 indicator to the Secondary ID 4301
section, to indicate how many Secondary ID bits were invoked by that ID Value. If the 4302
EBV-3 is nonzero, then the Secondary ID bits (as indicated by the table entry) immediately 4303
follow, followed in turn by another EBV-3, until the entire list of ID Values has been 4304
represented. 4305

• the encoder did not take advantage of the information from the referenced table’s 4306
FormatString column. Instead, corresponding to each ID Value, the encoder inserted an 4307
EBV-3 into the Aux Format section, indicating the number of discrete data string lengths 4308
invoked by the ID Value (which could be more than one due to combinations and/or optional 4309
components), followed by the indicated number of string lengths, each length encoded as 4310
though there were no FormatString in the ID table. All data items were encoded in the A/N 4311
subsection of the Data section. 4312

 EPC Tag Data Standard

Jan-2014, Version 1.8 Copyright ©2005- 2014 GS1 AISBL, All Rights Reserved. Page 183 of 225

I.5.4 ID Values representation in an ID Value-list Packed Object 4313
Each ID Value is represented within an IDLPO on a list of bit fields; the number of bit fields on 4314
the list is determined from the NumberOfIDs field (see Table I 5-1). Each ID Value bit field’s 4315
length is in the range of four to eleven bits, depending on the size of the Base Table index it 4316
represents. In the optional non-default format for an IDLPO’s Object Info section, a single 4317
Packed Object may contain multiple ID List subsections, each referencing a different ID Table. 4318
In this non-default format, each ID List subsection consists of an Application Indicator 4319
subsection (which terminates the ID Lists, if it begins with a ‘0’ bit), followed by an EBV-3 4320
NumberOfIDs, an ID List, and a Full/Restricted Use flag. 4321

I.5.5 ID Values representation in an ID Map Packed Object 4322
Encoding an ID Map can be more efficient than encoding a list of ID Values, when representing 4323
a relatively large number of ID Values (constituting more than about 10 percent of a large Base 4324
Table’s entries, or about 25 percent of a small Base Table’s entries). When encoded in an ID 4325
Map, each ID Value is represented by its relative position within the map (for example, the first 4326
ID Map bit represents ID Value “0”, the third bit represents ID Value “2”, and the last bit 4327
represents ID Value ‘n’ (corresponding to the last entry of a Base Table with (n+1) entries). The 4328
value of each bit within an ID Map indicates whether the corresponding ID Value is present (if 4329
the bit is ‘1’) or absent (if ‘0’). An ID Map is always encoded as part of an ID Map Section 4330
structure (see I.9.1). 4331

I.5.6 Optional Addendum subsection of the Object Info section 4332
The Packed Object Addendum feature supports basic editing operations, specifically the ability 4333
to add, delete, or replace individual data items in a previously-written Packed Object, without a 4334
need to rewrite the entire Packed Object. A Packed Object that does not contain an Addendum 4335
subsection cannot be edited in this fashion, and must be completely rewritten if changes are 4336
required. 4337

An Addendum subsection consists of a Reverse Links bit, followed by a Child bit, followed by 4338
either one or two EBV-6 links. Links from a Data Packed Object shall only go to other Data 4339
Packed Objects as addenda; links from a Directory Packed Object shall only go to other 4340
Directory Packed Objects as addenda. The standard Packed Object structure rules apply, with 4341
some restrictions that are described in I.5.6.2. 4342

The Reverse Links bit shall be set identically in every Packed Object of the same “chain.” The 4343
Reverse Links bit is defined as follows: 4344

• If the Reverse Links bit is ‘0’, then each child in this chain of Packed Objects is at a higher 4345
memory location then its parent. The link to a Child is encoded as the number of octets (plus 4346
one) that are in between the last octet of the current Packed Object and the first octet of the 4347
Child. The link to the parent is encoded as the number of octets (plus one) that are in 4348
between the first octet of the parent Packed Object and the first octet of the current Packed 4349
Object. 4350

• If the Reverse Links bit is ‘1’, then each child in this chain of Packed Objects is at a lower 4351
memory location then its parent. The link to a Child is encoded as the number of octets (plus 4352
one) that are in between the first octet of the current Packed Object and the first octet of the 4353

 EPC Tag Data Standard

Jan-2014, Version 1.8 Copyright ©2005- 2014 GS1 AISBL, All Rights Reserved. Page 184 of 225

Child. The link to the parent is encoded as the number of octets (plus one) that are in 4354
between the last octet of the current Packed Object and the first octet of the parent. 4355

The Child bit is defined as follows: 4356

• If the Child bit is a ‘0’, then this Packed Object is an editable “Parentless” Packed Object 4357
(i.e., the first of a chain), and in this case the Child bit is immediately followed by a single 4358
EBV-6 link to the first “child” Packed Object that contains editing addenda for the parent. 4359

• If the Child bit is a ‘1’, then this Packed Object is an editable “child” of an edited “parent,” 4360
and the bit is immediately followed by one EBV-6 link to the “parent” and a second EBV-6 4361
line to the next “child” Packed Object that contains editing addenda for the parent. 4362

A link value of zero is a Null pointer (no child exists), and in a Packed Object whose Child bit is 4363
‘0’, this indicates that the Packed Object is editable, but has not yet been edited. A link to the 4364
Parent is provided, so that a Directory may indicate the presence and location of an ID Value in 4365
an Addendum Packed Object, while still providing an interrogator with the ability to efficiently 4366
locate the other ID Values that are logically associated with the original “parent” Packed Object. 4367
A link value of zero is invalid as a pointer towards a Parent. 4368

In order to allow room for a sufficiently-large link, when the future location of the next “child” is 4369
unknown at the time the parent is encoded, it is permissible to use the “redundant” form of the 4370
EBV-6 (for example using “100000 000000” to represent a link value of zero). 4371

I.5.6.1 Addendum “EditingOP” list (only in ID List Packed Objects) 4372
In an IDLPO only, each Addendum section of a “child” ID List Packed Object contains a set of 4373
“EditingOp” bits encoded immediately after its last EBV-6 link. The number of such bits is 4374
determined from the number of entries on the Addendum Packed Object’s ID list. For each ID 4375
Value on this list, the corresponding EditingOp bit or bits are defined as follows: 4376

• ‘1’ means that the corresponding Fully-Qualified ID Value (FQIDV) is Replaced. A Replace 4377
operation has the effect that the data originally associated with the FQIDV matching the 4378
FQIDV in this Addendum Packed Object shall be ignored, and logically replaced by the Aux 4379
Format bits and data encoded in this Addendum Packed Object) 4380

• ‘00’ means that the corresponding FQIDV is Deleted but not replaced. In this case, neither 4381
the Aux Format bits nor the data associated with this ID Value are encoded in the Addendum 4382
Packed Object. 4383

• ‘01’ means that the corresponding FQIDV is Added (either this FQIDV was not previously 4384
encoded, or it was previously deleted without replacement). In this case, the associated Aux 4385
Format Bits and data shall be encoded in the Addendum Packed Object. 4386

NOTE: if an application requests several “edit” operations at once (including some Delete or 4387
Replace operations as well as Adds) then implementations can achieve more efficient 4388
encoding if the Adds share the Addendum overhead, rather than being implemented in a new 4389
Packed Object. 4390

 4391

 EPC Tag Data Standard

Jan-2014, Version 1.8 Copyright ©2005- 2014 GS1 AISBL, All Rights Reserved. Page 185 of 225

I.5.6.2 Packed Objects containing an Addendum subsection 4392
A Packed Object containing an Addendum subsection is otherwise identical in structure to other 4393
Packed Objects. However, the following observations apply: 4394

• A “parentless” Packed Object (the first in a chain) may be either an ID List Packed Object or 4395
an ID Map Packed Object (and a parentless IDMPO may be either a Data or Directory 4396
IDMPO). When a “parentless” PO is a directory, only directory IDMPOs may be used as 4397
addenda. A Directory IDMPO’s Map bits shall be updated to correctly reflect the end state 4398
of the chain of additions and deletions to the memory bank; an Addendum to the Directory is 4399
not utilized to perform this maintenance (a Directory Addendum may only add new structural 4400
components, as described later in this section). In contrast, when the edited parentless object 4401
is an ID List Packed Object or ID Map Packed Object, its ID List or ID Map cannot be 4402
updated to reflect the end state of the aggregate Object (parents plus children). 4403

• Although a “child” may be either an ID List or an ID Map Packed Object, only an IDLPO 4404
can indicate deletions or changes to the current set of fully-qualified ID Values and 4405
associated data that is embodied in the chain. 4406

• When a child is an IDMPO, it shall only be utilized to add (not delete or modify) 4407
structural information, and shall not be used to modify existing information. In a 4408
Directory chain, a child IDMPO may add new ID tables, or may add a new AuxMap 4409
section or subsections, or may extend an existing PO Index Table or ObjectOffsets list. 4410
In a Data chain, an IDMPO shall not be used as an Addendum, except to add new ID 4411
Tables. 4412

• When a child is an IDLPO, its ID list (followed by “EditingOp” bits) lists only those 4413
FQIDVs that have been deleted, added, or replaced, relative to the cumulative ID list 4414
from the prior Objects linked to it. 4415

I.6 Secondary ID Bits section 4416
The Packed Objects design requirements include a requirement that all of the data system 4417
Identifiers (AI’s, DI’s, etc.) encoded in a Packed Object’s can be fully recognized without 4418
expanding the compressed data, even though some ID Values provide only a partially-qualified 4419
Identifier. As a result, if any of the ID Values invoke Secondary ID bits, the Object Info section 4420
shall be followed by a Secondary ID Bits section. Examples include a four-bit field to identify 4421
the third digit of a group of related Logistics AIs. 4422

Secondary ID bits can be invoked for several reasons, as needed in order to fully specify 4423
Identifiers. For example, a single ID Table entry’s ID Value may specify a choice between two 4424
similar identifiers (requiring one encoded bit to select one of the two IDs at the time of 4425
encoding), or may specify a combination of required and optional identifiers (requiring one 4426
encoded bit to enable or disable each option). The available mechanisms are described in Annex 4427
J. All resulting Secondary ID bit fields are concatenated in this Secondary ID Bits section, in the 4428
same order as the ID Values that invoked them were listed within the Packed Object. Note that 4429
the Secondary ID Bits section is identically defined, whether the Packed Object is an IDLPO or 4430
an IDMPO, but is not present in a Directory IDMPO. 4431

 EPC Tag Data Standard

Jan-2014, Version 1.8 Copyright ©2005- 2014 GS1 AISBL, All Rights Reserved. Page 186 of 225

I.7 Aux Format section 4432
The Aux Format section of a Data Packed Object encodes auxiliary information for the decoding 4433
process. A Directory Packed Object does not contain an Aux Format section. In a Data Packed 4434
Object, the Aux Format section begins with “Compact-Parameter” bits as defined in Table I.7-1. 4435

Table I.7-1: Compact-Parameter bit patterns 4436

Bit
Pattern

Compaction method used in this Packed Object Reference

‘1’ “Packed-Object” compaction See I.7.2

‘000’ “Application-Defined”, as defined for the No-Directory access
method

See I.7.1

‘001’ “Compact”, as defined for the No-Directory access method See I.7.1

‘010’ “UTF-8”, as defined for the No-Directory access method See I.7.1

‘011bbbb’ (‘bbbb’ shall be in the range of 4..14): reserved for future definition See I.7.1

 4437

If the Compact-Parameter bit pattern is ‘1’, then the remainder of the Aux Format section is 4438
encoded as described in I.7.2; otherwise, the remainder of the Aux Format section is encoded as 4439
described in I.7.1. 4440

I.7.1 Support for No-Directory compaction methods 4441
If any of the No-Directory compaction methods were selected by the Compact-Parameter bits, 4442
then the Compact-Parameter bits are followed by an byte-alignment padding pattern consisting 4443
of zero or more ‘0’ bits followed by a single ‘1’ bit, so that the next bit after the ‘1’ is aligned as 4444
the most-significant bit of the next byte. 4445

This next byte is defined as the first octet of a “No-Directory Data section”, which is used in 4446
place of the Data section described in I.8. The data strings of this Packed Object are encoded in 4447
the order indicated by the Object Info section of the Packed Object, compacted exactly as 4448
described in Annex D of [ISO15962] (Encoding rules for No-Directory Access-Method), with 4449
the following two exceptions: 4450

• The Object-Identifier is not encoded in the “No-Directory Data section”, because it has 4451
already been encoded into the Object Info and Secondary ID sections. 4452

• The Precursor is modified in that only the three Compaction Type Code bits are significant, 4453
and the other bits in the Precursor are set to ‘0’. 4454

Therefore, each of the data strings invoked by the ID Table entry are separately encoded in a 4455
modified data set structure as: 4456

<modified precursor> <length of compacted object> <compacted object octets> 4457

The <compacted object octets> are determined and encoded as described in D.1.1 and D.1.2 of 4458
[ISO15962] and the <length of compacted object> is determined and encoded as described in 4459
D.2 of [ISO15962]. 4460

 EPC Tag Data Standard

Jan-2014, Version 1.8 Copyright ©2005- 2014 GS1 AISBL, All Rights Reserved. Page 187 of 225

Following the last data set, a terminating precursor value of zero shall not be encoded (the 4461
decoding system recognizes the end of the data using the encoded ObjectLength of the Packed 4462
Object). 4463

I.7.2 Support for the Packed-Object compaction method 4464
If the Packed-Object compaction method was selected by the Compact-Parameter bits, then the 4465
Compact-Parameter bits are followed by zero or more Aux Format bits, as may be invoked by 4466
the ID Table entries used in this Packed Object. The Aux Format bits are then immediately 4467
followed by a Data section that uses the Packed-Object compaction method described in I.8. 4468

An ID Table entry that was designed for use with the Packed-Object compaction method can call 4469
for various types of auxiliary information beyond the complete indication of the ID itself (such 4470
as bit fields to indicate a variable data length, to aid the data compaction process). All such bit 4471
fields are concatenated in this portion, in the order called for by the ID List or Map. Note that 4472
the Aux Format section is identically defined, whether the Packed Object is an IDLPO or an 4473
IDMPO. 4474

An ID Table entry invokes Aux Format length bits for all entries that are not specified as fixed-4475
length in the table (however, these length bits are not actually encoded if they correspond to the 4476
last data item encoded in the A/N subsection of a Packed Object). This information allows the 4477
decoding system to parse the decoded data into strings of the appropriate lengths. An encoded 4478
Aux Format length entry utilizes a variable number of bits, determined from the specified range 4479
between the shortest and longest data strings allowed for the data item, as follows: 4480

• If a maximum length is specified, and the specified range (defined as the maximum length 4481
minus the minimum length) is less than eight, or greater than 44, then lengths in this range 4482
are encoded in the fewest number of bits that can express lengths within that range, and an 4483
encoded value of zero represents the minimum length specified in the format string. For 4484
example, if the range is specified as from three to six characters, then lengths are encoded 4485
using two bits, and ‘00’ represents a length of three. 4486

• Otherwise (including the case of an unspecified maximum length), the value (actual length – 4487
specified minimum) is encoded in a variable number of bits, as follows: 4488

• Values from 0 to 14 (representing lengths from 1 to 15, if the specified minimum length 4489
is one character, for example) are encoded in four bits 4490

• Values from 15 to 29 are encoded in eight bits (a prefix of ‘1111’ followed by four bits 4491
representing values from 15 (‘0000’) to 29 (‘1110’) 4492

• Values from 30 to 44 are encoded in twelve bits (a prefix of ‘1111 1111’ followed by 4493
four bits representing values from 30 (‘0000’) to 44 (‘1110’) 4494

• Values greater than 44 are encoded as a twelve-bit prefix of all ‘1’s, followed by an 4495
EBV-6 indication of (value – 44). 4496

• Notes: 4497

• if a range is specified with identical upper and lower bounds (i.e., a range of zero), this is 4498
treated as a fixed length, not a variable length, and no Aux Format bits are invoked. 4499

 EPC Tag Data Standard

Jan-2014, Version 1.8 Copyright ©2005- 2014 GS1 AISBL, All Rights Reserved. Page 188 of 225

• If a range is unspecified, or has unspecified upper or lower bounds, then this is treated as 4500
a default lower bound of one, and/or an unlimited upper bound. 4501

I.8 Data section 4502
A Data section is always present in a Packed Object, except in the case of a Directory Packed 4503
Object or Directory Addendum Packed Object (which encode no data elements), the case of a 4504
Data Addendum Packed Object containing only Delete operations, and the case of a Packed 4505
Object that uses No-directory compaction (see I.7.1). When a Data section is present, it follows 4506
the Object Info section (and the Secondary ID and Aux Format sections, if present). Depending 4507
on the characteristics of the encoded IDs and data strings, the Data section may include one or 4508
both of two subsections in the following order: a Known-Length Numerics subsection, and an 4509
AlphaNumerics subsection. The following paragraphs provide detailed descriptions of each of 4510
these Data Section subsections. If all of the subsections of the Data section are utilized in a 4511
Packed Object, then the layout of the Data section is as shown in Figure I 8-1. 4512

Figure I 8-1: Maximum Structure of a Packed Objects Data section 4513

Known-Length Numeric
subsection

AlphaNumeric subsection

A/N Header Bits Binary Data Segments

1st
KLN

Binary

2nd
KLN

Binary

… Last
KLN

Binary

Non-
Num

Base

Bit(s)

Prefix
Bit,

Prefix
Run(s)

Suffix
Bit,

Suffix
Run(s)

Char

Map

Ext’d.

Num

Binary

Ext’d

Non-
Num

Binary

Base

10

Binary

Non-
Num

Binary

 4514

I.8.1 Known-length-Numerics subsection of the Data Section 4515
For always-numeric data strings, the ID table may indicate a fixed number of digits (this fixed-4516
length information is not encoded in the Packed Object) and/or a variable number of digits (in 4517
which case the string’s length was encoded in the Aux Format section, as described above). 4518
When a single data item is specified in the FormatString column (see J.2.3) as containing a fixed-4519
length numeric string followed by a variable-length string, the numeric string is encoded in the 4520
Known-length-numerics subsection and the alphanumeric string in the Alphanumeric subsection. 4521

The summation of fixed-length information (derived directly from the ID table) plus variable-4522
length information (derived from encoded bits as just described) results in a “known-length 4523
entry” for each of the always-numeric strings encoded in the current Packed Object. Each all-4524
numeric data string in a Packed Object (if described as all-numeric in the ID Table) is encoded 4525
by converting the digit string into a single Binary number (up to 160 bits, representing a binary 4526
value between 0 and (1048-1)). Figure K-1 in Annex K shows the number of bits required to 4527
represent a given number of digits. If an all-numeric string contains more than 48 digits, then the 4528
first 48 are encoded as one 160-bit group, followed by the next group of up to 48 digits, and so 4529
on. Finally, the Binary values for each all-numeric data string in the Object are themselves 4530
concatenated to form the Known-length-Numerics subsection. 4531

 EPC Tag Data Standard

Jan-2014, Version 1.8 Copyright ©2005- 2014 GS1 AISBL, All Rights Reserved. Page 189 of 225

I.8.2 Alphanumeric subsection of the Data section 4532
The Alphanumeric (A/N) subsection, if present, encodes all of the Packed Object’s data from any 4533
data strings that were not already encoded in the Known-length Numerics subsection. If there 4534
are no alphanumeric characters to encode, the entire A/N subsection is omitted. The 4535
Alphanumeric subsection can encode any mix of digits and non-digit ASCII characters, or eight-4536
bit data. The digit characters within this data are encoded separately, at an average efficiency of 4537
4.322 bits per digit or better, depending on the character sequence. The non-digit characters are 4538
independently encoded at an average efficiency that varies between 5.91 bits per character or 4539
better (all uppercase letters), to a worst-case limit of 9 bits per character (if the character mix 4540
requires Base 256 encoding of non-numeric characters). 4541

An Alphanumeric subsection consists of a series of A/N Header bits (see I.8.2.1), followed by 4542
from one to four Binary segments (each segment representing data encoded in a single numerical 4543
Base, such as Base 10 or Base 30, see I.8.2.4), padded if necessary to complete the final byte (see 4544
I 8.2.5). 4545

I.8.2.1 A/N Header Bits 4546
The A/N Header Bits are defined as follows: 4547

• One or two Non-Numeric Base bits, as follows: 4548

• ‘0’ indicates that Base 30 was chosen for the non-numeric Base; 4549

• ‘10’ indicates that Base 74 was chosen for the non-numeric Base; 4550

• ‘11’ indicates that Base 256 was chosen for the non-numeric Base 4551

• Either a single ‘0’ bit (indicating that no Character Map Prefix is encoded), or a ‘1’ bit 4552
followed by one or more “Runs” of six Prefix bits as defined in I.8.2.3. 4553

• Either a single ‘0’ bit (indicating that no Character Map Suffix is encoded), or a ‘1’ bit 4554
followed by one or more “Runs” of six Suffix bits as defined in I.8.2.3. 4555

• A variable-length “Character Map” bit pattern (see I.8.2.2), representing the base of each of 4556
the data characters, if any, that were not accounted for by a Prefix or Suffix. 4557

I.8.2.2 Dual-base Character-map encoding 4558
Compaction of the ordered list of alphanumeric data strings (excluding those data strings already 4559
encoded in the Known-Length Numerics subsection) is achieved by first concatenating the data 4560
characters into a single data string (the individual string lengths have already been recorded in 4561
the Aux Format section). Each of the data characters is classified as either Base 10 (for numeric 4562
digits), Base 30 non-numerics (primarily uppercase A-Z), Base 74 non-numerics (which includes 4563
both uppercase and lowercase alphas, and other ASCII characters), or Base 256 characters. 4564
These character sets are fully defined in Annex K. All characters from the Base 74 set are also 4565
accessible from Base 30 via the use of an extra “shift” value (as are most of the lower 128 4566
characters in the Base 256 set). Depending on the relative percentage of “native” Base 30 values 4567
vs. other values in the data string, one of those bases is selected as the more efficient choice for a 4568
non-numeric base. 4569

 EPC Tag Data Standard

Jan-2014, Version 1.8 Copyright ©2005- 2014 GS1 AISBL, All Rights Reserved. Page 190 of 225

Next, the precise sequence of numeric and non-numeric characters is recorded and encoded, 4570
using a variable-length bit pattern, called a “character map,” where each ‘0’ represents a Base 10 4571
value (encoding a digit) and each ‘1’ represents a value for a non-numeric character (in the 4572
selected base). Note that, (for example) if Base 30 encoding was selected, each data character 4573
(other than uppercase letters and the space character) needs to be represented by a pair of base-30 4574
values, and thus each such data character is represented by a pair of ‘1’ bits in the character map. 4575

I.8.2.3 Prefix and Suffix Run-Length encoding 4576
For improved efficiency in cases where the concatenated sequence includes runs of six or more 4577
values from the same base, provision is made for optional run-length representations of one or 4578
more Prefix or Suffix “Runs” (single-base character sequences), which can replace the first 4579
and/or last portions of the character map. The encoder shall not create a Run that separates a 4580
Shift value from its next (shifted) value, and thus a Run always represents an integral number of 4581
source characters. 4582

An optional Prefix Representation, if present, consists of one or more occurrences of a Prefix 4583
Run. Each Prefix Run consists of one Run Position bit, followed by two Basis Bits, then 4584
followed by three Run Length bits, defined as follows: 4585

• The Run Position bit, if ‘0’, indicates that at least one more Prefix Run is encoded following 4586
this one (representing another set of source characters to the right of the current set). The Run 4587
Position bit, if ‘1’, indicates that the current Prefix Run is the last (rightmost) Prefix Run of 4588
the A/N subsection. 4589

• The first basis bit indicates a choice of numeric vs. non-numeric base, and the second basis 4590
bit, if ‘1’, indicates that the chosen base is extended to include characters from the “opposite” 4591
base. Thus, ‘00’ indicates a run-length-encoded sequence of base 10 values; ‘01’ indicates a 4592
sequence that is primarily (but not entirely) digits, encoded in Base 13; ‘10’ indicates a 4593
sequence a sequence of values from the non-numeric base that was selected earlier in the 4594
A/N header, and ‘11’ indicates a sequence of values primarily from that non-numeric base, 4595
but extended to include digit characters as well. Note an exception: if the non-numeric base 4596
that was selected in the A/N header is Base 256, then the “extended” version is defined to be 4597
Base 40. 4598

• The 3-bit Run Length value assumes a minimum useable run of six same-base characters, 4599
and the length value is further divided by 2. Thus, the possible 3-bit Run Length values of 0, 4600
1, 2, … 7 indicate a Run of 6, 8, 10, … 20 characters from the same base. Note that a trailing 4601
“odd” character value at the end of a same-base sequence must be represented by adding a bit 4602
to the Character Map. 4603

An optional Suffix Representation, if present, is a series of one or more Suffix Runs, each 4604
identical in format to the Prefix Run just described. Consistent with that description, note that 4605
the Run Position bit, if ‘1’, indicates that the current Suffix Run is the last (rightmost) Suffix Run 4606
of the A/N subsection, and thus any preceding Suffix Runs represented source characters to the 4607
left of this final Suffix Run. 4608

 EPC Tag Data Standard

Jan-2014, Version 1.8 Copyright ©2005- 2014 GS1 AISBL, All Rights Reserved. Page 191 of 225

I.8.2.4 Encoding into Binary Segments 4609
Immediately after the last bit of the Character Map, up to four binary numbers are encoded, each 4610
representing all of the characters that were encoded in a single base system. First, a base-13 bit 4611
sequence is encoded (if one or more Prefix or Suffix Runs called for base-13 encoding). If 4612
present, this bit sequence directly represents the binary number resulting from encoding the 4613
combined sequence of all Prefix and Suffix characters (in that order) classified as Base 13 4614
(ignoring any intervening characters not thus classified) as a single value, or in other words, 4615
applying a base 13 to Binary conversion. The number of bits to encode in this sequence is 4616
directly determined from the number of base-13 values being represented, as called for by the 4617
sum of the Prefix and Suffix Run lengths for base 13 sequences. The number of bits, for a given 4618
number of Base 13 values, is determined from the Figure in Annex K. Next, an Extended-4619
NonNumeric Base segment (either Base-40 or Base 84) is similarly encoded (if any Prefix or 4620
Suffix Runs called for Extended-NonNumeric encoding). 4621

Next, a Base-10 Binary segment is encoded that directly represents the binary number resulting 4622
from encoding the sequence of the digits in the Prefix and/or character map and/or Suffix 4623
(ignoring any intervening non-digit characters) as a single value, or in other words, applying a 4624
base 10 to Binary conversion. The number of bits to encode in this sequence is directly 4625
determined from the number of digits being represented, as shown in Annex K. 4626

Immediately after the last bit of the Base-10 bit sequence (if any), a non-numeric (Base 30, Base 4627
74, or Base 256) bit sequence is encoded (if the character map indicates at least one non-numeric 4628
character). This bit sequence represents the binary number resulting from a base-30 to Binary 4629
conversion (or a Base-74 to Binary conversion, or a direct transfer of Base-256 values) of the 4630
sequence of non-digit characters in the data (ignoring any intervening digits). Again, the number 4631
of encoded bits is directly determined from the number of non-numeric values being represented, 4632
as shown in Annex K. Note that if Base 256 was selected as the non-Numeric base, then the 4633
encoder is free to classify and encode each digit either as Base 10 or as Base 256 (Base 10 will 4634
be more efficient, unless outweighed by the ability to take advantage of a long Prefix or Suffix). 4635

Note that an Alphanumeric subsection ends with several variable-length bit fields (the character 4636
map, and one or more Binary sections (representing the numeric and non-numeric Binary 4637
values). Note further that none of the lengths of these three variable-length bit fields are 4638
explicitly encoded (although one or two Extended-Base Binary segments may also be present, 4639
these have known lengths, determined from Prefix and/or Suffix runs). In order to determine the 4640
boundaries between these three variable-length fields, the decoder needs to implement a 4641
procedure, using knowledge of the remaining number of data bits, in order to correctly parse the 4642
Alphanumeric subsection. An example of such a procedure is described in Annex M. 4643

I.8.2.5 Padding the last Byte 4644
The last (least-significant) bit of the final Binary segment is also the last significant bit of the 4645
Packed Object. If there are any remaining bit positions in the last byte to be filled with pad bits, 4646
then the most significant pad bit shall be set to ‘1’, and any remaining less-significant pad bits 4647
shall be set to ‘0’. The decoder can determine the total number of non-pad bits in a Packed 4648
Object by examining the Length Section of the Packed Object (and if the Pad Indicator bit of that 4649
section is ‘1’, by also examining the last byte of the Packed Object). 4650

 EPC Tag Data Standard

Jan-2014, Version 1.8 Copyright ©2005- 2014 GS1 AISBL, All Rights Reserved. Page 192 of 225

I.9 ID Map and Directory encoding options 4651
An ID Map can be more efficient than a list of ID Values, when encoding a relatively large 4652
number of ID Values. Additionally, an ID Map representation is advantageous for use in a 4653
Directory Packed Object. The ID Map itself (the first major subsection of every ID Map section) 4654
is structured identically whether in a Data or Directory IDMPO, but a Directory IDMPO’s ID 4655
Map section contains additional optional subsections. The structure of an ID Map section, 4656
containing one or more ID Maps, is described in section I.9.1, explained in terms of its usage in a 4657
Data IDMPO; subsequent sections explain the added structural elements in a Directory IDMPO. 4658

I.9.1 ID Map Section structure 4659
An IDMPO represents ID Values using a structure called an ID Map section, containing one or 4660
more ID Maps. Each ID Value encoded in a Data IDMPO is represented as a ‘1’ bit within an 4661
ID Map bit field, whose fixed length is equal to the number of entries in the corresponding Base 4662
Table. Conversely, each ‘0’ in the ID Map Field indicates the absence of the corresponding ID 4663
Value. Since the total number of ‘1’ bits within the ID Map Field equals the number of ID 4664
Values being represented, no explicit NumberOfIDs field is encoded. In order to implement the 4665
range of functionality made possible by this representation, the ID Map Section contains 4666
elements other than the ID Map itself. If present, the optional ID Map Section immediately 4667
follows the leading pattern indicating an IDMPO (as was described in I.4.2), and contains the 4668
following elements in the order listed below: 4669

• An Application Indicator subsection (see I.5.3.1) 4670

• an ID Map bit field (whose length is determined from the ID Size in the Application 4671
Indicator) 4672

• a Full/Restricted Use bit (see I.5.3.2) 4673

• (the above sequence forms an ID Map, which may optionally repeat multiple times) 4674

• a Data/Directory indicator bit, 4675

• an optional AuxMap section (never present in a Data IDMPO), and 4676

• Closing Flag(s), consisting of an “Addendum Flag” bit. If ‘1’, then an Addendum subsection 4677
is present at the end of the Object Info section (after the Object Length Information). 4678

These elements, shown in Figure I 9-1 as a maximum structure (every element is present), are 4679
described in each of the next subsections. 4680

 EPC Tag Data Standard

Jan-2014, Version 1.8 Copyright ©2005- 2014 GS1 AISBL, All Rights Reserved. Page 193 of 225

Figure I 9-1: ID Map section 4681

First ID Map Optional additional
ID Map(s)

Null App
Indicator
(single
zero bit)

Data/
Directory
Indicator
Bit

(If
directory)
Optional
AuxMap
Section

Closing
Flag Bit(s)

App
Indicator

ID
Map
Bit
Field
(ends
with
F/R
bit)

App
Indicator

ID Map
Field
(ends
with
F/R bit)

See
I.5.3.1

See
I.9.1.1
and
I.5.3.2

As
previous

As
previous

See
I.5.3.1

 See
Figure I 9-
2

Addendum

Flag Bit

 4682

When an ID Map section is encoded, it is always followed by an Object Length and Pad 4683
Indicator, and optionally followed by an Addendum subsection (all as have been previously 4684
defined), and then may be followed by any of the other sections defined for Packed Objects, 4685
except that a Directory IDMPO shall not include a Data section. 4686

I.9.1.1 ID Map and ID Map bit field 4687
An ID Map usually consists of an Application Indicator followed by an ID Map bit field, ending 4688
with a Full/Restricted Use bit. An ID Map bit field consists of a single “MapPresent” flag bit, 4689
then (if MapPresent is ‘1’) a number of bits equal to the length determined from the ID Size 4690
pattern within the Application Indicator, plus one (the Full/Restricted Use bit). The ID Map bit 4691
field indicates the presence/absence of encoded data items corresponding to entries in a specific 4692
registered Primary or Alternate Base Table. The choice of base table is indicated by the encoded 4693
combination of DSFID and Application Indicator pattern that precedes the ID Map bit field. The 4694
MSB of the ID Map bit field corresponds to ID Value 0 in the base table, the next bit 4695
corresponds to ID Value 1, and so on. 4696

In a Data Packed Object’s ID Map bit field, each ‘1’ bit indicates that this Packed Object 4697
contains an encoded occurrence of the data item corresponding to an entry in the registered Base 4698
Table associated with this ID Map. Note that the valid encoded entry may be found either in the 4699
first (“parentless”) Packed Object of the chain (the one containing the ID Map) or in an 4700
Addendum IDLPO of that chain. Note further that one or more data entries may be encoded in 4701
an IDMPO, but marked “invalid” (by a Delete entry in an Addendum IDLPO). 4702

An ID Map shall not correspond to a Secondary ID Table instead of a Base ID Table. Note that 4703
data items encoded in a “parentless” Data IDMPO shall appear in the same relative order in 4704
which they are listed in the associated Base Table. However, additional “out of order” data items 4705
may be added to an existing data IDMPO by appending an Addendum IDLPO to the Object. 4706

An ID Map cannot indicate a specific number of instances (greater than one) of the same ID 4707
Value, and this would seemingly imply that only one data instance using a given ID Value can be 4708

 EPC Tag Data Standard

Jan-2014, Version 1.8 Copyright ©2005- 2014 GS1 AISBL, All Rights Reserved. Page 194 of 225

encoded in a Data IDMPO. However, the ID Map method needs to support the case where more 4709
two or more encoded data items are from the same identifier “class” (and thus share the same ID 4710
Value). The following mechanisms address this need: 4711

• Another data item of the same class can be encoded in an Addendum IDLPO of the IDMPO. 4712
Multiple occurrences of the same ID Value can appear on an ID List, each associated with 4713
different encoded values of the Secondary ID bits. 4714

• A series of two or more encoded instances of the same “class” can be efficiently indicated by 4715
a single instance of an ID Value (or equivalently by a single ID Map bit), if the 4716
corresponding Base Table entry defines a “Repeat” Bit (see J.2.2). 4717

An ID Map section may contain multiple ID Maps; a null Application Indicator section (with its 4718
AppIndicatorPresent bit set to ‘0’) terminates the list of ID Maps. 4719

I.9.1.2 Data/Directory and AuxMap indicator bits 4720
A Data/Directory indicator bit is always encoded immediately following the last ID Map. By 4721
definition, a Data IDMPO has its Data/Directory bit set to ‘0’, and a Directory IDMPO has its 4722
Data/Directory bit set to ‘1’. If the Data/Directory bit is set to ‘1’, it is immediately followed by 4723
an AuxMap indicator bit which, if ‘1’, indicates that an optional AuxMap section immediately 4724
follows. 4725

I.9.1.3 Closing Flags bit(s) 4726
The ID Map section ends with a single Closing Flag: 4727

• The final bit of the Closing Flags is an Addendum Flag Bit which, if ‘1’, indicates that there 4728
is an optional Addendum subsection encoded at the end of the Object Info section of the 4729
Packed Object. If present, the Addendum subsection is as described in Section I .5.6. 4730

I.9.2 Directory Packed Objects 4731
A “Directory Packed Object” is an IDMPO whose Directory bit is set to ‘1’. Its only inherent 4732
difference from a Data IDMPO is that it does not contain any encoded data items. However, 4733
additional mechanisms and usage considerations apply only to a Directory Packed Object, and 4734
these are described in the following subsections. 4735

I.9.2.1 ID Maps in a Directory IDMPO 4736
Although the structure of an ID Map is identical whether in a Data or Directory IDMPO, the 4737
semantics of the structure are somewhat different. In a Directory Packed Object’s ID Map bit 4738
field, each ‘1’ bit indicates that a Data Packed Object in the same data carrier memory bank 4739
contains a valid data item associated with the corresponding entry in the specified Base Table for 4740
this ID Map. Optionally, a Directory Packed Object may further indicate which Packed Object 4741
contains each data item (see the description of the optional AuxMap section below). 4742

Note that, in contrast to a Data IDMPO, there is no required correlation between the order of bits 4743
in a Directory’s ID Map and the order in which these data items are subsequently encoded in 4744
memory within a sequence of Data Packed Objects. 4745

 EPC Tag Data Standard

Jan-2014, Version 1.8 Copyright ©2005- 2014 GS1 AISBL, All Rights Reserved. Page 195 of 225

I.9.2.2 Optional AuxMap Section (Directory IDMPOs only) 4746
An AuxMap Section optionally allows a Directory IDMPO’s ID Map to indicate not only 4747
presence/absence of all the data items in this memory bank of the tag, but also which Packed 4748
Object encodes each data item. If the AuxMap indicator bit is ‘1’, then an AuxMap section shall 4749
be encoded immediately after this bit. If encoded, the AuxMap section shall contain one PO 4750
Index Field for each of the ID Maps that precede this section. After the last PO Index Field, the 4751
AuxMap Section may optionally encode an ObjectOffsets list, where each ObjectOffset 4752
generally indicates the number of bytes from the start of the previous Packed Object to the start 4753
of the next Packed Object. This AuxMap structure is shown (for an example IDMPO with two 4754
ID Maps) in Figure I 9-2. 4755

Figure I 9-2: Optional AuxMap section structure 4756

PO Index Field

for first ID Map

PO Index Field

for second ID Map

Object

Offsets

Present

bit

Optional ObjectOffsets subsection

POindex

Length

POindex

Table

POindex

Length

POindex

Table

Object

Offsets

Multiplier

Object1

offset

(EBV6)

Object2

offset

(EBV6)

… ObjectN

offset

(EBV6)

 4757

Each PO Index Field has the following structure and semantics: 4758

• A three-bit POindexLength field, indicating the number of index bits encoded for each entry 4759
in the PO Index Table that immediately follows this field (unless the POindex length is ‘000’, 4760
which means that no PO Index Table follows). 4761

• A PO Index Table, consisting of an array of bits, one bit (or group of bits, depending on the 4762
POIndexLength) for every bit in the corresponding ID Map of this directory packed object. 4763
A PO Index Table entry (i.e., a “PO Index”) indicates (by relative order) which Packed 4764
Object contains the data item indicated by the corresponding ‘1’ bit in the ID Map. If an ID 4765
Map bit is '0', the corresponding PO Index Table entry is present but its contents are ignored. 4766

• Every Packed Object is assigned an index value in sequence, without regard as to whether it 4767
is a “parentless” Packed Object or a “child” of another Packed Object, or whether it is a Data 4768
or Directory Packed Object. 4769

• If the PO Index is within the first PO Index Table (for the associated ID Map) of the 4770
Directory “chain”, then: 4771

• a PO Index of zero refers to the first Packed Object in memory, 4772

• a value of one refers to the next Packed Object in memory, and so on 4773

• a value of m, where m is the largest value that can be encoded in the PO Index (given the 4774
number of bits per index that was set in the POindexLength), indicates a Packed Object 4775
whose relative index (position in memory) is m or higher. This definition allows Packed 4776
Objects higher than m to be indexed in an Addendum Directory Packed Object, as 4777
described immediately below. If no Addendum exists, then the precise position is either 4778
m or some indeterminate position greater than m. 4779

 EPC Tag Data Standard

Jan-2014, Version 1.8 Copyright ©2005- 2014 GS1 AISBL, All Rights Reserved. Page 196 of 225

• If the PO Index is not within the first PO Index Table of the directory chain for the associated 4780
ID Map (i.e., it is in an Addendum IDMPO), then: 4781

• a PO Index of zero indicates that a prior PO Index Table of the chain provided the index 4782
information, 4783

• a PO Index of n (n > 0) refers to the nth Packed Object above the highest index value 4784
available in the immediate parent directory PO; e.g., if the maximum index value in the 4785
immediate parent directory PO refers to PO number “3 or greater,” then a PO index of 1 4786
in this addendum refers to PO number 4. 4787

• A PO Index of m (as defined above) similarly indicates a Packed Object whose position 4788
is the mth position, or higher, than the limit of the previous table in the chain. 4789

• If the valid instance of an ID Value is in an Addendum Packed Object, an implementation 4790
may choose to set a PO Index to point directly to that Addendum, or may instead continue to 4791
point to the Packed Object in the chain that originally contained the ID Value. 4792
NOTE: The first approach sometimes leads to faster searching; the second sometimes leads 4793
to faster directory updates. 4794

After the last PO Index Field, the AuxMap section ends with (at minimum) a single 4795
“ObjectOffsets Present” bit. A‘0’ value of this bit indicates that no ObjectOffsets subsection is 4796
encoded. If instead this bit is a ‘1’, it is immediately followed by an ObjectOffsets subsection, 4797
which holds a list of EBV-6 “offsets” (the number of octets between the start of a Packed Object 4798
and the start of the next Packed Object). If present, the ObjectOffsets subsection consists of an 4799
ObjectOffsetsMultiplier followed by an Object Offsets list, defined as follows: 4800

• An EBV-6 ObjectOffsetsMultiplier, whose value, when multiplied by 6, sets the total number 4801
of bits reserved for the entire ObjectOffsets list. The value of this multiplier should be 4802
selected to ideally result in sufficient storage to hold the offsets for the maximum number of 4803
Packed Objects that can be indexed by this Directory Packed Object’s PO Index Table (given 4804
the value in the POIndexLength field, and given some estimated average size for those 4805
Packed Objects). 4806

• a fixed-sized field containing a list of EBV-6 ObjectOffsets. The size of this field is exactly 4807
the number of bits as calculated from the ObjectOffsetsMultiplier. The first ObjectOffset 4808
represents the start of the second Packed Object in memory, relative to the first octet of 4809
memory (there would be little benefit in reserving extra space to store the offset of the first 4810
Packed Object). Each succeeding ObjectOffset indicates the start of the next Packed Object 4811
(relative to the previous ObjectOffset on the list), and the final ObjectOffset on the list points 4812
to the all-zero termination pattern where the next Packed Object may be written. An invalid 4813
offset of zero (EBV-6 pattern “000000”) shall be used to terminate the ObjectOffset list. If 4814
the reserved storage space is fully occupied, it need not include this terminating pattern. 4815

• In applications where the average Packed Object Length is difficult to predict, the reserved 4816
ObjectOffset storage space may sometimes prove to be insufficient. In this case, an 4817
Addendum Packed Object can be appended to the Directory Packed Object. This Addendum 4818
Directory Packed Object may contain null subsections for all but its ObjectOffsets 4819
subsection. Alternately, if it is anticipated that the capacity of the PO Index Table will also 4820
eventually be exceeded, then the Addendum Packed Object may also contain one or more 4821
non-null PO Index fields. Note that in a given instance of an AuxMap section, either a PO 4822

 EPC Tag Data Standard

Jan-2014, Version 1.8 Copyright ©2005- 2014 GS1 AISBL, All Rights Reserved. Page 197 of 225

Index Table or an ObjectOffsets subsection may be the first to exceed its capacity. 4823
Therefore, the first position referenced by an ObjectOffsets list in an Addendum Packed 4824
Object need not coincide with the first position referenced by the PO Index Table of that 4825
same Addendum. Specifically, in an Addendum Packed Object, the first ObjectOffset listed 4826
is an offset referenced to the last ObjectOffset on the list of the “parent” Directory Packed 4827
Object. 4828

I.9.2.3 Usage as a Presence/Absence Directory 4829
In many applications, an Interrogator may choose to read the entire contents of any data carrier 4830
containing one or more “target” data items of interest. In such applications, the positional 4831
information of those data items within the memory is not needed during the initial reading 4832
operations; only a presence/absence indication is needed at this processing stage. An ID Map 4833
can form a particularly efficient Presence/Absence directory for denoting the contents of a data 4834
carrier in such applications. A full directory structure encodes the offset or address (memory 4835
location) of every data element within the data carrier, which requires the writing of a large 4836
number of bits (typically 32 bits or more per data item). Inevitably, such an approach also 4837
requires reading a large number of bits over the air, just to determine whether an identifier of 4838
interest is present on a particular tag. In contrast, when only presence/absence information is 4839
needed, using an ID Map conveys the same information using only one bit per data item defined 4840
in the data system. The entire ID Map can be typically represented in 128 bits or less, and stays 4841
the same size as more data items are written to the tag. 4842

A “Presence/Absence Directory” Packed Object is defined as a Directory IDMPO that does not 4843
contain a PO Index, and therefore provides no encoded information as to where individual data 4844
items reside within the data carrier. A Presence/Absence Directory can be converted to an 4845
“Indexed Directory” Packed Object (see I.9.2.4) by adding a PO Index in an Addendum Packed 4846
Object, as a “child” of the Presence/Absence Packed Object. 4847

I.9.2.4 Usage as an Indexed Directory 4848
In many applications involving large memories, an Interrogator may choose to read a Directory 4849
section covering the entire memory’s contents, and then issue subsequent Reads to fetch the 4850
“target” data items of interest. In such applications, the positional information of those data 4851
items within the memory is important, but if many data items are added to a large memory over 4852
time, the directory itself can grow to an undesirable size. 4853

An ID Map, used in conjunction with an AuxMap containing a PO Index, can form a 4854
particularly-efficient “Indexed Directory” for denoting the contents of an RFID tag, and their 4855
approximate locations as well. Unlike a full tag directory structure, which encodes the offset or 4856
address (memory location) of every data element within the data carrier, an Indexed Directory 4857
encodes a small relative position or index indicating which Packed Object contains each data 4858
element. An application designer may choose to also encode the locations of each Packed Object 4859
in an optional ObjectOffsets subsection as described above, so that a decoding system, upon 4860
reading the Indexed Directory alone, can calculate the start addresses of all Packed Objects in 4861
memory. 4862

The utility of an ID Map used in this way is enhanced by the rule of most data systems that a 4863
given identifier may only appear once within a single data carrier. This rule, when an Indexed 4864

 EPC Tag Data Standard

Jan-2014, Version 1.8 Copyright ©2005- 2014 GS1 AISBL, All Rights Reserved. Page 198 of 225

Directory is utilized with Packed Object encoding of the data in subsequent objects, can provide 4865
nearly-complete random access to reading data using relatively few directory bits. As an 4866
example, an ID Map directory (one bit per defined ID) can be associated with an additional 4867
AuxMap “PO Index” array (using, for example, three bits per defined ID). Using this 4868
arrangement, an interrogator would read the Directory Packed Object, and examine its ID Map to 4869
determine if the desired data item were present on the tag. If so, it would examine the 3 “PO 4870
Index” bits corresponding to that data item, to determine which of the first 8 Packed Objects on 4871
the tag contain the desired data item. If an optional ObjectOffsets subsection was encoded, then 4872
the Interrogator can calculate the starting address of the desired Packed Object directly; 4873
otherwise, the interrogator may perform successive read operations in order to fetch the desired 4874
Packed Object. 4875

Appendix J Packed Objects ID Tables 4876

J.1 Packed Objects Data Format registration file structure 4877
A Packed Objects registered Data Format file consists of a series of “Keyword lines” and one or 4878
more ID Tables. Blank lines may occur anywhere within a Data Format File, and are ignored. 4879
Also, any line may end with extra blank columns, which are also ignored. 4880

• A Keyword line consists of a Keyword (which always starts with “K-“) followed by an 4881
equals sign and a character string, which assigns a value to that Keyword. Zero or more 4882
space characters may be present on either side of the equals sign. Some Keyword lines shall 4883
appear only once, at the top of the registration file, and others may appear multiple times, 4884
once for each ID Table in the file. 4885

• An ID Table lists a series of ID Values (as defined in I.5.3). Each row of an ID Table 4886
contains a single ID Value (in a required “IDvalue” column), and additional columns may 4887
associate Object IDs (OIDs), ID strings, Format strings, and other information with that ID 4888
Value. A registration file always includes a single “Primary” Base ID Table, zero or more 4889
“Alternate” Base ID Tables, and may also include one or more Secondary ID Tables (that are 4890
referenced by one or more Base ID Table entries). 4891

To illustrate the file format, a hypothetical data system registration is shown in Figure J-1. In 4892
this hypothetical data system, each ID Value is associated with one or more OIDs and 4893
corresponding ID strings. The following subsections explain the syntax shown in the Figure. 4894

4895

 EPC Tag Data Standard

Jan-2014, Version 1.8 Copyright ©2005- 2014 GS1 AISBL, All Rights Reserved. Page 199 of 225

Figure J- 1:Hypothetical Data Format registration file 4896
K-Text = Hypothetical Data Format 100

K-Version = 1.0

K-TableID = F100B0

K-RootOID = urn:oid:1.0.12345.100

K-IDsize = 16

IDvalue OIDs IDstring Explanation FormatString

0 99 1Z Legacy ID “1Z”
corresponds to OID 99, is
assigned IDval 0

14n

1 9%x30-33 7%x42-45 An OID in the range
90..93,

Corresponding to ID
7B..7E

1*8an

2 (10)(20)(25)(37) (A)(B)(C)(D) a commonly-used set of
IDs

(1n)(2n)(3n)(4n)

3 26/27 1A/2B Either 1A or 2B is
encoded, but not both

10n / 20n

4 (30) [31] (2A) [3B] 2A is always encoded,
optionally followed by 3B

(11n) [1*20n]

5 (40/41/42) (53) [55] (4A/4B/4C) (5D) [5E] One of A/B/C is encoded,
then D, and optionally E

(1n/2n/3n) (4n) [5n]

6 (60/61/(64)[66]) (6A /6B / (6C) [6D]) Selections, one of which
includes an Option

(1n / 2n / (3n][4n])

K-TableEnd = F100B0

 4897

J.1.1 File Header section 4898
Keyword lines in the File Header (the first portion of every registration file) may occur in any 4899
order, and are as follows: 4900

• (Mandatory) K-Version = nn.nn, which the registering body assigns, to ensure that any 4901
future revisions to their registration are clearly labeled. 4902

• (Optional) K-Interpretation = string, where the “string” argument shall be one of the 4903
following: “ISO-646”, “UTF-8”, “ECI-nnnnnn” (where nnnnnn is a registered six-digit ECI 4904
number), ISO-8859-nn, or “UNSPECIFIED”. The Default interpretation is 4905
“UNSPECIFIED”. This keyword line allows non-default interpretations to be placed on the 4906
octets of data strings that are decoded from Packed Objects. 4907

• (Optional) K-ISO15434=nn, where “nn” represents a Format Indicator (a two-digit numeric 4908
identifier) as defined in ISO/IEC 15434. This keyword line allows receiving systems to 4909

 EPC Tag Data Standard

Jan-2014, Version 1.8 Copyright ©2005- 2014 GS1 AISBL, All Rights Reserved. Page 200 of 225

optionally represent a decoded Packed Object as a fully-compliant ISO/IEC 15434 message. 4910
There is no default value for this keyword line. 4911

• (Optional) K-AppPunc = nn, where nn represents (in decimal) the octet value of an ASCII 4912
character that is commonly used for punctuation in this application. If this keyword line is 4913
not present, the default Application Punctuation character is the hyphen. 4914

In addition, comments may be included using the optional Keyword assignment line “K-text = 4915
string”, and may appear zero or more times within a File Header or Table Header, but not in an 4916
ID Table body. 4917

J.1.2 Table Header section 4918
One or more Table Header sections (each introducing an ID Table) follow the File Header 4919
section. Each Table Header begins with a K-TableID keyword line, followed by a series of 4920
additional required and optional Keyword lines (which may occur in any order), as follows: 4921

• (Mandatory) K-TableID = FnnXnn, where Fnn represents the ISO-assigned Data Format 4922
number (where 'nn' represents one or more decimal digits), and Xnn (where 'X' is either 'B' or 4923
'S') is a registrant-assigned Table ID for each ID Table in the file. The first ID Table shall 4924
always be the Primary Base ID Table of the registration, with a Table ID of “B0”. As many 4925
as seven additional “Alternate” Base ID Tables may be included, with higher sequential 4926
“Bnn” Table IDs. Secondary ID Tables may be included, with sequential Table IDs of the 4927
form “Snn”. 4928

• (Mandatory) K-IDsize = nn. For a base ID table, the value nn shall be one of the values 4929
from the “Maximum number of Table Entries” column of Table I 5-5. For a secondary ID 4930
table, the value nn shall be a power of two (even if not present in Table I 5-5. 4931

• (Optional) K-RootOID = urn:oid:i.j.k.ff where: 4932

• I, j, and k are the leading arcs of the OID (as many arcs as required) and 4933

• ff is the last arc of the Root OID (typically, the registered Data Format number) 4934
If the K-RootOID keyword is not present, then the default Root OID is: 4935

• urn:oid:1.0.15961.ff, where “ff” is the registered Data Format number 4936

• Other optional Keyword lines: in order to override the file-level defaults (to set different 4937
values for a particular table), a Table Header may invoke one or more of the Optional 4938
Keyword lines listed in for the File Header section. 4939

The end of the Table Header section is the first non-blank line that does not begin with a 4940
Keyword. This first non-blank line shall list the titles for every column in the ID Table that 4941
immediately follows this line; column titles are case-sensitive. 4942

An Alternate Base ID Table, if present, is identical in format to the Primary Base ID Table (but 4943
usually represents a smaller choice of identifiers, targeted for a specific application). 4944

A Secondary ID Table can be invoked by a keyword in a Base Table’s OIDs column. A 4945
Secondary ID Table is equivalent to a single Selection list (see J.3) for a single ID Value of a 4946
Base ID Table (except that a Secondary table uses K-Idsize to explicitly define the number of 4947
Secondary ID bits per ID); the IDvalue column of a Secondary table lists the value of the 4948

 EPC Tag Data Standard

Jan-2014, Version 1.8 Copyright ©2005- 2014 GS1 AISBL, All Rights Reserved. Page 201 of 225

corresponding Secondary ID bits pattern for each row in the Secondary Table. An OIDs entry in 4949
a Secondary ID Table shall not itself contain a Selection list nor invoke another Secondary ID 4950
Table. 4951

J.1.3 ID Table section 4952
Each ID table consists of a series of one or more rows, each row including a mandatory 4953
“IDvalue” column, several defined Optional columns (such as “OIDs”, “IDstring”, and 4954
“FormatString”), and any number of Informative columns (such as the “Explanation” column in 4955
the hypothetical example shown above). 4956

Each ID Table ends with a required Keyword line of the form: 4957

• K-TableEnd = FnnXnn, where FnnXnn shall match the preceding K-TableID keyword 4958
line that introduced the table. 4959

The syntax and requirements of all Mandatory and Optional columns shall be as described J.2. 4960

J.2 Mandatory and Optional ID Table columns 4961
Each ID Table in a Packed Objects registration shall include an IDvalue column, and may 4962
include other columns that are defined in this specification as Optional, and/or Informative 4963
columns (whose column heading is not defined in this specification). 4964

J.2.1 IDvalue column (Mandatory) 4965
Each ID Table in a Packed Objects registration shall include an IDvalue column. The ID Values 4966
on successive rows shall increase monotonically. However, the table may terminate before 4967
reaching the full number of rows indicated by the Keyword line containing K-IDsize. In this 4968
case, a receiving system will assume that all remaining ID Values are reserved for future 4969
assignment (as if the OIDs column contained the keyword “K-RFA”). If a registered Base ID 4970
Table does not include the optional OIDs column described below, then the IDvalue shall be 4971
used as the last arc of the OID. 4972

J.2.2 OIDs and IDstring columns (Optional) 4973
A Packed Objects registration always assigns a final OID arc to each identifier (either a number 4974
assigned in the “OIDs” column as will be described below, or if that column is absent, the 4975
IDvalue is assigned as the default final arc). The OIDs column is required rather than optional, if 4976
a single IDvalue is intended to represent either a combination of OIDs or a choice between OIDs 4977
(one or more Secondary ID bits are invoked by any entry that presents a choice of OIDs). 4978

A Packed Objects registration may include an IDString column, which if present assigns an 4979
ASCII-string name for each OID. If no name is provided, systems must refer to the identifier by 4980
its OID (see J.4). However, many registrations will be based on data systems that do have an 4981
ASCII representation for each defined Identifier, and receiving systems may optionally output a 4982
representation based on those strings. If so, the ID Table may contain a column indicating the 4983
IDstring that corresponds to each OID. An empty IDstring cell means that there is no 4984
corresponding ASCII string associated with the OID. A non-empty IDstring shall provide a 4985
name for every OID invoked by the OIDs column of that row (or a single name, if no OIDs 4986

 EPC Tag Data Standard

Jan-2014, Version 1.8 Copyright ©2005- 2014 GS1 AISBL, All Rights Reserved. Page 202 of 225

column is present). Therefore, the sequence of combination and selection operations in an 4987
IDstring shall exactly match those in the row’s OIDs column. 4988

A non-empty OIDs cell may contain either a keyword, an ASCII string representing (in decimal) 4989
a single OID value, or a compound string (in ABNF notation) that a defines a choice and/or a 4990
combination of OIDs. The detailed syntax for compound OID strings in this column (which also 4991
applies to the IDstring column) is as defined in section J.3. Instead of containing a simple or 4992
compound OID representation, an OIDs entry may contain one of the following Keywords: 4993

• K-Verbatim = OIDddBnn, where “dd” represents the chosen penultimate arc of the OID, 4994
and “Bnn” indicates one of the Base 10, Base 40, or Base 74 encoding tables. This entry 4995
invokes a number of Secondary ID bits that serve two purposes: 4996

• They encode an ASCII identifier “name” that might not have existed at the time the table 4997
was registered. The name is encoded in the Secondary ID bits section as a series of Base-4998
n values representing the ASCII characters of the name, preceded by a four-bit field 4999
indicating the number of Base-n values that follow (zero is permissible, in order to 5000
support RFA entries as described below). 5001

• The cumulative value of these Secondary ID bits, considered as a single unsigned binary 5002
integer and converted to decimal, is the final “arc” of the OID for this “verbatim-5003
encoded’ identifier. 5004

• K-Secondary = Snn, where “Snn” represents the Table ID of a Secondary ID Table in the 5005
same registration file. This is equivalent to a Base ID Table row OID entry that contains a 5006
single Selection list (with no other components at the top level), but instead of listing these 5007
components in the Base ID Table, each component is listed as a separate row in the 5008
Secondary ID Table, where each may be assigned a unique OID, ID string, and FormatString. 5009

• K-Proprietary=OIDddPnn, where nn represents a fixed number of Secondary ID bits that 5010
encode an optional Enterprise Identifier indicating who wrote the proprietary data (an entry 5011
of K-Proprietary=OIDddP0 indicates an “anonymous” proprietary data item). 5012

• K-RFA = OIDddBnn, where “Bnn” is as defined above for Verbatim encoding, except that 5013
“B0” is a valid assignment (meaning that no Secondary ID bits are invoked). This keyword 5014
represents a Reserved for Future Assignment entry, with an option for Verbatim encoding of 5015
the Identifier “name” once a name is assigned by the entity who registered this Data Format. 5016
Encoders may use this entry, with a four-bit “verbatim” length of zero, until an Identifier 5017
“name” is assigned. A specific FormatString may be assigned to K-RFA entries, or the 5018
default a/n encoding may be utilized. 5019

Finally, any OIDs entry may end with a single “R” character (preceded by one or more space 5020
characters), to indicate that a “Repeat” bit shall be encoded as the last Secondary ID bit invoked 5021
by the entry. If ‘1’, this bit indicates that another instance of this class of identifier is also 5022
encoded (that is, this bit acts as if a repeat of the ID Value were encoded on an ID list). If ‘1’, 5023
then this bit is followed by another series of Secondary ID bits, to represent the particulars of this 5024
additional instance of the ID Value. 5025

An IDstring column shall not contain any of the above-listed Keyword entries, and an IDstring 5026
entry shall be empty when the corresponding OIDs entry contains a Keyword. 5027

 EPC Tag Data Standard

Jan-2014, Version 1.8 Copyright ©2005- 2014 GS1 AISBL, All Rights Reserved. Page 203 of 225

J.2.3 FormatString column (Optional) 5028
An ID Table may optionally define the data characteristics of the data associated with a 5029
particular identifier, in order to facilitate data compaction. If present, the FormatString entry 5030
specifies whether a data item is all-numeric or alphanumeric (i.e., may contain characters other 5031
than the decimal digits), and specifies either a fixed length or a variable length. If no 5032
FormatString entry is present, then the default data characteristic is alphanumeric. If no 5033
FormatString entry is present, or if the entry does not specify a length, then any length >=1 is 5034
permitted. Unless a single fixed length is specified, the length of each encoded data item is 5035
encoded in the Aux Format section of the Packed Object, as specified in I.7. 5036

If a given IDstring entry defines more than a single identifier, then the corresponding 5037
FormatString column shall show a format string for each such identifier, using the same 5038
sequence of punctuation characters (disregarding concatenation) as was used in the 5039
corresponding IDstring. 5040

The format string for a single identifier shall be one of the following: 5041

• A length qualifier followed by “n” (for always-numeric data); 5042

• A length qualifier followed by “an” (for data that may contain non-digits); or 5043

• A fixed-length qualifier, followed by “n”, followed by one or more space characters, 5044
followed by a variable-length qualifier, followed by “an”. 5045

A length qualifier shall be either null (that is, no qualifier present, indicating that any length >= 1 5046
is legal), a single decimal number (indicating a fixed length) or a length range of the form “i*j”, 5047
where “I” represents the minimum allowed length of the data item, “j” represents the maximum 5048
allowed length, and i <= j. In the latter case, if “j” is omitted, it means the maximum length is 5049
unlimited. 5050

Data corresponding to an “n” in the FormatString are encoded in the KLN subsection; data 5051
corresponding to an “an” in the FormatString are encoded in the A/N subsection. 5052

When a given instance of the data item is encoded in a Packed Object, its length is encoded in 5053
the Aux Format section as specified in I.7.2. The minimum value of the range is not itself 5054
encoded, but is specified in the ID Table’s FormatString column. 5055

Example: 5056

A FormatString entry of “3*6n” indicates an all-numeric data item whose length is 5057
always between three and six digits inclusive. A given length is encoded in two bits, 5058
where ‘00’ would indicate a string of digits whose length is “3”, and ‘11’ would indicate 5059
a string length of six digits. 5060

J.2.4 Interp column (Optional) 5061
Some registrations may wish to specify information needed for output representations of the 5062
Packed Object’s contents, other than the default OID representation of the arcs of each encoded 5063
identifier. If this information is invariant for a particular table, the registration file may include 5064
keyword lines as previously defined. If the interpretation varies from row to row within a table, 5065
then an Interp column may be added to the ID Table. This column entry, if present, may contain 5066

 EPC Tag Data Standard

Jan-2014, Version 1.8 Copyright ©2005- 2014 GS1 AISBL, All Rights Reserved. Page 204 of 225

one or more of the following keyword assignments (separated by semicolons), as were 5067
previously defined (see J.1.1 and J.1.2): 5068

• K-RootOID = urn:oid:i.j.k.l… 5069

• K-Interpretation = string 5070

• K-ISO15434=nn 5071
If used, these override (for a particular Identifier) the default file-level values and/or those 5072
specified in the Table Header section. 5073

J.3 Syntax of OIDs, IDstring, and FormatString Columns 5074
In a given ID Table entry, the OIDs, IDString, and FormatString column may indicate one or 5075
more mechanisms described in this section. J.3.1 specifies the semantics of the mechanisms, and 5076
J.3.2 specifies the formal grammar for the ID Table columns. 5077

J.3.1 Semantics for OIDs, IDString, and FormatString Columns 5078
In the descriptions below, the word “Identifier” means either an OID final arc (in the context of 5079
the OIDs column) or an IDString name (in the context of the IDstring column). If both columns 5080
are present, only the OIDs column actually invokes Secondary ID bits. 5081

• A Single component resolving to a single Identifier, in which case no additional Secondary 5082
ID bits are invoked. 5083

• (For OIDs and IDString columns only) A single component resolving to one of a series of 5084
closely-related Identifiers, where the Identifier’s string representation varies only at one or 5085
more character positions. This is indicated using the Concatenation operator ‘%’ to 5086
introduce a range of ASCII characters at a specified position. For example, an OID whose 5087
final arc is defined as “391n”, where the fourth digit ‘n’ can be any digit from ‘0’ to ‘6’ 5088
(ASCII characters 30hex to 36hex inclusive) is represented by the component 391%x30-36 5089
(note that no spaces are allowed) A Concatenation invokes the minimum number of 5090
Secondary ID digits needed to indicate the specified range. When both an OIDs column and 5091
an IDstring column are populated for a given row, both shall contain the same number of 5092
concatations, with the same ranges (so that the numbers and values of Secondary ID bits 5093
invoked are consistent). However, the minimum value listed for the two ranges can differ, so 5094
that (for example) the OID’s digit can range from 0 to 3, while the corresponding IDstring 5095
character can range from “B” to “E” if so desired. Note that the use of Concatenation 5096
inherently constrains the relationship between OID and IDString, and so Concatenation may 5097
not be useable under all circumstances (the Selection operation described below usually 5098
provides an alternative). 5099

• A Combination of two or more identifier components in an ordered sequence, indicated by 5100
surrounding each component of the sequence with parentheses. For example, an IDstring 5101
entry (A)(%x30-37B)(2C) indicates that the associated ID Value represents a sequence of 5102
the following three identifiers: 5103

• Identifier “A”, then 5104

 EPC Tag Data Standard

Jan-2014, Version 1.8 Copyright ©2005- 2014 GS1 AISBL, All Rights Reserved. Page 205 of 225

• An identifier within the range “0B” to “7B” (invoking three Secondary ID bits to 5105
represent the choice of leading character), then 5106

• Identifier “2C 5107
Note that a Combination does not itself invoke any Secondary ID bits (unless one or more of 5108
its components do). 5109

• An Optional component is indicated by surrounding the component in brackets, which may 5110
viewed as a “conditional combination.” For example the entry (A) [B][C][D] indicates that 5111
the ID Value represents identifier A, optionally followed by B, C, and/or D. A list of 5112
Options invokes one Secondary ID bit for each component in brackets, wherein a ‘1’ 5113
indicates that the optional component was encoded. 5114

• A Selection between several mutually-exclusive components is indicated by separating the 5115
components by forward slash characters. For example, the IDstring entry (A/B/C/(D)(E)) 5116
indicates that the fully-qualified ID Value represents a single choice from a list of four 5117
choices (the fourth of which is a Combination). A Selection invokes the minimum number of 5118
Secondary ID bits needed to indicate a choice from a list of the specified number of 5119
components. 5120

In general, a “compound” OIDs or IDstring entry may contain any or all of the above operations. 5121
However, to ensure that a single left-to-right parsing of an OIDs entry results in a deterministic 5122
set of Secondary ID bits (which are encoded in the same left-to-right order in which they are 5123
invoked by the OIDs entry), the following restrictions are applied: 5124

• A given Identifier may only appear once in an OIDs entry. For example, the entry (A)(B/A) 5125
is invalid 5126

• A OIDs entry may contain at most a single Selection list 5127

• There is no restriction on the number of Combinations (because they invoke no Secondary ID 5128
bits) 5129

• There is no restriction on the total number of Concatenations in an OIDs entry, but no single 5130
Component may contain more than two Concatenation operators. 5131

• An Optional component may be a component of a Selection list, but an Optional component 5132
may not be a compound component, and therefore shall not include a Selection list nor a 5133
Combination nor Concatenation. 5134

• A OIDs or IDstring entry may not include the characters ‘(‘, ‘)’, ‘[‘, ‘]’, ‘%’, ‘-‘, or ‘/’, unless 5135
used as an Operator as described above. If one of these characters is part of a defined data 5136
system Identifier “name”, then it shall be represented as a single literal Concatenated 5137
character. 5138

J.3.2 Formal Grammar for OIDs, IDString, and FormatString Columns 5139
In each ID Table entry, the contents of the OIDs, IDString, and FormatString columns shall 5140
conform to the following grammar for Expr, unless the column is empty or (in the case of the 5141
OIDs column) it contains a keyword as specified in J.2.2. All three columns share the same 5142
grammar, except that the syntax for COMPONENT is different for each column as specified 5143
below. In a given ID Table Entry, the contents of the OIDs, IDString, and FormatString column 5144

 EPC Tag Data Standard

Jan-2014, Version 1.8 Copyright ©2005- 2014 GS1 AISBL, All Rights Reserved. Page 206 of 225

(except if empty) shall have identical parse trees according to this grammar, except that the 5145
COMPONENTs may be different. Space characters are permitted (and ignored) anywhere in an 5146
Expr, except that in the interior of a COMPONENT spaces are only permitted where explicitly 5147
specified below. 5148
Expr ::= SelectionExpr | “(” SelectionExpr “)” | SelectionSubexpr 5149
 5150
SelectionExpr ::= SelectionSubexpr (“/” SelectionSubexpr)+ 5151
 5152
SelectionSubexpr ::= COMPONENT | ComboExpr 5153
 5154
ComboExpr ::= ComboSubexpr+ 5155
 5156
ComboSubexpr ::= “(” COMPONENT “)” | “[" COMPONENT “]” 5157

For the OIDs column, COMPONENT shall conform to the following grammar: 5158
COMPONENT_OIDs ::= (COMPONENT_OIDs_Char | Concat)+ 5159
 5160
COMPONENT_OIDs_Char ::= (“0”..“9”)+ 5161

For the IDString column, COMPONENT shall conform to the following grammar: 5162
COMPONENT_IDString ::= UnquotedIDString | QuotedIDString 5163
 5164
UnquotedIDString ::= (UnQuotedIDStringChar | Concat)+ 5165
 5166
UnquotedIDStringChar ::= 5167
 “0”..“9” | “A”..“Z” | “a”..“z” | “_” 5168
 5169
QuotedIDString ::= QUOTE QuotedIDStringConstituent+ QUOTE 5170
 5171
QuotedIDStringConstituent ::= 5172
 “ ” | “!” | “#”..“~” | (QUOTE QUOTE) 5173

QUOTE refers to ASCII character 34 (decimal), the double quote character. 5174

When the QuotedIDString form for COMPONENT_IDString is used, the beginning and 5175
ending QUOTE characters shall not be considered part of the IDString. Between the beginning 5176
and ending QUOTE, all ASCII characters in the range 32 (decimal) through 126 (decimal), 5177
inclusive, are allowed, except that two QUOTE characters in a row shall denote a single double-5178
quote character to be included in the IDString. 5179

In the QuotedIDString form, a % character does not denote the concatenation operator, but 5180
instead is just a percent character included literally in the IDString. To use the concatenation 5181
operator, the UnquotedIDString form must be used. In that case, a degenerate 5182
concatenation operator (where the start character equals the end character) may be used to 5183
include a character into the IDString that is not one of the characters listed for 5184
UnquotedIDStringChar. 5185

For the FormatString column, COMPONENT shall conform to the following grammar: 5186
COMPONENT_FormatString ::= Range? (“an” | “n”) 5187
 | FixedRange “n” “ ”+ VarRange “an” 5188

 EPC Tag Data Standard

Jan-2014, Version 1.8 Copyright ©2005- 2014 GS1 AISBL, All Rights Reserved. Page 207 of 225

 5189
Range ::= FixedRange | VarRange 5190
 5191
FixedRange ::= Number 5192
 5193
VarRange ::= Number “*” Number? 5194
 5195
Number ::= (“0”..“9”)+ 5196

The syntax for COMPONENT for the OIDs and IDString columns make reference to Concat, 5197
whose syntax is specified as follows: 5198
Concat ::= “%” “x” HexChar HexChar “-” HexChar HexChar 5199
 5200
HexChar ::= (“0”..“9” | “A”..“F”) 5201

The hex value following the hyphen shall be greater than or equal to the hex value preceding the 5202
hyphen. In the OIDs column, each hex value shall be in the range 30hex to 39hex, inclusive. In 5203
the IDString column, each hex value shall be in the range 20hex to 7Ehex, inclusive. 5204

J.4 OID input/output representation 5205
The default method for representing the contents of a Packed Object to a receiving system is as a 5206
series of name/value pairs, where the name is an OID, and the value is the decoded data string 5207
associated with that OID. Unless otherwise specified by a K-RootOID keyword line, the default 5208
root OID is urn:oid:1.0.15961.ff, where ff is the Data Format encoded in the DSFID. The final 5209
arc of the OID is (by default) the IDvalue, but this is typically overridden by an entry in the OIDs 5210
column. Note that an encoded Application Indicator (see I.5.3.1) may change ff from the value 5211
indicated by the DSFID. 5212

If supported by information in the ID Table’s IDstring column, a receiving system may translate 5213
the OID output into various alternative formats, based on the IDString representation of the 5214
OIDs. One such format, as described in ISO/IEC 15434, requires as additional information a 5215
two-digit Format identifier; a table registration may provide this information using the K-5216
ISO15434 keyword as described above. 5217

The combination of the K-RootOID keyword and the OIDs column provides the registering 5218
entity an ability to assign OIDs to data system identifiers without regard to how they are actually 5219
encoded, and therefore the same OID assignment can apply regardless of the access method. 5220

J.4.1 “ID Value OID” output representation 5221
If the receiving system does not have access to the relevant ID Table (possibly because it is 5222
newly-registered), the Packed Objects decoder will not have sufficient information to convert the 5223
IDvalue (plus Secondary ID bits) to the intended OID. In order to ease the introduction of new 5224
or external tables, encoders have an option to follow “restricted use” rules (see I.5.3.2). 5225

When a receiving system has decoded a Packed Object encoded following “restricted use” rules, 5226
but does not have access to the indicated ID Table, it shall construct an “ID Value OID” in the 5227
following format: 5228

urn:oid:1.0.15961.300.ff.bb.idval.secbits 5229

 EPC Tag Data Standard

Jan-2014, Version 1.8 Copyright ©2005- 2014 GS1 AISBL, All Rights Reserved. Page 208 of 225

where 1.0.15961.300 is a Root OID with a reserved Data Format of “300” that is never encoded 5230
in a DSFID, but is used to distinguish an “ID Value OID” from a true OID (as would have been 5231
used if the ID Table were available). The reserved value of 300 is followed by the encoded 5232
table’s Data Format (ff) (which may be different from the DSFID’s default), the table ID (bb) 5233
(always ‘0’, unless otherwise indicated via an encoded Application Indicator), the encoded ID 5234
value, and the decimal representation of the invoked Secondary ID bits. This process creates a 5235
unique OID for each unique fully-qualified ID Value. For example, using the hypothetical ID 5236
Table shown in Annex L (but assuming, for illustration purposes, that the table’s specified Root 5237
OID is urn:oid:1.0.12345.9, then an “AMOUNT” ID with a fourth digit of ‘2’ has a true OID of: 5238

urn:oid:1.0.12345.9.3912 5239

and an “ID Value OID” of 5240

urn:oid:1.0.15961.300.9.0.51.2 5241

When a single ID Value represents multiple component identifiers via combinations or optional 5242
components, their multiple OIDs and data strings shall be represented separately, each using the 5243
same “ID Value OID” (up through and including the Secondary ID bits arc), but adding as a final 5244
arc the component number (starting with “1” for the first component decoded under that 5245
IDvalue). 5246

If the decoding system encounters a Packed Object that references an ID Table that is 5247
unavailable to the decoder, but the encoder chose not to set the “Restricted Use” bit in the 5248
Application Indicator, then the decoder shall either discard the Packed Object, or relay the entire 5249
Packed Object to the receiving system as a single undecoded binary entity, a sequence of octets 5250
of the length specified in the ObjectLength field of the Packed Object. The OID for an 5251
undecoded Packed Object shall be urn:oid:1.0.15961.301.ff.n, where “301” is a Data Format 5252
reserved to indicate an undecoded Packed Object, “ff” shall be the Data Format encoded in the 5253
DSFID at the start of memory, and an optional final arc ‘n’ may be incremented sequentially to 5254
distinguish between multiple undecoded Packed Objects in the same data carrier memory. 5255

Appendix K Packed Objects Encoding tables 5256
Packed Objects primarily utilize two encoding bases: 5257

• Base 10, which encodes each of the digits ‘0’ through ‘9’ in one Base 10 value 5258

• Base 30, which encodes the capital letters and selectable punctuation in one Base-30 value, 5259
and encodes punctuation and control characters from the remainder of the ASCII character 5260
set in two base-30 values (using a Shift mechanism) 5261

For situations where a high percentage of the input data’s non-numeric characters would require 5262
pairs of base-30 values, two alternative bases, Base 74 and Base 256, are also defined: 5263

• The values in the Base 74 set correspond to the invariant subset of ISO 646 (which includes 5264
the GS1 character set), but with the digits eliminated, and with the addition of GS and 5265
<space> (GS is supported for uses other than as a data delimiter). 5266

• The values in the Base 256 set may convey octets with no graphical-character interpretation, 5267
or “extended ASCII values” as defined in ISO 8859-6, or UTF-8 (the interpretation may be 5268
set in the registered ID Table for an application). The characters ‘0’ through ‘9’ (ASCII 5269

 EPC Tag Data Standard

Jan-2014, Version 1.8 Copyright ©2005- 2014 GS1 AISBL, All Rights Reserved. Page 209 of 225

values 48 through 57) are supported, and an encoder may therefore encode the digits either 5270
by using a prefix or suffix (in Base 256) or by using a character map (in Base 10). Note that 5271
in GS1 data, FNC1 is represented by ASCII <GS> (octet value 29dec). 5272

Finally, there are situations where compaction efficiency can be enhanced by run-length 5273
encoding of base indicators, rather than by character map bits, when a long run of characters can 5274
be classified into a single base. To facilitate that classification, additional “extension” bases are 5275
added, only for use in Prefix and Suffix Runs. 5276

• In order to support run-length encoding of a primarily-numeric string with a few interspersed 5277
letters, a Base 13 is defined, per Table B-2 5278

• Two of these extension bases (Base 40 and Base 84) are simply defined, in that they extend 5279
the corresponding non-numeric bases (Base 30 and Base 74, respectively) to also include the 5280
ten decimal digits. The additional entries, for characters ‘0’ through ‘9’, are added as the 5281
next ten sequential values (values 30 through 39 for Base 40, and values 74 through 83 for 5282
Base 84). 5283

• The “extended” version of Base 256 is defined as Base 40. This allows an encoder the option 5284
of encoding a few ASCII control or upper-ASCII characters in Base 256, while using a Prefix 5285
and/or Suffix to more efficiently encode the remaining non-numeric characters. 5286

The number of bits required to encode various numbers of Base 10, Base 16, Base 30, Base 40, 5287
Base 74, and Base 84 characters are shown in Figure B-1. In all cases, a limit is placed on the 5288
size of a single input group, selected so as to output a group no larger than 20 octets. 5289

Figure K-1: Required number of bits for a given number of Base ‘N’ values 5290
/* Base10 encoding accepts up to 48 input values per group: */ 5291
static const unsigned char bitsForNumBase10[] = { 5292
/* 0 - 9 */ 0, 4, 7, 10, 14, 17, 20, 24, 27, 30, 5293
/* 10 - 19 */ 34, 37, 40, 44, 47, 50, 54, 57, 60, 64, 5294
/* 20 - 29 */ 67, 70, 74, 77, 80, 84, 87, 90, 94, 97, 5295
/* 30 - 39 */ 100, 103, 107, 110, 113, 117, 120, 123, 127, 130, 5296
/* 40 - 48 */ 133, 137, 140, 143, 147, 150, 153, 157, 160}; 5297
 5298
/* Base13 encoding accepts up to 43 input values per group: */ 5299
static const unsigned char bitsForNumBase13[] = { 5300
/* 0 - 9 */ 0, 4, 8, 12, 15, 19, 23, 26, 30, 34, 5301
/* 10 - 19 */ 38, 41, 45, 49, 52, 56, 60, 63, 67, 71, 5302
/* 20 - 29 */ 75, 78, 82, 86, 89, 93, 97, 100, 104, 108, 5303
/* 30 - 39 */ 112, 115, 119, 123, 126, 130, 134, 137, 141, 145, 5304
/* 40 - 43 */ 149, 152, 156, 160 }; 5305
 5306
/* Base30 encoding accepts up to 32 input values per group: */ 5307
static const unsigned char bitsForNumBase30[] = { 5308
/* 0 - 9 */ 0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 5309
/* 10 - 19 */ 50, 54, 59, 64, 69, 74, 79, 84, 89, 94, 5310
/* 20 - 29 */ 99, 104, 108, 113, 118, 123, 128, 133, 138, 143, 5311
/* 30 - 32 */ 148, 153, 158}; 5312

 EPC Tag Data Standard

Jan-2014, Version 1.8 Copyright ©2005- 2014 GS1 AISBL, All Rights Reserved. Page 210 of 225

 5313
/* Base40 encoding accepts up to 30 input values per group: */ 5314
static const unsigned char bitsForNumBase40[] = { 5315
/* 0 - 9 */ 0, 6, 11, 16, 22, 27, 32, 38, 43, 48, 5316
/* 10 - 19 */ 54, 59, 64, 70, 75, 80, 86, 91, 96, 102, 5317
/* 20 - 29 */ 107, 112, 118, 123, 128, 134, 139, 144, 150, 155, 5318
/* 30 */ 160 }; 5319
 5320
/* Base74 encoding accepts up to 25 input values per group: */ 5321
static const unsigned char bitsForNumBase74[] = { 5322
/* 0 - 9 */ 0, 7, 13, 19, 25, 32, 38, 44, 50, 56, 5323
/* 10 - 19 */ 63, 69, 75, 81, 87, 94, 100, 106, 112, 118, 5324
/* 20 - 25 */ 125, 131, 137, 143, 150, 156 }; 5325
 5326
/* Base84 encoding accepts up to 25 input values per group: */ 5327
static const unsigned char bitsForNumBase84[] = { 5328
/* 0 - 9 */ 0, 7, 13, 20, 26, 32, 39, 45, 52, 58, 5329
/* 10 - 19 */ 64, 71, 77, 84, 90, 96, 103, 109, 116, 122, 5330
/* 20 - 25 */ 128, 135, 141, 148, 154, 160 }; 5331

Table K-1: Base 30 Character set 5332
Val Basic set Shift 1 set Shift 2 set

 Char Decimal Char Decimal Char Decimal
0 A-Punc1 N/A NUL 0 space 32
1 A 65 SOH 1 ! 33
2 B 66 STX 2 “ 34
3 C 67 ETX 3 # 35
4 D 68 EOT 4 $ 36
5 E 69 ENQ 5 % 37
6 F 70 ACK 6 & 38
7 G 71 BEL 7 ‘ 39
8 H 72 BS 8 (40
9 I 73 HT 9) 41

10 J 74 LF 10 * 42
11 K 75 VT 11 + 43
12 L 76 FF 12 , 44
13 M 77 CR 13 - 45
14 N 78 SO 14 . 46
15 O 79 SI 15 / 47
16 P 80 DLE 16 : 58
17 Q 81 ETB 23 ; 59
18 R 82 ESC 27 < 60
19 S 83 FS 28 = 61
20 T 84 GS 29 > 62
21 U 85 RS 30 ? 63

 EPC Tag Data Standard

Jan-2014, Version 1.8 Copyright ©2005- 2014 GS1 AISBL, All Rights Reserved. Page 211 of 225

Val Basic set Shift 1 set Shift 2 set
 Char Decimal Char Decimal Char Decimal

22 V 86 US 31 @ 64
23 W 87 invalid N/A \ 92
24 X 88 invalid N/A ^ 94
25 Y 89 invalid N/A _ 95
26 Z 90 [91 ‘ 96
27 Shift 1 N/A] 93 | 124
28 Shift 2 N/A { 123 ~ 126
29 P-Punc2 N/A } 125 invalid N/A

 5333
Note 1: Application-Specified Punctuation character (Value 0 of the Basic set) is defined by default as the ASCII 5334
hyphen character (45dec), but may be redefined by a registered Data Format 5335
Note 2: Programmable Punctuation character (Value 29 of the Basic set): the first appearance of P-Punc in the 5336
alphanumeric data for a packed object, whether that first appearance is compacted into the Base 30 segment or the 5337
Base 40 segment, acts as a <Shift 2>, and also “programs” the character to be represented by second and subsequent 5338
appearances of P-Punc (in either segment) for the remainder of the alphanumeric data in that packed object. The 5339
Base 30 or Base 40 value immediately following that first appearance is interpreted using the Shift 2 column 5340
(Punctuation), and assigned to subsequent instances of P-Punc for the packed object. 5341

Table K-2: Base 13 Character set 5342
Value Basic set Shift 1 set Shift 2 set Shift 3 set

 Char Decimal Char Decimal Char Decimal Char Decimal
0 0 48 A 65 N 78 space 32
1 1 49 B 66 O 79 $ 36
2 2 50 C 67 P 80 % 37
3 3 51 D 68 Q 81 & 38
4 4 52 E 69 R 82 * 42
5 5 53 F 70 S 83 + 43
6 6 54 G 71 T 84 , 44
7 7 55 H 72 U 85 - 45
8 8 56 I 73 V 86 . 46
9 9 57 J 74 W 87 / 47

10 Shift1 N/A K 75 X 88 ? 63
11 Shift2 N/A L 76 Y 89 _ 95
12 Shift3 N/A M 77 Z 90 <GS> 29

 5343

 5344

Table K-3: Base 40 Character set 5345
Val Basic set Shift 1 set Shift 2 set

 Char Decimal Char Decimal Char Decimal
0 See Table K-1
… …
29 See Table K-1

 EPC Tag Data Standard

Jan-2014, Version 1.8 Copyright ©2005- 2014 GS1 AISBL, All Rights Reserved. Page 212 of 225

Val Basic set Shift 1 set Shift 2 set
 Char Decimal Char Decimal Char Decimal

30 0 48
31 1 49
32 2 50
33 3 51
34 4 52
35 5 53
36 6 54
37 7 55
38 8 56
39 9 57

 5346

Table K-4: Base 74 Character Set 5347

Val Char Decimal Val Char Decimal Val Char Decimal

0 GS 29 25 F 70 50 d 100

1 ! 33 26 G 71 51 e 101

2 " 34 27 H 72 52 f 102

3 % 37 28 I 73 53 g 103

4 & 38 29 J 74 54 h 104

5 ' 39 30 K 75 55 i 105

6 (40 31 L 76 56 j 106

7) 41 32 M 77 57 k 107

8 * 42 33 N 78 58 l 108

9 + 43 34 O 79 59 m 109

10 , 44 35 P 80 60 n 110

11 - 45 36 Q 81 61 o 111

12 . 46 37 R 82 62 p 112

13 / 47 38 S 83 63 q 113

14 : 58 39 T 84 64 r 114

15 ; 59 40 U 85 65 s 115

16 < 60 41 V 86 66 t 116

17 = 61 42 W 87 67 u 117

18 > 62 43 X 88 68 v 118

19 ? 63 44 Y 89 69 w 119

 EPC Tag Data Standard

Jan-2014, Version 1.8 Copyright ©2005- 2014 GS1 AISBL, All Rights Reserved. Page 213 of 225

Val Char Decimal Val Char Decimal Val Char Decimal

20 A 65 45 Z 90 70 x 120

21 B 66 46 _ 95 71 y 121

22 C 67 47 a 97 72 z 122

23 D 68 48 b 98 73 Space 32

24 E 69 49 c 99

 5348

5349

 EPC Tag Data Standard

Jan-2014, Version 1.8 Copyright ©2005- 2014 GS1 AISBL, All Rights Reserved. Page 214 of 225

 5350

Table K-5: Base 84 Character Set 5351

Val Char Decimal Val Char Decimal Val Char Decimal

0 FNC1 N/A 25 F 50 d

1-73 See Table K-4

74 0 48 78 4 52 82 8 56

75 1 49 79 5 53 83 9 57

76 2 50 80 6 54

77 3 51 81 7 55

Appendix L Encoding Packed Objects (non-normative) 5352
In order to illustrate a number of the techniques that can be invoked when encoding a Packed 5353
Object, the following sample input data consists of data elements from a hypothetical data 5354
system. This data represents: 5355

• An Expiration date (OID 7) of October 31, 2006, represented as a six-digit number 061031. 5356

• An Amount Payable (OID 3n) of 1234.56 Euros, represented as a digit string 978123456 5357
(“978” is the ISO Country Code indicating that the amount payable is in Euros). As shown 5358
in Table L-1, this data element is all-numeric, with at least 4 digits and at most 18 digits. In 5359
this example, the OID “3n” will be “32”, where the “2” in the data element name indicates 5360
the decimal point is located two digits from the right. 5361

• A Lot Number (OID 1) of 1A23B456CD 5362
The application will present the above input to the encoder as a list of OID/Value pairs. The 5363
resulting input data, represented below as a single data string (wherein each OID final arc is 5364
shown in parentheses) is: 5365

(7)061031(32)978123456(1)1A23B456CD 5366

The example uses a hypothetical ID Table. In this hypothetical table, each ID Value is a seven-5367
bit index into the Base ID Table; the entries relevant to this example are shown in Table L-1. 5368

Encoding is performed in the following steps: 5369

• Three data elements are to be encoded, using Table L-1. 5370

• As shown in the table’s IDstring column, the combination of OID 7 and OID 1 is efficiently 5371
supported (because it is commonly seen in applications), and thus the encoder re-orders the 5372
input so that 7 and 1 are adjacent and in the order indicated in the OIDs column: 5373

(7)061031(1)1A23B456CD(32)978123456 5374

Now, this OID pair can be assigned a single ID Value of 125 (decimal). The FormatString 5375
column for this entry shows that the encoded data will always consist of a fixed-length 6-5376
digit string, followed by a variable-length alphanumeric string. 5377

 EPC Tag Data Standard

Jan-2014, Version 1.8 Copyright ©2005- 2014 GS1 AISBL, All Rights Reserved. Page 215 of 225

• Also as shown in Table L-1, OID 3n has an ID Value of 51 (decimal). The OIDs column for 5378
this entry shows that the OID is formed by concatenating “3” with a suffix consisting of a 5379
single character in the range 30hex to 39hex (i.e., a decimal digit). Since that is a range of ten 5380
possibilities, a four-bit number will need to be encoded in the Secondary ID section to 5381
indicate which suffix character was chosen. The FormatString column for this entry shows 5382
that its data is variable-length numeric; the variable length information will require four bits 5383
to be encoded in the Aux Format section. 5384

• Since only a small percentage of the 128-entry ID Table is utilized in this Packed Object, the 5385
encoder chooses an ID List format, rather than an ID Map format. As this is the default 5386
format, no Format Flags section is required. 5387

• This results in the following Object Info section: 5388

• EBV-6 (ObjectLength): the value is TBD at this stage of the encoding process 5389

• Pad Indicator bit: TBD at this stage 5390

• EBV-3 (numberOfIDs) of 001 (meaning two ID Values will follow) 5391

• An ID List, including: 5392

• First ID Value: 125 (dec) in 7 bits, representing OID 7 followed by OID 1 5393

• Second ID Value: 51 (decimal) in 7 bits, representing OID 3n 5394

• A Secondary ID section is encoded as ‘0010’, indicating the trailing ‘2’ of the 3n OID. It so 5395
happens this ‘2’ means that two digits follow the implied decimal point, but that information 5396
is not needed in order to encode or decode the Packed Object. 5397

• Next, an Aux Format section is encoded. An initial ‘1’ bit is encoded, invoking the Packed-5398
Object compaction method. Of the three OIDs, only OID (3n) requires encoded Aux Format 5399
information: a four-bit pattern of ‘0101’ (representing “six” variable-length digits – as “one” 5400
is the first allowed choice, a pattern of “0101” denotes “six”). 5401

• Next, the encoder encodes the first data item, for OID 7, which is defined as a fixed-length 5402
six-digit data item. The six digits of the source data string are “061031”, which are 5403
converted to a sequence of six Base-10 values by subtracting 30hex from each character of the 5404
string (the resulting values are denoted as values v5 through v0 in the formula below). These 5405
are then converted to a single Binary value, using the following formula: 5406

• 105 * v5 + 104 * v4+ 103 * v3+ 102 * v2+ 101 * v1+ 100 * v0 5407
According to Figure K-1, a six-digit number is always encoded into 20 bits (regardless of any 5408
leading zero’s in the input), resulting in a Binary string of: 5409

“0000 11101110 01100111” 5410

• The next data item is for OID 1, but since the table indicates that this OID’s data is 5411
alphanumeric, encoding into the Packed Object is deferred until after all of the known-length 5412
numeric data is encoded. 5413

• Next, the encoder finds that OID 3n is defined by Table L-1 as all-numeric, whose length of 5414
9 (in this example) was encoded as (9 – 4 = 5) into four bits within the Aux Format 5415
subsection. Thus, a Known-Length-Numeric subsection is encoded for this data item, 5416

 EPC Tag Data Standard

Jan-2014, Version 1.8 Copyright ©2005- 2014 GS1 AISBL, All Rights Reserved. Page 216 of 225

consisting of a binary value bit-pattern encoding 9 digits. Using Figure K-1 in Annex K, the 5417
encoder determines that 30 bits need to be encoded in order to represent a 9-digit number as a 5418
binary value. In this example, the binary value equivalent of “978123456” is the 30-bit 5419
binary sequence: 5420

“111010010011001111101011000000” 5421

• At this point, encoding of the Known-Length Numeric subsection of the Data Section is 5422
complete. 5423

Note that, so far, the total number of encoded bits is (3 + 6 + 1 + 7 + 7 + 4 + 5 + 20 + 30) or 83 5424
bits, representing the IDLPO Length Section (assuming that a single EBV-6 vector remains 5425
sufficient to encode the Packed Object’s length), two 7-bit ID Values, the Secondary ID and Aux 5426
Format sections, and two Known-Length-Numeric compacted binary fields. 5427

At this stage, only one non-numeric data string (for OID 1) remains to be encoded in the 5428
Alphanumeric subsection. The 10-character source data string is “1A23B456CD”. This string 5429
contains no characters requiring a base-30 Shift out of the basic Base-30 character set, and so 5430
Base-30 is selected for the non-numeric base (and so the first bit of the Alphanumeric subsection 5431
is set to ‘0’ accordingly). The data string has no substrings with six or more successive 5432
characters from the same base, and so the next two bits are set to ‘00’ (indicating that neither a 5433
Prefix nor a Suffix is run-length encoded). Thus, a full 10-bit Character Map needs to be 5434
encoded next. Its specific bit pattern is ‘0100100011’, indicating the specific sequence of digits 5435
and non-digits in the source data string “1A23B456CD”. 5436

Up to this point, the Alphanumeric subsection contains the 13-bit sequence ‘0 00 0100100011’. 5437
From Annex K, it can be determined that lengths of the two final bit sequences (encoding the 5438
Base-10 and Base-30 components of the source data string) are 20 bits (for the six digits) and 20 5439
bits (for the four uppercase letters using Base 30). The six digits of the source data string 5440
“1A23B456CD” are “123456”, which encodes to a 20-bit sequence of: 5441

“00011110001001000000” 5442

which is appended to the end of the 13-bit sequence cited at the start of this paragraph. 5443

The four non-digits of the source data string are “ABCD”, which are converted (using Table K-5444
1) to a sequence of four Base-30 values 1, 2, 3, and 4 (denoted as values v3 through v0 in the 5445
formula below. These are then converted to a single Binary value, using the following formula: 5446

303 * v3 + 302 * v2 + 301 * v1 + 300 * v0 5447

In this example, the formula calculates as (27000 * 1 + 900 * 2 + 30 * 3 + 1 * 4) which is equal 5448
to 070DE (hexadecimal) encoded as the 20-bit sequence “00000111000011011110” which is 5449
appended to the end of the previous 20-bit sequence. Thus, the AlphaNumeric section contains a 5450
total of (13 + 20 + 20) or 53 bits, appended immediately after the previous 83 bits, for a grand 5451
total of 136 significant bits in the Packed Object. 5452

The final encoding step is to calculate the full length of the Packed Object (to encode the EBV-6 5453
within the Length Section) and to pad-out the last byte (if necessary). Dividing 136 by eight 5454
shows that a total of 17 bytes are required to hold the Packed Object, and that no pad bits are 5455
required in the last byte. Thus, the EBV-6 portion of the Length Section is “010001”, where this 5456
EBV-6 value indicates 17 bytes in the Object. Following that, the Pad Indicator bit is set to ‘0’ 5457
indicating that no padding bits are present in the last data byte. 5458

 EPC Tag Data Standard

Jan-2014, Version 1.8 Copyright ©2005- 2014 GS1 AISBL, All Rights Reserved. Page 217 of 225

The complete encoding process may be summarized as follows: 5459

Original input: (7)061031(32)978123456(1)1A23B456CD 5460

Re-ordered as: (7)061031(1)1A23B456CD(32)978123456 5461

 5462

FORMAT FLAGS SECTION: (empty) 5463

OBJECT INFO SECTION: 5464

 ebvObjectLen: 010001 5465

 paddingPresent: 0 5466

 ebvNumIDs: 001 5467

 IDvals: 1111101 0110011 5468

SECONDARY ID SECTION: 5469

 IDbits: 0010 5470

AUX FORMAT SECTION: 5471

 auxFormatbits: 1 0101 5472

DATA SECTION: 5473

 KLnumeric: 0000 11101110 01100111 111010 01001100 11111010 11000000 5474

 ANheader: 0 5475

 ANprefix: 0 5476

 ANsuffix: 0 5477

 ANmap: 01 00100011 5478

 ANdigitVal: 0001 11100010 01000000 5479

 ANnonDigitsVal: 0000 01110000 11011110 5480

 Padding: none 5481

 5482

Total Bits in Packed Object: 136; when byte aligned: 136 5483

Output as: 44 7E B3 2A 87 73 3F 49 9F 58 01 23 1E 24 00 70 DE 5484

Table L-1 shows the relevant subset of a hypothetical ID Table for a hypothetical ISO-registered 5485
Data Format 99. 5486

Table L-1: hypothetical Base ID Table, for the example in Annex L 5487
K-Version = 1.0

K-TableID = F99B0

K-RootOID = urn:oid:1.0.15961.99

K-IDsize = 128

 EPC Tag Data Standard

Jan-2014, Version 1.8 Copyright ©2005- 2014 GS1 AISBL, All Rights Reserved. Page 218 of 225

IDvalue OIDs Data Title FormatString

3 1 BATCH/LOT 1*20an

8 7 USE BY OR EXPIRY 6n

51 3%x30-39 AMOUNT 4*18n

125 (7) (1) EXPIRY + BATCH/LOT (6n) (1*20an)

K-TableEnd = F99B0

 5488

Appendix M Decoding Packed Objects (non-normative) 5489

M.1 Overview 5490
The decode process begins by decoding the first byte of the memory as a DSFID. If the leading 5491
two bits indicate the Packed Objects access method, then the remainder of this Annex applies. 5492
From the remainder of the DSFID octet or octets, determine the Data Format, which shall be 5493
applied as the default Data Format for all of the Packed Objects in this memory. From the Data 5494
Format, determine the default ID Table which shall be used to process the ID Values in each 5495
Packed Object. 5496

Typically, the decoder takes a first pass through the initial ID Values list, as described earlier, in 5497
order to complete the list of identifiers. If the decoder finds any identifiers of interest in a 5498
Packed Object (or if it has been asked to report back all the data strings from a tag’s memory), 5499
then it will need to record the implied fixed lengths (from the ID table) and the encoded variable 5500
lengths (from the Aux Format subsection), in order to parse the Packed Object’s compressed 5501
data. The decoder, when recording any variable-length bit patterns, must first convert them to 5502
variable string lengths per the table (for example, a three-bit pattern may indicate a variable 5503
string length in the range of two to nine). 5504

Starting at the first byte-aligned position after the end of the DSFID, parse the remaining 5505
memory contents until the end of encoded data, repeating the remainder of this section until a 5506
Terminating Pattern is reached. 5507

Determine from the leading bit pattern (see I.4) which one of the following conditions applies: 5508

a) there are no further Packed Objects in Memory (if the leading 8-bit pattern is all 5509
zeroes, this indicates the Terminating Pattern) 5510

b) one or more Padding bytes are present. If padding is present, skip the padding bytes, 5511
which are as described in Annex I, and examine the first non-pad byte. 5512

c) a Directory Pointer is encoded. If present, record the offset indicated by the 5513
following bytes, and then continue examining from the next byte in memory 5514

d) a Format Flags section is present, in which case process this section according to the 5515
format described in Annex I 5516

 EPC Tag Data Standard

Jan-2014, Version 1.8 Copyright ©2005- 2014 GS1 AISBL, All Rights Reserved. Page 219 of 225

e) a default-format Packed Object begins at this location 5517

If the Packed Object had a Format Flags section, then this section may indicate that the Packed 5518
Object is of the ID Map format, otherwise it is of the ID List format. According to the indicated 5519
format, parse the Object Information section to determine the Object Length and ID information 5520
contained in the Packed Object. See Annex I for the details of the two formats. Regardless of 5521
the format, this step results in a known Object length (in bits) and an ordered list of the ID 5522
Values encoded in the Packed Object. From the governing ID Table, determine the list of 5523
characteristics for each ID (such as the presence and number of Secondary ID bits). 5524

Parse the Secondary ID section of the Object, based on the number of Secondary ID bits invoked 5525
by each ID Value in sequence. From this information, create a list of the fully-qualified ID 5526
Values (FQIDVs) that are encoded in the Packed Object. 5527

Parse the Aux Format section of the Object, based on the number of Aux Format bits invoked by 5528
each FQIDV in sequence. 5529

Parse the Data section of the Packed Object: 5530

a) If one or more of the FQIDVs indicate all-numeric data, then the Packed Object’s 5531
Data section contains a Known-Length Numeric subsection, wherein the digit strings 5532
of these all-numeric items have been encoded as a series of binary quantities. Using 5533
the known length of each of these all-numeric data items, parse the correct numbers 5534
of bits for each data item, and convert each set of bits to a string of decimal digits. 5535

b) If (after parsing the preceding sections) one or more of the FQIDVs indicate 5536
alphanumeric data, then the Packed Object’s Data section contains an AlphaNumeric 5537
subsection, wherein the character strings of these alphanumeric items have been 5538
concatenated and encoded into the structure defined in Annex I. Decode this data 5539
using the “Decoding Alphanumeric data” procedure outlined below. 5540

For each FQIDV in the decoded sequence: 5541

a) convert the FQIDV to an OID, by appending the OID string defined in the registered 5542
format’s ID Table to the root OID string defined in that ID Table (or to the default 5543
Root OID, if none is defined in the table) 5544

b) Complete the OID/Value pair by parsing out the next sequence of decoded characters. 5545
The length of this sequence is determined directly from the ID Table (if the FQIDV is 5546
specified as fixed length) or from a corresponding entry encoded within the Aux 5547
Format section. 5548

M.2 Decoding Alphanumeric data 5549
Within the Alphanumeric subsection of a Packed Object, the total number of data characters is 5550
not encoded, nor is the bit length of the character map, nor are the bit lengths of the succeeding 5551
Binary sections (representing the numeric and non-numeric Binary values). As a result, the 5552
decoder must follow a specific procedure in order to correctly parse the AlphaNumeric section. 5553

When decoding the A/N subsection using this procedure, the decoder will first count the number 5554
of non-bitmapped values in each base (as indicated by the various Prefix and Suffix Runs), and 5555
(from that count) will determine the number of bits required to encoded these numbers of values 5556
in these bases. The procedure can then calculate, from the remaining number of bits, the number 5557

 EPC Tag Data Standard

Jan-2014, Version 1.8 Copyright ©2005- 2014 GS1 AISBL, All Rights Reserved. Page 220 of 225

of explicitly-encoded character map bits. After separately decoding the various binary fields 5558
(one field for each base that was used), the decoder “re-interleaves” the decoded ASCII 5559
characters in the correct order. 5560

The A/N subsection decoding procedure is as follows: 5561

• Determine the total number of non-pad bits in the Packed Object, as described in section I.8.2 5562

• Keep a count of the total number of bits parsed thus far, as each of the subsections prior to 5563
the Alphanumeric subsection is processed 5564

• Parse the initial Header bits of the Alphanumeric subsection, up to but not including the 5565
Character Map, and add this number to previous value of TotalBitsParsed. 5566

• Initialize a DigitsCount to the total number of base-10 values indicated by the Prefix and 5567
Suffix (which may be zero) 5568

• Initialize an ExtDigitsCount to the total number of base-13 values indicated by the Prefix and 5569
Suffix (which may be zero) 5570

• Initialize a NonDigitsCount to the total number of base-30, base 74, or base-256 values 5571
indicated by the Prefix and Suffix (which may be zero) 5572

• Initialize an ExtNonDigitsCount to the total number of base-40 or base 84 values indicated 5573
by the Prefix and Suffix (which may be zero) 5574

• Calculate Extended-base Bit Counts: Using the tables in Annex K, calculate two numbers: 5575

• ExtDigitBits, the number of bits required to encode the number of base-13 values 5576
indicated by ExtDigitsCount, and 5577

• ExtNonDigitBits, the number of bits required to encode the number of base-40 (or base-5578
84) values indicated by ExtNonDigitsCount 5579

• Add ExtDigitBits and ExtNonDigitBits to TotalBitsParsed 5580

• Create a PrefixCharacterMap bit string, a sequence of zero or more quad-base character-map 5581
pairs, as indicated by the Prefix bits just parsed. Use quad-base bit pairs defined as follows: 5582

• ‘00’ indicates a base 10 value; 5583

• ‘01’ indicates a character encoded in Base 13; 5584

• ‘10’ indicates the non-numeric base that was selected earlier in the A/N header, and 5585

• ‘11’ indicates the Extended version of the non-numeric base that was selected earlier 5586

• Create a SuffixCharacterMap bit string, a sequence of zero or more quad-base character-map 5587
pairs, as indicated by the Suffix bits just parsed. 5588

• Initialize the FinalCharacterMap bit string and the MainCharacterMap bit string to an empty 5589
string 5590

• Calculate running Bit Counts: Using the tables in Annex B, calculate two numbers: 5591

• DigitBits, the number of bits required to encode the number of base-10 values currently 5592
indicated by DigitsCount, and 5593

 EPC Tag Data Standard

Jan-2014, Version 1.8 Copyright ©2005- 2014 GS1 AISBL, All Rights Reserved. Page 221 of 225

• NonDigitBits, the number of bits required to encode the number of base-30 (or base 74 or 5594
base-256) values currently indicated by NonDigitsCount 5595

• set AlnumBits equal to the sum of DigitBits plus NonDigitBits 5596

• if the sum of TotalBitsParsed and AlnumBits equals the total number of non-pad bits in the 5597
Packed Object, then no more bits remain to be parsed from the character map, and so the 5598
remaining bit patterns, representing Binary values, are ready to be converted back to 5599
extended base values and/or base 10/base 30/base 74/base-256 values (skip to the Final 5600
Decoding steps below). Otherwise, get the next encoded bit from the encoded Character 5601
map, convert the bit to a quad-base bit-pair by converting each ‘0’ to ‘00’ and each ‘1’ to 5602
‘10’, append the pair to the end of the MainCharacterMap bit string, and: 5603

• If the encoded map bit was ‘0’, increment DigitsCount, 5604

• Else if ‘1’, increment NonDigitsCount 5605

• Loop back to the Calculate running Bit Counts step above and continue 5606

• Final Decoding steps: once the encoded Character Map bits havSe been fully parsed: 5607

• Fetch the next set of zero or more bits, whose length is indicated by ExtDigitBits. 5608
Convert this number of bits from Binary values to a series of base 13 values, and store the 5609
resulting array of values as ExtDigitVals. 5610

• Fetch the next set of zero or more bits, whose length is indicated by ExtNonDigitBits. 5611
Convert this number of bits from Binary values to a series of base 40 or base 84 values 5612
(depending on the selection indicated in the A/N Header), and store the resulting array of 5613
values as ExtNonDigitVals. 5614

• Fetch the next set of bits, whose length is indicated by DigitBits. Convert this number of 5615
bits from Binary values to a series of base 10 values, and store the resulting array of 5616
values as DigitVals. 5617

• Fetch the final set of bits, whose length is indicated by NonDigitBits. Convert this 5618
number of bits from Binary values to a series of base 30 or base 74 or base 256 values 5619
(depending on the value of the first bits of the Alphanumeric subsection), and store the 5620
resulting array of values as NonDigitVals. 5621

• Create the FinalCharacterMap bit string by copying to it, in this order, the previously-5622
created PrefixCharacterMap bit string, then the MainCharacterMap string , and finally 5623
append the previously-created SuffixCharacterMap bit string to the end of the 5624
FinalCharacterMap string. 5625

• Create an interleaved character string, representing the concatenated data strings from all 5626
of the non-numeric data strings of the Packed Object, by parsing through the 5627
FinalCharacterMap, and: 5628

• For each ‘00’ bit-pair encountered in the FinalCharacterMap, copy the next value 5629
from DigitVals to InterleavedString (add 48 to each value to convert to ASCII); 5630

• For each ‘01’ bit-pair encountered in the FinalCharacterMap, fetch the next value 5631
from ExtDigitVals, and use Table K-2 to convert that value to ASCII (or, if the value 5632
is a Base 13 shift, then increment past the next ‘01’ pair in the FinalCharacterMap, 5633

 EPC Tag Data Standard

Jan-2014, Version 1.8 Copyright ©2005- 2014 GS1 AISBL, All Rights Reserved. Page 222 of 225

and use that Base 13 shift value plus the next Base 13 value from ExtDigitVals to 5634
convert the pair of values to ASCII). Store the result to InterleavedString; 5635

• For each ‘10’ bit-pair encountered in the FinalCharacterMap, get the next character 5636
from NonDigitVals, convert its base value to an ASCII value using Annex K, and 5637
store the resulting ASCII value into InterleavedString. Fetch and process an 5638
additional Base 30 value for every Base 30 Shift values encountered, to create and 5639
store a single ASCII character. 5640

• For each ‘11’ bit-pair encountered in the FinalCharacterMap, get the next character 5641
from ExtNonDigitVals, convert its base value to an ASCII value using Annex K, and 5642
store the resulting ASCII value into InterleavedString, processing any Shifts as 5643
previously described. 5644

Once the full FinalCharacterMap has been parsed, the InterleavedString is completely populated. 5645
Starting from the first AlphaNumeric entry on the ID list, copy characters from the 5646
InterleavedString to each such entry, ending each copy operation after the number of characters 5647
indicated by the corresponding Aux Format length bits, or at the end of the InterleavedString, 5648
whichever comes first. 5649

 5650

Appendix N Acknowledgement of Contributors and 5651
Companies Opted-in during the Creation of this Standard 5652
(Informative) 5653

 5654

Disclaimer 5655

Whilst every effort has been made to ensure that this document and the information 5656
contained herein are correct, GS1 EPCglobal and any other party involved in the 5657
creation of the document hereby state that the document is provided on an “as is” basis 5658
without warranty, either expressed or implied, including but not limited to any warranty 5659
that the use of the information herein with not infringe any rights, of accuracy or fitness 5660
for purpose, and hereby disclaim any liability, direct or indirect, for damages or loss 5661
relating to the use of the document. 5662

 5663

Below is a list of active participants and contributors in the development of TDS 1.7. and 5664
1.8. Specifically, it is only those who helped in updating version 1.6 to versions 1.7 / 1.8. 5665
This list does not acknowledge those who only monitored the process or those who 5666
chose not to have their name listed here. Active participants status was granted to those 5667
who generated emails, submitted comments during reviews, attended face-to-face 5668
meetings, participated in WG ballots, and attended conference calls that were 5669
associated with the development of this standard. 5670

Member Company Member Type or WG Role

Dr. Mark Harrison Auto-ID Labs Editor of TDT 1.6, co-

 EPC Tag Data Standard

Jan-2014, Version 1.8 Copyright ©2005- 2014 GS1 AISBL, All Rights Reserved. Page 223 of 225

editor of TDS 1.7

Mr. Wolfgang Jekeli BMW Group Member

Mr. Stephan Bourguignon Daimler Member

Mrs. Birgit Burmeister Daimler Member

Mr. Stephan Eppinger Daimler Member

Tracey Holevas GE Healthcare Member

Ms. Sue Schmid GS1 Australia Member

Mr. Eugen Sehorz GS1 Austria Member

Kevin Dean GS1 Canada Member

Mr. Daniel Dünnebacke GS1 Germany Member

Dr. Andreas Fuessler GS1 Germany Member

Mrs. Ilka Machemer GS1 Germany Member

Mr. Ralph Troeger GS1 Germany Member

Henri Barthel GS1 Global Office GS1 GOStaff

Chuck Biss GS1 Global Office GS1 GOStaff

Mark Frey GS1 Global Office GSMP Group
Facilitator/Project
Manager

Scott Gray GS1 Global Office GS1 GO Staff

Ms. Janice Kite GS1 Global Office GS1 GO Staff

Mr. Sean Lockhead GS1 Global Office GS1 GO Staff

Mr. Craig Alan Repec GS1 Global Office Editor TDS 1.8

John Ryu GS1 Global Office GS1 GO Staff

Ms. Naoko Mori GS1 Japan Member

Mr. Daniel Eumaña GS1 Mexico Member

Ms. Alice Mukaru GS1 Sweden Member

Ray Delnicki GS1 US Member

Mr. James Chronowski GS1 US Co-chair

Ken Traub Ken Traub Consulting LLC
Editor of TDS 1.6 and
co-editor of TDS 1.7

Steven Robba SA2 Worldsync Member

Peter Tomicki Zimmer Member

 5671

 5672

 EPC Tag Data Standard

Jan-2014, Version 1.8 Copyright ©2005- 2014 GS1 AISBL, All Rights Reserved. Page 224 of 225

The following list in alphabetical order contains all companies that were opted-in to the 5673
Tag Data and Translation Standard Working Group or the Component / Part 5674
Identification Working Group and have signed the EPCglobal / GS1 IP Policy as of June 5675
24, 2011. 5676

Company Name
Auto-ID Labs
BLG Contract Logistics
BMW Group
Daimler AG
DHL
Edwards Lifesciences
FIR at RWTH Aachen
Garud Technology Services Inc
GE Healthcare
GS1 Australia
GS1 Austria
GS1 Belgium & Luxembourg
GS1 Brasil
GS1 Canada
GS1 China
GS1 Denmark
GS1 France
GS1 Germany
GS1 Global Office
GS1 Hong Kong
GS1 Hungary
GS1 Ireland
GS1 Japan
GS1 Korea
GS1 Malaysia
GS1 Mexico
GS1 Netherlands
GS1 New Zealand
GS1 Norway
GS1 Poland
GS1 Sweden
GS1 Switzerland
GS1 UK
GS1 US
Hans Turck
Harting
Impinj, Inc
INRIA

 EPC Tag Data Standard

Jan-2014, Version 1.8 Copyright ©2005- 2014 GS1 AISBL, All Rights Reserved. Page 225 of 225

Ken Traub Consulting LLC
Lenze
Lockheed Martin
Manufacture francaise des Pneumatiques Michelin
Motorola
NXP Semiconductors
Palleten-Service Hamburg
QED Systems
SA2 Worldsync
SAP
Schenker
The Boeing Company
The Goodyear Tire & Rubber Co.
ThyssenKrupp IT Services
Zimmer

 5677
 5678

	© 2014 GS1 AISBL
	All rights reserved.
	GS1 Global Office
	B-1050 Brussels, Belgium
	Disclaimer
	 The specification of the Electronic Product Code, including its representation at various levels of the EPCglobal Architecture and its correspondence to GS1 keys and other existing codes.
	 The specification of data that is carried on Gen 2 RFID tags, including the EPC, “user memory” data, control information, and tag manufacture information.
	 EPC Middleware vendors
	 RFID Tag users and encoders
	 Reader vendors
	 Application developers
	 System integrators
	 A new EPC Scheme, the Component and Part Identifier (CPI) scheme, has been added (Sections 6.3.11, 10.12, and 14.5.11).
	 Various typographical errors have been corrected.
	 The GIAI EPC Scheme has been allocated an additional Filter Value, “Rail Vehicle” (Section 10.6).
	Table of Contents
	List of Figures
	List of Tables
	1. Introduction
	 The specification of the Electronic Product Code, including its representation at various levels of the EPCglobal Architecture and its correspondence to GS1 keys and other existing codes.
	 The specification of data that is carried on Gen 2 RFID tags, including the EPC, “user memory” data, control information, and tag manufacture information.
	2. Terminology and Typographical Conventions
	 ALL CAPS type is used for the special terms from [ISODir2] enumerated above.
	 Monospace type is used for illustrations of identifiers and other character strings that exist within information systems.
	3. Overview of Tag Data Standards
	 The specification of the Electronic Product Code, including its representation at various levels of the EPCglobal Architecture and its correspondence to GS1 keys and other existing codes.
	 The specification of data that is carried on Gen 2 RFID tags, including the EPC, “user memory” data, control information, and tag manufacture information.
	Figure 1. Organization of the EPC Tag Data Standard
	4. The Electronic Product Code: A Universal Identifier for Physical Objects
	4.1. The Need for a Universal Identifier: an Example
	4.2. Use of Identifiers in a Business Data Context
	4.3. Relationship Between EPCs and GS1 Keys
	4.4. Use of the EPC in EPCglobal Architecture Framework

	Figure 2. Example Visibility Data Stream
	Figure 3. Illustration of GRAI Identifier Namespace
	Figure 4. Illustration of EPC Identifier Namespace
	Figure 5. Illustration of Relationship of GS1 Key and EPC Identifier Namespaces
	 A Global Trade Item Number (GTIN) by itself does not correspond to an EPC, because a GTIN identifies a class of trade items, not an individual trade item. The combination of a GTIN and a unique serial number, however, does correspond to an EPC. This combination is called a Serialized Global Trade Item Number, or SGTIN. The GS1 General Specifications do not define the SGTIN as a GS1 key.
	 In the GS1 General Specifications, the Global Returnable Asset Identifier (GRAI) can be used to identify either a class of returnable assets, or an individual returnable asset, depending on whether the optional serial number is included. Only the form that includes a serial number, and thus identifies an individual, has a corresponding EPC. The same is true for the Global Document Type Identifier (GDTI).
	 There is an EPC corresponding to each Global Location Number (GLN), and there is also an EPC corresponding to each combination of a GLN with an extension component. Collectively, these EPCs are referred to as SGLNs.
	 EPCs include identifiers for which there is no corresponding GS1 key. These include the General Identifier and the US Department of Defense identifier.
	Table 1. EPC Schemes and Corresponding GS1 Keys
	 Pure Identity EPC URI The primary representation of an Electronic Product Code is as an Internet Uniform Resource Identifier (URI) called the Pure Identity EPC URI. The Pure Identity EPC URI is the preferred way to denote a specific physical object within business applications. The pure identity URI may also be used at the data capture level when the EPC is to be read from an RFID tag or other data carrier, in a situation where the additional “control” information present on an RFID tag is not needed.
	 EPC Tag URI The EPC memory bank of a Gen 2 RFID Tag contains the EPC plus additional “control information” that is used to guide the process of data capture from RFID tags. The EPC Tag URI is a URI string that denotes a specific EPC together with specific settings for the control information found in the EPC memory bank. In other words, the EPC Tag URI is a text equivalent of the entire EPC memory bank contents. The EPC Tag URI is typically used at the data capture level when reading from an RFID tag in a situation where the control information is of interest to the capturing application. It is also used when writing the EPC memory bank of an RFID tag, in order to fully specify the contents to be written.
	 Binary Encoding The EPC memory bank of a Gen 2 RFID Tag actually contains a compressed encoding of the EPC and additional “control information” in a compact binary form. There is a 1-to-1 translation between EPC Tag URIs and the binary contents of a Gen 2 RFID Tag. Normally, the binary encoding is only encountered at a very low level of software or hardware, and is translated to the EPC Tag URI or Pure Identity EPC URI form before being presented to application logic.
	Figure 6. EPCglobal Architecture Framework and EPC Structures Used at Each Level
	5. Common Grammar Elements
	6. EPC URI
	6.1. Use of the EPC URI
	6.2. Assignment of EPCs to Physical Objects
	6.3. EPC URI Syntax
	6.3.1. Serialized Global Trade Item Number (SGTIN)
	6.3.2. Serial Shipping Container Code (SSCC)
	6.3.3. Global Location Number With or Without Extension (SGLN)
	6.3.4. Global Returnable Asset Identifier (GRAI)
	6.3.5. Global Individual Asset Identifier (GIAI)
	6.3.6. Global Service Relation Number (GSRN)
	6.3.7. Global Document Type Identifier (GDTI)
	6.3.8. General Identifier (GID)
	6.3.9. US Department of Defense Identifier (DOD)
	6.3.10. Aerospace and Defense Identifier (ADI)
	6.3.11. Component / Part Identifier (CPI)

	Table 2. EPC Schemes and Where the Pure Identity Form is Defined
	 The GS1 Company Prefix, assigned by GS1 to a managing entity or its delegates. This is the same as the GS1 Company Prefix digits within a GS1 GTIN key. See Section 7.1.2 for the case of a GTIN-8.
	 The Item Reference, assigned by the managing entity to a particular object class. The Item Reference as it appears in the EPC URI is derived from the GTIN by concatenating the Indicator Digit of the GTIN (or a zero pad character, if the EPC URI is derived from a GTIN-8, GTIN-12, or GTIN-13) and the Item Reference digits, and treating the result as a single numeric string. See Section 7.1.2 for the case of a GTIN-8.
	 The Serial Number, assigned by the managing entity to an individual object. The serial number is not part of the GTIN, but is formally a part of the SGTIN.
	 The GS1 Company Prefix, assigned by GS1 to a managing entity. This is the same as the GS1 Company Prefix digits within a GS1 SSCC key.
	 The Serial Reference, assigned by the managing entity to a particular logistics handling unit. The Serial Reference as it appears in the EPC URI is derived from the SSCC by concatenating the Extension Digit of the SSCC and the Serial Reference digits, and treating the result as a single numeric string.
	 The GS1 Company Prefix, assigned by GS1 to a managing entity. This is the same as the GS1 Company Prefix digits within a GS1 GLN key.
	 The Location Reference, assigned uniquely by the managing entity to a specific physical location.
	 The GLN Extension, assigned by the managing entity to an individual unique location. If the entire GLN Extension is just a single zero digit, it indicates that the SGLN stands for a GLN, without an extension.
	Explanation (non-normative): Note that the letter “S” in the term “SGLN” does not stand for “serialized” as it does in SGTIN. This is because a GLN without an extension also identifies a unique location, as opposed to a class of locations, and so both GLN and GLN with extension may be considered as “serialized” identifiers. The term SGLN merely distinguishes the EPC form, which can be used either for a GLN by itself or GLN with extension, from the term GLN which always refers to the unextended GLN identifier. The letter “S” does not stand for anything.
	 The GS1 Company Prefix, assigned by GS1 to a managing entity. This is the same as the GS1 Company Prefix digits within a GS1 GRAI key.
	 The Asset Type, assigned by the managing entity to a particular class of asset.
	 The Serial Number, assigned by the managing entity to an individual object. Because an EPC always refers to a specific physical object rather than an asset class, the serial number is mandatory in the GRAI-EPC.
	 The GS1 Company Prefix, assigned by GS1 to a managing entity. The Company Prefix is the same as the GS1 Company Prefix digits within a GS1 GIAI key.
	 The Individual Asset Reference, assigned uniquely by the managing entity to a specific asset.
	 The GS1 Company Prefix, assigned by GS1 to a managing entity. This is the same as the GS1 Company Prefix digits within a GS1 GSRN key.
	 The Service Reference, assigned by the managing entity to a particular service relation.
	 The GS1 Company Prefix, assigned by GS1 to a managing entity. This is the same as the GS1 Company Prefix digits within a GS1 GDTI key.
	 The Document Type, assigned by the managing entity to a particular class of document.
	 The Serial Number, assigned by the managing entity to an individual document. Because an EPC always refers to a specific document rather than a document class, the serial number is mandatory in the GDTI-EPC.
	 The General Manager Number identifies an organizational entity (essentially a company, manager or other organization) that is responsible for maintaining the numbers in subsequent fields – Object Class and Serial Number. EPCglobal assigns the General Manager Number to an entity, and ensures that each General Manager Number is unique. Note that a General Manager Number is not a GS1 Company Prefix. A General Manager Number may only be used in GID EPCs.
	 The Object Class is used by an EPC managing entity to identify a class or “type” of thing. These object class numbers, of course, must be unique within each General Manager Number domain.
	 Finally, the Serial Number code, or serial number, is unique within each object class. In other words, the managing entity is responsible for assigning unique, non-repeating serial numbers for every instance within each object class.
	 A serial number (SER) that is assigned uniquely within the CAGE code or DODAAC; or
	 An original part number (PNO) that is unique within the CAGE code or DODAAC and a sequential serial number (SEQ) that is uniquely assigned within that original part number.
	 a serial number that is unique within the enterprise identifier. (UII Construct #1)
	 an original part number and a serial number that is unique within the original part number (a subset of UII Construct #2)
	 The GS1 Company Prefix, assigned by GS1 to a managing entity or its delegates.
	 The Component/Part Reference, assigned by the managing entity to a particular object class.
	 The Serial Number, assigned by the managing entity to an individual object.
	The managing entity or its delegates ensure that each CPI is issued to no more than one physical component or part. Typically this is achieved by assigning a component/part reference to designate a collection of instances of a part that share the same form, fit or function and then issuing serial number values uniquely within each value of component/part reference in order to distinguish between such instances.
	7. Correspondence Between EPCs and GS1 Keys
	7.1. Serialized Global Trade Item Number (SGTIN)
	7.1.1. GTIN-12 and GTIN-13
	7.1.2. GTIN-8 and RCN-8
	7.1.3. Company Internal Numbering (GS1 Prefixes 04 and 0001 – 0007)
	7.1.4. Restricted Circulation (GS1 Prefixes 02 and 20 – 29)
	7.1.5. Coupon Code Identification for Restricted Distribution (GS1 Prefixes 05, 99, 981, and 982)
	7.1.6. Refund Receipt (GS1 Prefix 980)
	7.1.7. ISBN, ISMN, and ISSN (GS1 Prefixes 977, 978, or 979)
	7.1.7.1. ISBN and ISMN
	7.1.7.2. ISSN

	7.2. Serial Shipping Container Code (SSCC)
	7.3. Global Location Number With or Without Extension (SGLN)
	7.4. Global Returnable Asset Identifier (GRAI)
	7.5. Global Individual Asset Identifier (GIAI)
	7.6. Global Service Relation Number (GSRN)
	7.7. Global Document Type Identifier (GDTI)
	7.8. Component and Part Identifier (CPI)

	Figure 7. Correspondence between SGTIN EPC URI and GS1 Element String
	1. Number the digits of the first two components of the EPC as shown above. Note that there will always be a total of 13 digits.
	2. Number the characters of the serial number (third) component of the EPC as shown above. Each si corresponds to either a single character or to a percent-escape triplet consisting of a % character followed by two hexadecimal digit characters.
	3. Calculate the check digit d14 = (10 – ((3(d1 + d3 + d5 + d7 + d9 + d11 + d13) + (d2 + d4 + d6 + d8 + d10 + d12)) mod 10)) mod 10.
	4. Arrange the resulting digits and characters as shown for the GS1 Element String. If any si in the EPC URI is a percent-escape triplet %xx, in the GS1 Element String replace the triplet with the corresponding character according to Table 51 (Appendix A). (For a given percent-escape triplet %xx, find the row of Table 51 that contains xx in the “Hex Value” column; the “Graphic Symbol” column then gives the corresponding character to use in the GS1 Element String.)
	1. Number the digits and characters of the GS1 element string as shown above.
	2. Except for a GTIN-8, determine the number of digits L in the GS1 Company Prefix. This may be done, for example, by reference to an external table of company prefixes. See Section 7.1.2 for the case of a GTIN-8.
	3. Arrange the digits as shown for the EPC URI. Note that the GTIN check digit d14 is not included in the EPC URI. For each serial number character si, replace it with the corresponding value in the “URI Form” column of Table 51 (Appendix A) – either the character itself or a percent-escape triplet if si is not a legal URI character.
	Figure 8. Correspondence between SSCC EPC URI and GS1 Element String
	1. Number the digits of the two components of the EPC as shown above. Note that there will always be a total of 17 digits.
	2. Calculate the check digit d18 = (10 – ((3(d1 + d3 + d5 + d7 + d9 + d11 + d13 + d15 + d17) + (d2 + d4 + d6 + d8 + d10 + d12 + d14 + d16)) mod 10)) mod 10.
	3. Arrange the resulting digits and characters as shown for the GS1 Element String.
	1. Number the digits and characters of the GS1 element string as shown above.
	2. Determine the number of digits L in the GS1 Company Prefix. This may be done, for example, by reference to an external table of company prefixes.
	3. Arrange the digits as shown for the EPC URI. Note that the SSCC check digit d18 is not included in the EPC URI.
	Figure 9. Correspondence between SGLN EPC URI without extension and GS1 Element String
	Figure 10. Correspondence between SGLN EPC URI with extension and GS1 Element String
	1. Number the digits of the first two components of the EPC as shown above. Note that there will always be a total of 12 digits.
	2. Number the characters of the serial number (third) component of the EPC as shown above. Each si corresponds to either a single character or to a percent-escape triplet consisting of a % character followed by two hexadecimal digit characters.
	3. Calculate the check digit d13 = (10 – ((3(d2 + d4 + d6 + d8 + d10 + d12) + (d1+ d3 + d5 + d7 + d9 + d11)) mod 10)) mod 10.
	4. Arrange the resulting digits and characters as shown for the GS1 Element String. If any si in the EPC URI is a percent-escape triplet %xx, in the GS1 Element String replace the triplet with the corresponding character according to Table 51 (Appendix A). (For a given percent-escape triplet %xx, find the row of Table 51 that contains xx in the “Hex Value” column; the “Graphic Symbol” column then gives the corresponding character to use in the GS1 Element String.). If the serial number consists of a single character s1 and that character is the digit zero (‘0’), omit the extension from the GS1 Element String.
	1. Number the digits and characters of the GS1 element string as shown above.
	2. Determine the number of digits L in the GS1 Company Prefix. This may be done, for example, by reference to an external table of company prefixes.
	3. Arrange the digits as shown for the EPC URI. Note that the GLN check digit d13 is not included in the EPC URI. For each serial number character si, replace it with the corresponding value in the “URI Form” column of Table 51 (Appendix A) – either the character itself or a percent-escape triplet if si is not a legal URI character. If the input GS1 element string did not include an extension (AI 254), use a single zero digit (‘0’) as the entire serial number s1s2…sK in the EPC URI.
	Figure 11. Correspondence between GRAI EPC URI and GS1 Element String
	1. Number the digits of the first two components of the EPC as shown above. Note that there will always be a total of 12 digits.
	2. Number the characters of the serial number (third) component of the EPC as shown above. Each si corresponds to either a single character or to a percent-escape triplet consisting of a % character followed by two hexadecimal digit characters.
	3. Calculate the check digit d13 = (10 – ((3(d2 + d4 + d6 + d8 + d10 + d12) + (d1+ d3 + d5 + d7 + d9 + d11)) mod 10)) mod 10.
	4. Arrange the resulting digits and characters as shown for the GS1 Element String. If any si in the EPC URI is a percent-escape triplet %xx, in the GS1 Element String replace the triplet with the corresponding character according to Table 51 (Appendix A). (For a given percent-escape triplet %xx, find the row of Table 51 that contains xx in the “Hex Value” column; the “Graphic Symbol” column then gives the corresponding character to use in the GS1 Element String.).
	1. If the number of characters following the (8003) application identifier is less than or equal to 14, stop: this element string does not have a corresponding EPC because it does not include the optional serial number.
	2. Number the digits and characters of the GS1 element string as shown above.
	3. Determine the number of digits L in the GS1 Company Prefix. This may be done, for example, by reference to an external table of company prefixes.
	4. Arrange the digits as shown for the EPC URI. Note that the GRAI check digit d13 is not included in the EPC URI. For each serial number character si, replace it with the corresponding value in the “URI Form” column of Table 51 (Appendix A) – either the character itself or a percent-escape triplet if si is not a legal URI character.
	Figure 12. Correspondence between GIAI EPC URI and GS1 Element String
	1. Number the characters of the two components of the EPC as shown above. Each si corresponds to either a single character or to a percent-escape triplet consisting of a % character followed by two hexadecimal digit characters.
	2. Arrange the resulting digits and characters as shown for the GS1 Element String. If any si in the EPC URI is a percent-escape triplet %xx, in the GS1 Element String replace the triplet with the corresponding character according to Table 51 (Appendix A). (For a given percent-escape triplet %xx, find the row of Table 51 that contains xx in the “Hex Value” column; the “Graphic Symbol” column then gives the corresponding character to use in the GS1 Element String.)
	1. Number the digits and characters of the GS1 element string as shown above.
	2. Determine the number of digits L in the GS1 Company Prefix. This may be done, for example, by reference to an external table of company prefixes.
	3. Arrange the digits as shown for the EPC URI. For each serial number character si, replace it with the corresponding value in the “URI Form” column of Table 51 (Appendix A) – either the character itself or a percent-escape triplet if si is not a legal URI character.
	Figure 13. Correspondence between GSRN EPC URI and GS1 Element String
	1. Number the digits of the two components of the EPC as shown above. Note that there will always be a total of 17 digits.
	2. Calculate the check digit d18 = (10 – ((3(d1 + d3 + d5 + d7 + d9 + d11 + d13 + d15 + d17) + (d2 + d4 + d6 + d8 + d10 + d12 + d14 + d16)) mod 10)) mod 10.
	3. Arrange the resulting digits and characters as shown for the GS1 Element String.
	1. Number the digits and characters of the GS1 element string as shown above.
	2. Determine the number of digits L in the GS1 Company Prefix. This may be done, for example, by reference to an external table of company prefixes.
	3. Arrange the digits as shown for the EPC URI. Note that the GSRN check digit d18 is not included in the EPC URI.
	Figure 14. Correspondence between GDTI EPC URI and GS1 Element String
	1. Number the digits of the first two components of the EPC as shown above. Note that there will always be a total of 12 digits.
	2. Number the characters of the serial number (third) component of the EPC as shown above. Each si is a digit character.
	3. Calculate the check digit d13 = (10 – ((3(d2 + d4 + d6 + d8 + d10 + d12) + (d1+ d3 + d5 + d7 + d9 + d11)) mod 10)) mod 10.
	4. Arrange the resulting digits as shown for the GS1 Element String.
	1. If the number of characters following the (253) application identifier is less than or equal to 13, stop: this element string does not have a corresponding EPC because it does not include the optional serial number.
	2. Number the digits and characters of the GS1 element string as shown above.
	3. Determine the number of digits L in the GS1 Company Prefix. This may be done, for example, by reference to an external table of company prefixes.
	4. Arrange the digits as shown for the EPC URI. Note that the GDTI check digit d13 is not included in the EPC URI.
	Figure 15. Correspondence between CPI EPC URI and GS1 Element String
	1. Number the digits of the three components of the EPC as shown above. Each di in the second component corresponds to either a single character or to a percent-escape triplet consisting of a % character followed by two hexadecimal digit characters.
	2. Arrange the resulting digits and characters as shown for the GS1 Element String. If any di in the EPC URI is a percent-escape triplet %xx, in the GS1 Element String replace the triplet with the corresponding character according to Table 52 (Appendix G). (For a given percent-escape triplet %xx, find the row of Table 52 that contains xx in the “Hex Value” column; the “Graphic Symbol” column then gives the corresponding character to use in the GS1 Element String.)
	1. Number the digits and characters of the GS1 element string as shown above.
	2. Determine the number of digits L in the GS1 Company Prefix. This may be done, for example, by reference to an external table of company prefixes.
	3. Arrange the characters as shown for the EPC URI. For each component/part character di, replace it with the corresponding value in the “URI Form” column of Table 52 (Appendix G) – either the character itself or a percent-escape triplet if di is not a legal URI character.
	8. URIs for EPC Pure Identity Patterns
	8.1. Syntax
	8.2. Semantics

	 Pi is a NumericComponent, and Ci is equal to Pi; or
	 Pi is a PaddedNumericComponent, and Ci is equal to Pi both in numeric value as well as in length; or
	 Pi is a GS3A3Component, ADIExtendedComponent, ADIComponent, or CPRefComponent and Ci is equal to Pi, character for character; or
	 Pi is a CAGECodeOrDODAAC, and Ci is equal to Pi; or
	 Pi is a StarComponent (and Ci is anything at all)
	9. Memory Organization of Gen 2 RFID Tags
	9.1. Types of Tag Data
	9.2. Gen 2 Tag Memory Map

	 Business Data Information that describes the physical object to which the tag is affixed. This information includes the Electronic Product Code (EPC) that uniquely identifies the physical object, and may also include other data elements carried on the tag. This information is what business applications act upon, and so this data is commonly transferred between the data capture level and the business application level in a typical implementation architecture. Most standardized business data on an RFID tag is equivalent to business data that may be found in other data carriers, such as bar codes.
	 Control Information Information that is used by data capture applications to help control the process of interacting with tags. Control Information includes data that helps a capturing application filter out tags from large populations to increase read efficiency, special handling information that affects the behavior of capturing application, information that controls tag security features, and so on. Control Information is typically not passed directly to business applications, though Control Information may influence how a capturing application presents business data to the business application level. Unlike Business Data, Control Information has no equivalent in bar codes or other data carriers.
	 Tag Manufacture Information Information that describes the Tag itself, as opposed to the physical object to which the tag is affixed. Tag Manufacture information includes a manufacturer ID and a code that indicates the tag model. It may also include information that describes tag capabilities, as well as a unique serial number assigned at manufacture time. Usually, Tag Manufacture Information is like Control Information in that it is used by capture applications but not directly passed to business applications. In some applications, the unique serial number that may be a part of Tag Manufacture Information is used in addition to the EPC, and so acts like Business Data. Like Control Information, Tag Manufacture Information has no equivalent in bar codes or other data carrriers.
	Table 3. Kinds of Data on a Gen 2 RFID Tag
	Figure 16. Gen 2 Tag Memory Map
	Table 4. Gen 2 Memory Map
	Figure 17. Gen 2 Protocol Control (PC) Bits Memory Map
	Table 5. Gen 2 Protocol Control (PC) Bits Memory Map
	10. Filter Value
	10.1. Use of “Reserved” and “All Others” Filter Values
	10.2. Filter Values for SGTIN EPC Tags
	10.3. Filter Values for SSCC EPC Tags
	10.4. Filter Values for SGLN EPC Tags
	10.5. Filter Values for GRAI EPC Tags
	10.6. Filter Values for GIAI EPC Tags
	10.7. Filter Values for GSRN EPC Tags
	10.8. Filter Values for GDTI EPC Tags
	10.9. Filter Values for GID EPC Tags
	10.10. Filter Values for DOD EPC Tags
	10.11. Filter Values for ADI EPC Tags
	10.12. Filter Values for CPI EPC Tags

	Table 6. SGTIN Filter Values
	Table 7. SSCC Filter Values
	Table 8. SGLN Filter Values
	Table 9. GRAI Filter Values
	Table 10. GIAI Filter Values
	Table 11. GSRN Filter Values
	Table 12. GDTI Filter Values
	11. Attribute Bits
	Table 13. Attribute Bit Assignments
	12. EPC Tag URI and EPC Raw URI
	12.1. Structure of the EPC Tag URI and EPC Raw URI
	12.2. Control Information
	12.2.1. Filter Values
	12.2.2. Other Control Information Fields

	12.3. EPC Tag URI and EPC Pure Identity URI
	12.3.1. EPC Binary Coding Schemes
	12.3.2. EPC Pure Identity URI to EPC Tag URI
	12.3.3. EPC Tag URI to EPC Pure Identity URI

	12.4. Grammar

	Figure 18. Illustration of EPC Tag URI and EPC Raw URI
	Figure 19. Illustration of Filter Value Within EPC Tag URI
	Table 14. Control Information Fields
	Examples (non-normative): The following examples illustrate the use of control information fields in the EPC Tag URI and EPC Raw URI.
	This is a tag with an SGTIN EPC, filter bits = 3, the hazardous material attribute bit set to zero, no user memory (user memory indicator = 0), and not recommissioned (extended PC = 0). This illustrates back-compatibility with earlier versions of the Tag Data Standard.
	This is a tag with an SGTIN EPC, filter bits = 3, the hazardous material attribute bit set to one, no user memory (user memory indicator = 0), and not recommissioned (extended PC = 0). This URI might be specified by an application wishing to commission a tag with the hazardous material bit set to one and the filter bits and EPC as shown.
	This is a tag with toggle=0, random data in bits 20h onward (not decodable as an EPC), the hazardous material attribute bit set to one, non-zero contents in user memory, and has been recommissioned (as indicated by the extended PC).
	This is a tag with toggle=1, Application Family Indicator = C1 (hexadecimal), and has had its user memory killed (as indicated by the extended PC).
	Table 15. EPC Binary Coding Schemes and Their Limitations
	Explanation (non-normative): For the SGTIN, SGLN, GRAI, and GIAI EPC schemes, the serial number according to the GS1 General Specifications is a variable length, alphanumeric string. This means that serial number 34, 034, 0034, etc, are all different serial numbers, as are P34, 34P, 0P34, P034, and so forth. In order to provide for up to 20 alphanumeric characters, 140 bits are required to encode the serial number. This is why the “long” binary encodings all have such a large number of bits. Similar considerations apply to the GDTI EPC scheme, except that the GDTI only allows digit characters (but still permits leading zeros).
	In order to accommodate the very common 96-bit RFID tag, additional binary coding schemes are introduced that only require 96 bits. In order to fit within 96 bits, some serial numbers have to be excluded. The 96-bit encodings of SGTIN, SGLN, GRAI, GIAI, and GDTI are limited to serial numbers that consist only of digits, which do not have leading zeros (unless the serial number consists in its entirety of a single 0 digit), and whose value when considered as a decimal numeral is less than 2B, where B is the number of bits available in the binary coding scheme. The choice to exclude serial numbers with leading zeros was an arbitrary design choice at the time the 96-bit encodings were first defined; for example, an alternative would have been to permit leading zeros, at the expense of excluding other serial numbers. But it is impossible to escape the fact that in B bits there can be no more than 2B different serial numbers.
	When decoding a “long” binary encoding, it is not permissible to strip off leading zeros when the binary encoding includes leading zero characters. Likewise, when encoding an EPC into either the “short” or “long” form, it is not permissible to strip off leading zeros prior to encoding. This means that EPCs whose serial numbers have leading zeros can only be encoded in the “long” form.
	In certain applications, it is desirable for the serial number to always contain a specific number of characters. Reasons for this may include wanting a predictable length for the EPC URI string, or for having a predictable size for a corresponding bar code encoding of the same identifier. In certain bar code applications, this is accomplished through the use of leading zeros. If 96-bit tags are used, however, the option to use leading zeros does not exist.
	Therefore, in applications that both require 96-bit tags and require that the serial number be a fixed number of characters, it is recommended that numeric serial numbers be used that are in the range 10D ≤ serial < 10D+1, where D is the desired number of digits. For example, if 11-digit serial numbers are desired, an application can use serial numbers in the range 10,000,000,000 through 99,999,999,999. Such applications must take care to use serial numbers that fit within the constraints of 96-bit tags. For example, if 12-digit serial numbers are desired for SGTIN-96 encodings, then the serial numbers must be in the range 100,000,000,000 through 274,877,906,943.
	It should be remembered, however, that many applications do not require a fixed number of characters in the serial number, and so all serial numbers from 0 through the maximum value (without leading zeros) may be used with 96-bit tags.
	 An EPC Pure Identity URI as specified in Section 6.3. This is a string that matches the EPC-URI production of the grammar in Section 6.3.
	 A selection of a binary coding scheme to use. This is one of the the binary coding schemes specified in the “EPC Binary Coding Scheme” column of Table 15. The chosen binary coding scheme must be one that corresponds to the EPC scheme in the EPC Pure Identity URI.
	 A filter value, if the “Includes Filter Value” column of Table 15 indicates that the binary encoding includes a filter value.
	 The value of the attribute bits.
	 The value of the user memory indicator.
	 The serial number portion of the EPC (the characters following the rightmost dot character) must conform to any restrictions implied by the selected binary coding scheme, as specified by the “Serial Number Limitation” column of Table 15.
	 The filter value must be in the range 0 ≤ filter ≤ 7.
	1. Starting with the EPC Pure Identity URI, replace the prefix urn:epc:id: with urn:epc:tag:.
	2. Replace the EPC scheme name with the selected EPC binary coding scheme name. For example, replace sgtin with sgtin-96 or sgtin-198.
	3. If the selected binary coding scheme includes a filter value, insert the filter value as a single decimal digit following the rightmost colon (“:”) character of the URI, followed by a dot (“.”) character.
	4. If the attribute bits are non-zero, construct a string [att=xNN], where NN is the value of the attribute bits as a 2-digit hexadecimal numeral.
	5. If the user memory indicator is non-zero, construct a string [umi=1].
	6. If Step 4 or Step 5 yielded a non-empty string, insert those strings following the rightmost colon (“:”) character of the URI, followed by an additional colon character.
	7. The resulting string is the EPC Tag URI.
	 An EPC Tag URI as specified in Section 12. This is a string that matches the TagURI production of the grammar in Section 12.4.
	1. Starting with the EPC Tag URI, replace the prefix urn:epc:tag: with urn:epc:id:.
	2. Replace the EPC binary coding scheme name with the corresponding EPC scheme name. For example, replace sgtin-96 or sgtin-198 with sgtin.
	3. If the coding scheme includes a filter value, remove the filter value (the digit following the rightmost colon character) and the following dot (“.”) character.
	4. If the URI contains one or more control fields as specified in Section 12.2.2, remove them and the following colon character.
	5. The resulting string is the Pure Identity EPC URI.
	13. URIs for EPC Patterns
	13.1. Syntax
	13.2. Semantics

	Explanation (non-normative): Because the company prefix is variable length, a range may not be specified, as the range might span different lengths. When a particular company prefix is specified, however, it is possible to match ranges or all values of the following field, because its length is fixed for a given company prefix. The other case that is allowed is when both fields are a star, which works for all tag encodings because the corresponding tag fields (including the Partition field, where present) are simply ignored.
	 Pi is a NumericComponent, and Ci is equal to Pi; or
	 Pi is a PaddedNumericComponent, and Ci is equal to Pi both in numeric value as well as in length; or
	 Pi is a GS3A3Component, ADIExtendedComponent, ADIComponent, or CPRefComponent and Ci is equal to Pi, character for character; or
	 Pi is a CAGECodeOrDODAAC, and Ci is equal to Pi; or
	 Pi is a RangeComponent [lo-hi], and lo ≤ Ci ≤ hi; or
	 Pi is a StarComponent (and Ci is anything at all)
	14. EPC Binary Encoding
	14.1. Overview of Binary Encoding
	14.2. EPC Binary Headers
	14.3. Encoding Procedure
	14.3.1. “Integer” Encoding Method
	14.3.2. “String” Encoding Method
	14.3.3. “Partition Table” Encoding Method
	14.3.4. “Unpadded Partition Table” Encoding Method
	14.3.5. “String Partition Table” Encoding Method
	14.3.6. “Numeric String” Encoding Method
	14.3.7. “6-bit CAGE/DODAAC” Encoding Method
	14.3.8. “6-Bit Variable String” Encoding Method
	14.3.9. “6-Bit Variable String Partition Table” Encoding Method

	14.4. Decoding Procedure
	14.4.1. “Integer” Decoding Method
	14.4.2. “String” Decoding Method
	14.4.3. “Partition Table” Decoding Method
	14.4.4. “Unpadded Partition Table” Decoding Method
	14.4.5. “String Partition Table” Decoding Method
	14.4.6. “Numeric String” Decoding Method
	14.4.7. “6-Bit CAGE/DoDAAC” Decoding Method
	14.4.8. “6-Bit Variable String” Decoding Method
	14.4.9. “6-Bit Variable String Partition Table” Decoding Method

	14.5. EPC Binary Coding Tables
	14.5.1. Serialized Global Trade Item Number (SGTIN)
	14.5.1.1. SGTIN-96 Coding Table
	14.5.1.2. SGTIN-198 Coding Table

	14.5.2. Serial Shipping Container Code (SSCC)
	14.5.2.1. SSCC-96 Coding Table

	14.5.3. Global Location Number With or Without Extension (SGLN)
	14.5.3.1. SGLN-96 Coding Table
	14.5.3.2. SGLN-195 Coding Table

	14.5.4. Global Returnable Asset Identifier (GRAI)
	14.5.4.1. GRAI-96 Coding Table
	14.5.4.2. GRAI-170 Coding Table

	14.5.5. Global Individual Asset Identifier (GIAI)
	14.5.5.1. GIAI-96 Partition Table and Coding Table
	14.5.5.2. GIAI-202 Partition Table and Coding Table

	14.5.6. Global Service Relation Number (GSRN)
	14.5.6.1. GSRN-96 Coding Table

	14.5.7. Global Document Type Identifier (GDTI)
	14.5.7.1. GDTI-96 Coding Table
	14.5.7.2. GDTI-113 Coding Table

	14.5.8. General Identifier (GID)
	14.5.8.1. GID-96 Coding Table

	14.5.9. DoD Identifier
	14.5.10. ADI Identifier (ADI)
	14.5.10.1. ADI-var Coding Table

	14.5.11. CPI Identifier (CPI)
	14.5.11.1. CPI-96 Coding Table
	14.5.11.2. CPI-var Coding Table

	Back-compatibility note (non-normative) In a prior version of the Tag Data Standard, the header was of variable length, using a tiered approach in which a zero value in each tier indicated that the header was drawn from the next longer tier. For the encodings defined in the earlier specification, headers were either 2 bits or 8 bits. Given that a zero value is reserved to indicate a header in the next longer tier, the 2-bit header had 3 possible values (01, 10, and 11, not 00), and the 8-bit header had 63 possible values (recognizing that the first 2 bits must be 00 and 00000000 is reserved to allow headers that are longer than 8 bits). The 2-bit headers were only used in conjunction with certain 64-bit EPC Binary Encodings.
	In this version of the Tag Data Standard, the tiered header approach has been abandoned. Also, all 64-bit encodings (including all encodings that used 2-bit headers) have been deprecated, and should not be used in new applications. To facilitate an orderly transition, the portions of header space formerly occupied by 64-bit encodings are reserved in this version of the Tag Data Standard, with the intention that they be reclaimed after a “sunset date” has passed. After the “sunset date,” tags containing 64-bit EPCs with 2-bit headers and tags with 64-bit headers starting with 00001 will no longer be properly interpreted.
	0000 0000
	0000 0001
	0000 001x
	0000 01xx
	Table 16. EPC Binary Header Values
	 An EPC Tag URI of the form urn:epc:tag:scheme:remainder
	1. Use the scheme to identify the coding table for this URI scheme. If no such scheme exists, stop: this URI is not syntactically legal.
	2. Confirm that the URI syntactically matches the URI template associated with the coding table. If not, stop: this URI is not syntactically legal.
	3. Read the coding table left-to-right, and construct the encoding specified in each column to obtain a bit string. If the “Coding Segment Bit Count” row of the table specifies a fixed number of bits, the bit string so obtained will always be of this length. The method for encoding each column depends on the “Coding Method” row of the table. If the “Coding Method” row specifies a specific bit string, use that bit string for that column. Otherwise, consult the following sections that specify the encoding methods. If the encoding of any segment fails, stop: this URI cannot be encoded.
	4. Concatenate the bit strings from Step 3 to form a single bit string. If the overall binary length specified by the scheme is of fixed length, then the bit string so obtained will always be of that length. The position of each segment within the concatenated bit string is as specified in the “Bit Position” row of the coding table. Section 15.1.1 specifies the procedure that uses the result of this step for encoding the EPC memory bank of a Gen 2 tag.
	 It must match the grammar for NumericComponent as specified in Section 5.
	 The value of the string when considered as a decimal integer must be less than 2b, where b is the value specified in the “Coding Segmen Bit Count” row of the encoding table.
	 It must match the grammar for GS3A3Component as specified in Section 5.
	 For each portion of the string that matches the Escape production of the grammar specified in Section 5 (that is, a 3-character sequence consisting of a % character followed by two hexadecimal digits), the two hexadecimal characters following the % character must map to one of the 82 allowed characters specified in Table 51 (Appendix A).
	 The number of characters must be less than b/7, where b is the value specified in the “Coding Segment Bit Count” row of the coding table.
	 C must match the grammar for PaddedNumericComponent as specified in Section 5.
	 D must match the grammar for PaddedNumericComponentOrEmpty as specified in Section 5.
	 The number of digits in C must match one of the values specified in the “GS1 Company Prefix Digits (L)” column of the partition table. The corresponding row is called the “matching partition table row” in the remainder of the encoding procedure.
	 The number of digits in D must match the corresponding value specified in the “Other Field Digits” column of the matching partition table row. Note that if the “Other Field Digits” column specifies zero, then D must be the empty string, implying the overall input segment ends with a “dot” character.
	 The value P specified in the “partition value” column of the matching partition table row, as a 3-bit binary integer.
	 The value of C considered as a decimal integer, converted to an M-bit binary integer, where M is the number of bits specified in the “GS1 Company Prefix bits” column of the matching partition table row.
	 The value of D considered as a decimal integer, converted to an N-bit binary integer, where N is the number of bits specified in the “other field bits” column of the matching partition table row. If D is the empty string, the value of the N-bit integer is zero.
	 C must match the grammar for PaddedNumericComponent as specified in Section 5.
	 D must match the grammar for NumericComponent as specified in Section 5.
	 The number of digits in C must match one of the values specified in the “GS1 Company Prefix Digits (L)” column of the partition table. The corresponding row is called the “matching partition table row” in the remainder of the encoding procedure.
	 The value of D, considered as a decimal integer, must be less than 2N, where N is the number of bits specified in the “other field bits” column of the matching partition table row.
	 The value P specified in the “partition value” column of the matching partition table row, as a 3-bit binary integer.
	 The value of C considered as a decimal integer, converted to an M-bit binary integer, where M is the number of bits specified in the “GS1 Company Prefix bits” column of the matching partition table row.
	 The value of D considered as a decimal integer, converted to an N-bit binary integer, where N is the number of bits specified in the “other field bits” column of the matching partition table row. If D is the empty string, the value of the N-bit integer is zero.
	 C must match the grammar for PaddedNumericComponent as specified in Section 5.
	 D must match the grammar for GS3A3Component as specified in Section 5.
	 The number of digits in C must match one of the values specified in the “GS1 Company Prefix Digits (L)” column of the partition table. The corresponding row is called the “matching partition table row” in the remainder of the encoding procedure.
	 The number of characters in D must be less than or equal to the corresponding value specified in the “Other Field Maximum Characters” column of the matching partition table row. For the purposes of this rule, an escape triplet (%nn) is counted as one character.
	 For each portion of D that matches the Escape production of the grammar specified in Section 5 (that is, a 3-character sequence consisting of a % character followed by two hexadecimal digits), the two hexadecimal characters following the % character must map to one of the 82 allowed characters specified in Table 51 (Appendix A).
	 The value P specified in the “partition value” column of the matching partition table row, as a 3-bit binary integer.
	 The value of C considered as a decimal integer, converted to an M-bit binary integer, where M is the number of bits specified in the “GS1 Company Prefix bits” column of the matching partition table row.
	 The value of D converted to an N-bit binary string, where N is the number of bits specified in the “other field bits” column of the matching partition table row. This N-bit binary string is constructed as follows. Consider D to be a string of zero or more characters s1s2…sN, where each character si is either a single character or a 3-character sequence matching the Escape production of the grammar (that is, a 3-character sequence consisting of a % character followed by two hexadecimal digits). Translate each character to a 7-bit string. For a single character, the corresponding 7-bit string is specified in Table 51 (Appendix A). For an Escape sequence, the 7-bit string is the value of the two hexadecimal characters considered as a 7-bit integer. Concatenate those 7-bit strings in the order corresponding to the input, then pad with zero bits as necessary to total N bits.
	 It must match the grammar for PaddedNumericComponent as specified in Section 5.
	 The number of digits in the string, D, must be such that 2 × 10D < 2b, where b is the value specified in the “Coding Segment Bit Count” row of the encoding table. (For the GDTI-113 scheme, b = 58 and therefore the number of digits D must be less than or equal to 17. GDTI-113 is the only scheme that uses this encoding method.)
	 Prepend the character “1” to the left of the input character string.
	 Convert the resulting string to a b-bit integer, where b is the value specified in the “bit count” row of the encoding table, whose value is the value of the input character string considered as a decimal integer.
	 It must match the grammar for CAGECodeOrDODAAC as specified in Section 6.3.9.
	 The input must match the grammar for the corresponding portion of the URI as specified in the appropriate subsection of Section 6.3.
	 The number of characters in the input must be greater than or equal to the minimum number of characters and less than or equal to the maximum number of characters specified in the footnote to the coding table for this coding table column. For the purposes of this rule, an escape triplet (%nn) is counted as one character.
	 For each portion of the input that matches the Escape production of the grammar specified in Section 5 (that is, a 3-character sequence consisting of a % character followed by two hexadecimal digits), the two hexadecimal characters following the % character must map to one of the characters specified in Table 52 (Appendix G), and the character so mapped must satisfy any other constraints specified in the coding table for this coding segment.
	 For each portion of the input that is a single character (as opposed to a 3-character escape sequence), that character must satisfy any other constraints specified in the coding table for this coding segment.
	 The input must match the grammar for the corresponding portion of the URI as specified in the appropriate subsection of Section 6.3.
	 The number of digits in C must match one of the values specified in the “GS1 Company Prefix Digits (L)” column of the partition table. The corresponding row is called the “matching partition table row” in the remainder of the encoding procedure.
	 The number of characters in D must be less than or equal to the corresponding value specified in the “Other Field Maximum Characters” column of the matching partition table row. For the purposes of this rule, an escape triplet (%nn) is counted as one character.
	 For each portion of D that matches the Escape production of the grammar specified in Section 5 (that is, a 3-character sequence consisting of a % character followed by two hexadecimal digits), the two hexadecimal characters following the % character must map to one of the 39 allowed characters specified in Table 52 (Appendix G).
	 The value P specified in the “partition value” column of the matching partition table row, as a 3-bit binary integer.
	 The value of C considered as a decimal integer, converted to an M-bit binary integer, where M is the number of bits specified in the “GS1 Company Prefix bits” column of the matching partition table row.
	 The value of D converted to an N-bit binary string, where N is less than or equal to the number of bits specified in the “other field maximum bits” column of the matching partition table row. This binary string is constructed as follows. Consider D to be a string of one or more characters s1s2…sN, where each character si is either a single character or a 3-character sequence matching the Escape production of the grammar (that is, a 3-character sequence consisting of a % character followed by two hexadecimal digits). Translate each character to a 6-bit string. For a single character, the corresponding 6-bit string is specified in Table 52 (Appendix G). For an Escape sequence, the 6-bit string is the value of the two hexadecimal characters considered as a 6-bit integer. Concatenate those 6-bit strings in the order corresponding to the input, then add six zero bits.
	 A bit string consisting of N bits bN-1bN-2…b0
	 An EPC Tag URI beginning with urn:epc:tag:, which does not contain control information fields (other than the filter value if the EPC scheme includes a filter value); OR
	 An exception indicating that the bit string cannot be decoded into an EPC Tag URI.
	1. Extract the most significant eight bits, the EPC header: bN-1bN-2…bN-8. Referring to Table 16 in Section 14.2, use the header to identify the coding table for this binary encoding and the encoding bit length B. If no coding table exists for this header, stop: this binary encoding cannot be decoded.
	2. Confirm that the total number of bits N is greater than or equal to the total number of bits B specified for this header in Table 16. If not, stop: this binary encoding cannot be decoded.
	3. If necessary, truncate the least significant bits of the input to match the number of bits specified in Table 16. That is, if Table 16 specifies B bits, retain bits bN-1bN-2…bN-B. For the remainder of this procedure, consider the remaining bits to be numbered bB-1bB-2…b0. (The purpose of this step is to remove any trailing zero padding bits that may have been read due to word-oriented data transfer.)
	For a variable-length coding scheme, there is no B specified in Table 16 and so this step must be omitted. There may be trailing zero padding bits remaining after all segments are decoded in Step 4, below; if so, ignore them.
	4. Separate the bits of the binary encoding into segments according to the “bit position” row of the coding table. For each segment, decode the bits to obtain a character string that will be used as a portion of the final URI. The method for decoding each column depends on the “coding method” row of the table. If the “coding method” row specifies a specific bit string, the corresponding bits of the input must match those bits exactly; if not, stop: this binary encoding cannot be decoded. Otherwise, consult the following sections that specify the decoding methods. If the decoding of any segment fails, stop: this binary encoding cannot be decoded.
	For a variable-length coding segment, the coding method is applied beginning with the bit following the bits consumed by the previous coding column. That is, if the previous coding column (the column to the left of this one) consumed bits up to and including bit bi, then the most significant bit for decoding this segment is bit bi-1. The coding method will determine where the ending bit for this segment is.
	5. Concatenate the following strings to obtain the final URI: the string urn:epc:tag:, the scheme name as specified in the coding table, a colon (“:”) character, and the strings obtained in Step 4, inserting a dot (“.”) character between adjacent strings.
	 Each 7-bit segment must have a value corresponding to a character specified in Table 51 (Appendix A), or be all zeros.
	 All 7-bit segments following an all-zero segment must also be all zeros.
	 The first 7-bit segment must not be all zeros. (In other words, the string must contain at least one character.)
	 The three most significant bits of the input bit string, considered as a binary integer, must match one of the values specified in the “partition value” column of the partition table. The corresponding row is called the “matching partition table row” in the remainder of the decoding procedure.
	 Extract the M next most significant bits of the input bit string following the three partition bits, where M is the value specified in the “Compay Prefix Bits” column of the matching partition table row. Consider these M bits to be an unsigned binary integer, C. The value of C must be less than 10L, where L is the value specified in the “GS1 Company Prefix Digits (L)” column of the matching partition table row.
	 There are N bits remaining in the input bit string, where N is the value specified in the “Other Field Bits” column of the matching partition table row. Consider these N bits to be an unsigned binary integer, D. The value of D must be less than 10K, where K is the value specified in the “Other Field Digits (K)” column of the matching partition table row. Note that if K = 0, then the value of D must be zero.
	 The value C converted to a decimal numeral, padding on the left with zero (“0”) characters to make L digits in total.
	 A dot (“.”) character.
	 The value D converted to a decimal numeral, padding on the left with zero (“0”) characters to make K digits in total. If K = 0, append no characters to the dot above (in this case, the final URI string will have two adjacent dot characters when this segment is combined with the following segment).
	 The three most significant bits of the input bit string, considered as a binary integer, must match one of the values specified in the “partition value” column of the partition table. The corresponding row is called the “matching partition table row” in the remainder of the decoding procedure.
	 Extract the M next most significant bits of the input bit string following the three partition bits, where M is the value specified in the “Compay Prefix Bits” column of the matching partition table row. Consider these M bits to be an unsigned binary integer, C. The value of C must be less than 10L, where L is the value specified in the “GS1 Company Prefix Digits (L)” column of the matching partition table row.
	 There are N bits remaining in the input bit string, where N is the value specified in the “Other Field Bits” column of the matching partition table row. Consider these N bits to be an unsigned binary integer, D. The value of D must be less than 10K, where K is the value specified in the “Other Field Max Digits (K)” column of the matching partition table row.
	 The value C converted to a decimal numeral, padding on the left with zero (“0”) characters to make L digits in total.
	 A dot (“.”) character.
	 The value D converted to a decimal numeral, with no leading zeros (except that if D = 0 it is converted to a single zero digit).
	 The three most significant bits of the input bit string, considered as a binary integer, must match one of the values specified in the “partition value” column of the partition table. The corresponding row is called the “matching partition table row” in the remainder of the decoding procedure.
	 Extract the M next most significant bits of the input bit string following the three partition bits, where M is the value specified in the “Company Prefix Bits” column of the matching partition table row. Consider these M bits to be an unsigned binary integer, C. The value of C must be less than 10L, where L is the value specified in the “GS1 Company Prefix Digits (L)” column of the matching partition table row.
	 There are N bits remaining in the input bit string, where N is the value specified in the “Other Field Bits” column of the matching partition table row. These bits must consist of one or more non-zero 7-bit segments followed by zero or more all-zero bits.
	 The number of non-zero 7-bit segments that precede the all-zero bits (if any) must be less or equal to than K, where K is the value specified in the “Maximum Characters” column of the matching partition table row.
	 Each of the non-zero 7-bit segments must have a value corresponding to a character specified in Table 51 (Appendix A).
	 The value C converted to a decimal numeral, padding on the left with zero (“0”) characters to make L digits in total.
	 A dot (“.”) character.
	 A character string determined as follows. Translate each non-zero 7-bit segment as determined by the validity test into a single character or 3-character escape triplet by looking up the 7-bit segment in Table 51 (Appendix A) and using the value found in the “URI Form” column. Concatenate the characters and/or 3-character triplet in the order corresponding to the input bit string.
	 Convert the input bit string to a decimal numeral without leading zeros whose value is the value of the input considered as an unsigned binary integer.
	 If the numeral from the previous step does not begin with a “1” character, stop: the input is invalid.
	 If the numeral from the previous step consists only of one character, stop: the input is invalid (because this would correspond to an empty numeric string).
	 Delete the leading “1” character from the numeral.
	 The resulting string is the output.
	 When the bit string is considered as consisting of six 6-bit segments, each 6-bit segment must have a value corresponding to a character specified in Table 52 (Appendix G), except that the first 6-bit segment may also be the value 100000.
	 The first 6-bit segment must be the value 100000, or correspond to a digit character, or an uppercase alphabetic character excluding the letters I and O.
	 The remaining five 6-bit segments must correspond to a digit character or an uppercase alphabetic character excluding the letters I and O.
	 Beginning with the most significant bit of the input, divide the input into adjacent 6-bit segments, until a terminating segment consisting of all zero bits (000000) is found. If the input is exhausted before an all-zero segment is found, stop: the input is invalid.
	 The number of 6-bit segments preceding the terminating segment must be greater than or equal to the minimum number of characters and less than or equal to the maximum number of characters specified in the footnote to the coding table for this coding table column. If not, stop: the input is invalid.
	 For each 6-bit segment preceding the terminating segment, consult Table 52 (Appendix G) to find the character corresponding to the value of the 6-bit segment. If there is no character in the table corresponding to the 6-bit segment, stop: the input is invalid.
	 If the input violates any other constraint indicated in the coding table, stop: the input is invalid.
	 Translate each 6-bit segment preceding the terminating segment into a single character or 3-character escape triplet by looking up the 6-bit segment in Table 52 (Appendix G) and using the value found in the “URI Form” column. Concatenate the characters and/or 3-character triplets in the order corresponding to the input bit string. The resulting string is the output of the decoding procedure.
	 If any columns remain in the coding table, the decoding procedure for the next column resumes with the next least significant bit after the terminating 000000 segment.
	 The three most significant bits of the input bit string, considered as a binary integer, must match one of the values specified in the “partition value” column of the partition table. The corresponding row is called the “matching partition table row” in the remainder of the decoding procedure.
	 Extract the M next most significant bits of the input bit string following the three partition bits, where M is the value specified in the “Company Prefix Bits” column of the matching partition table row. Consider these M bits to be an unsigned binary integer, C. The value of C must be less than 10L, where L is the value specified in the “GS1 Company Prefix Digits (L)” column of the matching partition table row.
	 There are up to N bits remaining in the input bit string, where N is the value specified in the “Other Field Maximum Bits” column of the matching partition table row. These bits must begin with one or more non-zero 6-bit segments followed by six all-zero bits. Any additional bits after the six all-zero bits belong to the next coding segment in the coding table.
	 The number of non-zero 6-bit segments that precede the all-zero bits must be less or equal to than K, where K is the value specified in the “Maximum Characters” column of the matching partition table row.
	 Each of the non-zero 6-bit segments must have a value corresponding to a character specified in Table 52 (Appendix G).
	 The value C converted to a decimal numeral, padding on the left with zero (“0”) characters to make L digits in total.
	 A dot (“.”) character.
	 A character string determined as follows. Translate each non-zero 6-bit segment as determined by the validity test into a single character or 3-character escape triplet by looking up the 6-bit segment in Table 52 (Appendix G) and using the value found in the “URI Form” column. Concatenate the characters and/or 3-character triplet in the order corresponding to the input bit string.
	Table 17. SGTIN Partition Table
	Table 18. SGTIN-96 Coding Table
	Table 19. SGTIN-198 Coding Table
	Table 20. SSCC Partition Table
	Table 21. SSCC-96 Coding Table
	Table 22. SGLN Partition Table
	Table 23. SGLN-96 Coding Table
	Table 24. SGLN-195 Coding Table
	Table 25. GRAI Partition Table
	Table 26. GRAI-96 Coding Table
	Table 27. GRAI-170 Coding Table
	Table 28. GIAI-96 Partition Table
	Table 29. GIAI-96 Coding Table
	Table 30. GIAI-202 Partition Table
	Table 31. GIAI-202 Coding Table
	Table 32. GSRN Partition Table
	Table 33. GSRN-96 Coding Table
	Table 34. GDTI Partition Table
	Table 35. GDTI-96 Coding Table
	Table 36. GDTI-113 Coding Table
	Table 37. GID-96 Coding Table
	Table 38. ADI-var Coding Table
	1. The number of characters in the Part Number segment must be greater than or equal to zero and less than or equal to 32. In the binary encoding, a 6-bit zero terminator is always present.
	2. The number of characters in the Serial Number segment must be greater than or equal to one and less than or equal to 30. In the binary encoding, a 6-bit zero terminator is always present.
	3. The “#” character (represented in the URI by the escape sequence %23) may appear as the first character of the Serial Number segment, but otherwise may not appear in the Part Number segment or elsewhere in the Serial Number segment.
	Table 39. CPI-96 Partition Table
	Table 40. CPI-var Partition Table
	Table 41. CPI-96 Coding Table
	Table 42. CPI-var Coding Table
	15. EPC Memory Bank Contents
	15.1. Encoding Procedures
	15.1.1. EPC Tag URI into Gen 2 EPC Memory Bank
	15.1.2. EPC Raw URI into Gen 2 EPC Memory Bank

	15.2. Decoding Procedures
	15.2.1. Gen 2 EPC Memory Bank into EPC Raw URI
	15.2.2. Gen 2 EPC Memory Bank into EPC Tag URI
	15.2.3. Gen 2 EPC Memory Bank into Pure Identity EPC URI
	15.2.4. Decoding of Control Information

	 An EPC Tag URI beginning with urn:epc:tag:
	1. If the URI is not syntactically valid according to Section 12.4, stop: this URI cannot be encoded.
	2. Apply the encoding procedure of Section 14.3 to the URI. The result is a binary string of N bits. If the encoding procedure fails, stop: this URI cannot be encoded.
	3. Fill in the Gen 2 EPC Memory Bank according to the following table:
	Contents
	Field
	Bits
	CRC code calculated from the remainder of the memory bank. (Normally, this is calculated automatically by the reader, and so software that implements this procedure need not be concerned with it.)
	CRC
	00h – 0Fh
	The number of bits, N, in the EPC binary encoding determined in Step 2 above, divided by 16, and rounded up to the next higher integer if N was not a multiple of 16.
	Length
	10h – 14h
	If the EPC Tag URI includes a control field [umi=1], a one bit.
	User Memory Indicator
	15h
	If the EPC Tag URI includes a control field [umi=0] or does not contain a umi control field, a zero bit.
	Note that certain Gen 2 Tags may ignore the value written to this bit, and instead calculate the value of the bit from the contents of user memory. See [UHFC1G2].
	This bit is calculated by the tag and ignored by the tag when the tag is written, and so is disregarded by this encoding procedure.
	XPC Indicator
	16h
	0, indicating that the EPC bank contains an EPC
	Toggle
	17h
	Attribute Bits
	18h – 1Fh
	If the EPC Tag URI includes a control field [att=xNN], the value NN considered as an 8-bit hexadecimal number.
	If the EPC Tag URI does not contain such a control field, zero.
	The N bits obtained from the EPCbinary encoding procedure in Step 2 above, followed by enough zero bits to bring the total number of bits to a multiple of 16 (0 – 15 extra zero bits)
	EPC / UII
	20h – ?
	Table 43. Recipe to Fill In Gen 2 EPC Memory Bank from EPC Tag URI
	Explanation (non-normative): The XPC bits (bits 210h – 21Fh) are not included in this procedure, because the only XPC bits defined in [UHFC1G2] are bits which are written indirectly via recommissioning. Those bits are not intended to be written explicitly by an application.
	 An EPC Raw URI beginning with urn:epc:raw:. Such a URI has one of the following three forms:
	1. If the URI is not syntactically valid according to the grammar in Section 12.4, stop: this URI cannot be encoded.
	2. Extract the leftmost NonZeroComponent according to the grammar (the Length field in the templates above). This component immediately follows the rightmost colon (:) character. Consider this as a decimal integer, N. This is the number of bits in the raw payload.
	3. Determine the toggle bit and AFI (if any):
	3.1. If the body of the URI matches the DecimalRawURIBody or HexRawURIBody production of the grammar (the first and third templates above), the toggle bit is zero.
	3.2. If the body of the URI matches the AFIRawURIBody production of the grammar (the second template above), the toggle bit is one. The AFI is the value of the leftmost HexComponent within the AFIRawURIBody (the AFI field in the template above), considered as an 8-bit unsigned hexadecimal integer. If the value of the HexComponent is greater than or equal to 256, stop: this URI cannot be encoded.
	4. Determine the EPC/UII payload:
	4.1. If the body of the URI matches the HexRawURIBody production of the grammar (first template above) or AFIRawURIBody production of the grammar (second template above), the payload is the rightmost HexComponent within the body (the HexPayload field in the templates above), considered as an N-bit unsigned hexadecimal integer, where N is as determined in Step 2 above. If the value of this HexComponent greater than or equal to 2N, stop: this URI cannot be encoded.
	4.2. If the body of the URI matches the DecimalRawURIBody production of the grammar (third template above), the payload is the rightmost NumericComponent within the body (the DecimalPayload field in the template above), considered as an N-bit unsigned decimal integer, where N is as determined in Step 2 above. If the value of this NumericComponent greater than or equal to 2N, stop: this URI cannot be encoded.
	5. Fill in the Gen 2 EPC Memory Bank according to the following table:
	Contents
	Field
	Bits
	CRC code calculated from the remainder of the memory bank. (Normally, this is calculated automatically by the reader, and so software that implements this procedure need not be concerned with it.)
	CRC
	00h – 0Fh
	The number of bits, N, in the EPC binary encoding determined in Step 2 above, divided by 16, and rounded up to the next higher integer if N was not a multiple of 16.
	Length
	10h – 14h
	This bit is calculated by the tag and ignored by the tag when the tag is written, and so is disregarded by this encoding procedure.
	User Memory Indicator
	15h
	This bit is calculated by the tag and ignored by the tag when the tag is written, and so is disregarded by this encoding procedure.
	XPC Indicator
	16h
	The value determined in Step 3, above.
	Toggle
	17h
	If the toggle determined in Step 3 is one, the value of the AFI determined in Step 3.2. Otherwise,
	AFI / Attribute Bits
	18h – 1Fh
	If the URI includes a control field [att=xNN], the value NN considered as an 8-bit hexadecimal number.
	If the URI does not contain such a control field, zero.
	The N bits determined in Step 4 above, followed by enough zero bits to bring the total number of bits to a multiple of 16 (0 – 15 extra zero bits)
	EPC / UII
	20h – ?
	Table 44. Recipe to Fill In Gen 2 EPC Memory Bank from EPC Raw URI
	 The contents of the EPC Memory Bank of a Gen 2 tag
	1. Extract the length bits, bits 10h – 14h. Consider these bits to be an unsigned integer L.
	2. Calculate N = 16L.
	3. If bit 17h is set to one, extract bits 18h – 1Fh and consider them to be an unsigned integer A. Construct a string consisting of the letter “x”, followed by A as a 2-digit hexadecimal numeral (using digits and uppercase letters only), followed by a period (“.”).
	4. Apply the decoding procedure of Section 15.2.4 to decode control fields.
	5. Extract N bits beginning at bit 20h and consider them to be an unsigned integer V. Construct a string consisting of the letter “x” followed by V as a (N/4)-digit hexadecimal numeral (using digits and uppercase letters only).
	6. Construct a string consisting of “urn:epc:raw:”, followed by the result from Step 4 (if not empty), followed by N as a decimal numeral without leading zeros, followed by a period (“.”), followed by the result from Step 3 (if not empty), followed by the result from Step 5. This is the final EPC Raw URI.
	 The contents of the EPC Memory Bank of a Gen 2 tag
	1. Extract the length bits, bits 10h – 14h. Consider these bits to be an unsigned integer L.
	2. Calculate N = 16L.
	3. Extract N bits beginning at bit 20h. Apply the decoding procedure of Section 14.3.9, passing the N bits as the input to that procedure.
	4. If the decoding procedure of Section 14.3.9 fails, continue with the decoding procedure of Section 15.2.1 to compute an EPC Raw URI. Otherwise, the decoding procedure of of Section 14.3.9 yielded an EPC Tag URI beginning urn:epc:tag:. Continue to the next step.
	5. Apply the decoding procedure of Section 15.2.4 to decode control fields.
	6. Insert the result from Section 15.2.4 (including any trailing colon) into the EPC Tag URI obtained in Step 4, immediately following the urn:epc:tag: prefix. (If Section 15.2.4 yielded an empty string, this result is identical to what was obtained in Step 4.) The result is the final EPC Tag URI.
	 The contents of the EPC Memory Bank of a Gen 2 tag
	1. Apply the decoding procedure of Section 15.2.2 to obtain either an EPC Tag URI or an EPC Raw URI. If an EPC Raw URI is obtained, this is the final result.
	2. Otherwise, apply the procedure of Section 12.3.3 to the EPC Tag URI from Step 1 to obtain a Pure Identity EPC URI. This is the final result.
	 The contents of the EPC Memory Bank of a Gen 2 tag
	1. If bit 17h is zero, extract bits 18h – 1Fh and consider them to be an unsigned integer A. If A is non-zero, append the string [att=xAA] (square brackets included) to CF, where AA is the value of A as a two-digit hexadecimal numeral.
	2. If bit 15h is non-zero, append the string [umi=1] (square brackets included) to CF.
	3. If bit 16h is non-zero, extract bits 210h – 21Fh and consider them to be an unsigned integer X. If X is non-zero, append the string [xpc=xXXXX] (square brackets included) to CF, where XXXX is the value of X as a four-digit hexadecimal numeral. Note that in the Gen 2 air interface, bits 210h – 21Fh are inserted into the backscattered inventory data immediately following bit 1Fh, when bit 16h is non-zero. See [UHFC1G2].
	4. Return the resulting string (which may be empty).
	16. Tag Identification (TID) Memory Bank Contents
	16.1. Short Tag Identification
	16.2. Extended Tag Identification (XTID)
	16.2.1. XTID Header
	16.2.2. XTID Serialization
	16.2.3. Optional Command Support Segment
	16.2.4. BlockWrite and BlockErase Segment
	16.2.5. User Memory and BlockPermaLock Segment

	16.3. Serialized Tag Identification (STID)
	16.3.1. STID URI Grammar
	16.3.2. Decoding Procedure: TID Bank Contents to STID URI

	Table 45. Short TID format
	Informative: The XTID header corresponding to this memory map would be 00111100000000002 . If the tag only contained a 48 bit serial number the XTID header would be 00100000000000002 . The serial number would start at bit address 30h and end at bit address 5Fh. If the tag contained just the BlockWrite and BlockErase segment and the User Memory and BlockPermaLock segment the XTID header would be 00001100000000002 . The BlockWrite and BlockErase segment would start at bit address 30h and end at bit address 6Fh. The User Memory and BlockPermaLock segment would start at bit address 70h and end at bit address 8Fh.
	Table 46. The Extended Tag Identification (XTID) format for the TID memory bank. Note that the table above is fully filled in and that the actual amount of memory used, presence of a segment, and address location of a segment depends on the XTID Header.
	Table 47. The XTID header
	Table 48. Optional Command Support XTID Word
	 If the value is zero the tag only supports writing blocks exactly the maximum block size indicated in bits [7-0].
	 If the value is one the tag supports writing blocks less than the maximum block size indicated in bits [7-0].
	 If the value is zero the tag has hard block boundaries in the EPC memory bank. The tag will not accept BlockWrite commands that start in one block and end in another block. These block boundaries are determined by the max block size and the starting address of the first full block. All blocks have the same maximum size.
	 If the value is one the tag has no block boundaries in the EPC memory bank. It will accept all BlockWrite commands that are within the memory bank.
	 If the value is zero the tag has hard block boundaries in the USER memory bank. The tag will not accept BlockWrite commands that start in one block and end in another block. These block boundaries are determined by the max block size and the starting address of the first full block. All blocks have the same maximum size.
	 If the value is one the tag has no block boundaries in the USER memory bank. It will accept all BlockWrite commands that are within the memory bank.
	 If the value is zero the tag only supports erasing blocks exactly the maximum block size indicated in bits [39-32].
	 If the value is one the tag supports erasing blocks less than the maximum block size indicated in bits [39-32].
	 If the value is zero the tag has hard block boundaries in the EPC memory bank. The tag will not accept BlockErase commands that start in one block and end in another block. These block boundaries are determined by the max block size and the starting address of the first full block. All blocks have the same maximum size.
	 If the value is one the tag has no block boundaries in the EPC memory bank. It will accept all BlockErase commands that are within the memory bank.
	 If the value is zero the tag has hard block boundaries in the USER memory bank. The tag will not accept BlockErase commands that start in one block and end in another block. These block boundaries are determined by the max block size and the starting address of the first full block. All blocks have the same maximum size.
	 If the value is one the tag has no block boundaries in the USER memory bank. It will accept all BlockErase commands that are within the memory bank.
	Table 49. XTID Block Write and Block Erase Information
	Table 50. XTID Block PermaLock and User Memory Information
	 The contents of the TID memory bank of a Gen 2 Tag, as a bit string b0b1…bN-1, where the number of bits N is at least 48.
	 An STID-URI
	1. Bits b0…b7 should match the value 11100010. If not, stop: this TID bank contents does not contain an XTID as specified herein.
	2. Bit b8 should be set to one. If not, stop: this TID bank contents does not contain an XTID as specified herein.
	3. Consider bits b8…b19 as a 12 bit unsigned integer. This is the Tag Mask Designer ID (MDID).
	4. Consider bits b20…b31 as a 12 bit unsigned integer. This is the Tag Model Number.
	5. Consider bits b32…b34 as a 3-bit unsigned integer V. If V equals zero, stop: this TID bank contents does not contain a serial number. Otherwise, calculate the length of the serial number L = 48 + 16(V − 1). Consider bits b48b49…b48+L-1 as an L-bit unsigned integer. This is the serial number.
	6. Construct the STID-URI by concatenating the following strings: the prefix urn:epc:stid:, the lowercase letter x, the value of the MDID from Step 3 as a 3-character hexadecimal numeral, a dot (.) character, the lowercase letter x, the value of the Tag Model Number from Step 4 as a 3-character hexadecimal numeral, a dot (.) character, the lowercase letter x, and the value of the serial number from Step 5 as a (L/4)-character hexadecimal numeral. Only uppercase letters A through F shall be used in constructing the hexadecimal numerals.
	17. User Memory Bank Contents
	Explanation (non-normative): This specification allows two methods of encoding data in user memory. The ISO/IEC 15962 “No-Directory” Access Method has an installed base owing to its longer history and acceptance within certain end user communities. The Packed Objects Access Method was developed to provide for more efficient reading and writing of tags, and less tag memory consumption.
	The “application-defined” compaction mode of the No-Directory Access Method is not allowed because it cannot be understood by a receiving system unless both sides have the same definition of how the compaction works.
	Note that the Packed Objects Access Method supports the encoding of data either with or without a directory-like structure for random access. The fact that the other access method is named “No-Directory” in [ISO15962] should not be taken to imply that the Packed Objects Access Method always includes a directory.
	18. Conformance
	18.1. Conformance of RFID Tag Data
	18.1.1. Conformance of Reserved Memory Bank (Bank 00)
	18.1.2. Conformance of EPC Memory Bank (Bank 01)
	18.1.3. Conformance of TID Memory Bank (Bank 10)
	18.1.4. Conformance of User Memory Bank (Bank 11)

	18.2. Conformance of Hardware and Software Components
	18.2.1. Conformance of Hardware and Software Components That Produce or Consume Gen 2 Memory Bank Contents
	18.2.2. Conformance of Hardware and Software Components that Produce or Consume URI Forms of the EPC
	18.2.3. Conformance of Hardware and Software Components that Translate Between EPC Forms

	18.3. Conformance of Human Readable Forms of the EPC and of EPC Memory Bank Contents

	 Bit 17h SHALL be set to zero.
	 Bits 18h through 1Fh (inclusive), the attribute bits, SHALL be set to zero.
	 Bits 20h through 27h (inclusive) SHALL be set to zero, indicating an unitialized EPC Memory Bank.
	 All other bits of the EPC memory bank SHALL be as specified in Section 9 and/or [UHFC1G2], as applicable.
	 Bit 17h SHALL be set to zero.
	 Bits 18h through 1Fh (inclusive), the attribute bits, SHALL be as specified in Section 11.
	 Bits 20h through 27h (inclusive) SHALL be set to a valid EPC header value as specified in Table 16; that is, a header value not marked as “reserved” or “unprogrammed tag” in the table.
	 Let N be the value of the “encoding length” column of the row of Table 16 corresponding to the header value, and let M be equal to 20h + N – 1. Bits 20h through M SHALL be a valid EPC binary encoding; that is, the decoding procedure of Section 14.3.7 when applied to these bits SHALL NOT raise an exception.
	 Bits M+1 through the end of the EPC memory bank or bit 20Fh (whichever occurs first) SHALL be set to zero.
	 All other bits of the EPC memory bank SHALL be as specified in Section 9 and/or [UHFC1G2], as applicable.
	Explanation (non-normative): A consequence of the above requirements is that to conform to this specification, no additional application data (such as a second EPC) may be put in the EPC memory bank beyond the EPC that begins at bit 20h.
	 Bank X Consumer (where X is a specific memory bank of a Gen 2 tag) A hardware or software component that accepts as input via some external interface the contents of Bank X of a Gen 2 tag. This includes components that read tags via the Gen 2 Air Interface (i.e., readers), as well as components that manipulate a software representation of raw memory contents (e.g., “middleware” software that receives a hexadecimal-formatted image of tag memory from an interrogator as input).
	 Bank X Producer (where X is a specific memory bank of a Gen 2 tag) A hardware or software component that outputs via some external interface the contents of Bank X of a Gen 2. This includes components that interact directly with tags via the Gen 2 Air Interface (i.e., write-capable interrogators and printers – the memory contents delivered to the tag is an output via the air interface), as well as components that manipulate a software representation of raw memory contents (e.g., software that outputs a “write” command to an interrogator, delivering a hexadecimal-formatted image of tag memory as part of the command).
	 A Bank 01 (EPC bank) Consumer SHALL accept as input any memory contents that conforms to this specification, as conformance is specified in Section 18.1.2.
	 If a Bank 01 Consumer interprets the contents of the EPC memory bank received as input, it SHALL do so in a manner consistent with the definitions of EPC memory bank contents in this specification.
	 A Bank 01 (EPC bank) Producer SHALL produce as output memory contents that conforms to this specification, as conformance is specified in Section 18.1.2, whenever the hardware or software component produces output for Bank 01 containing an EPC.. A Bank 01 Producer MAY produce output containing a non-EPC if it sets bit 17h to one.
	 If a Bank 01 Producer constructs the contents of the EPC memory bank from component parts, it SHALL do so in a manner consistent with this.
	 A Bank 10 (TID Bank) Consumer SHALL accept as input any memory contents that conforms to this specification, as conformance is specified in Section 18.1.3.
	 If a Bank 10 Consumer interprets the contents of the TID memory bank received as input, it SHALL do so in a manner consistent with the definitions of TID memory bank contents in this specification.
	 A Bank 10 (TID bank) Producer SHALL produce as output memory contents that conforms to this specification, as conformance is specified in Section 18.1.3.
	 If a Bank 10 Producer constructs the contents of the TID memory bank from component parts, it SHALL do so in a manner consistent with this specification.
	 Conformance for hardware or software components that read or write the User memory bank (Bank 11) SHALL be as specified in Section 17.
	 EPC URI Consumer A hardware or software component that accepts an EPC URI as input via some external interface. An EPC URI Consumer may be further classified as a Pure Identity URI EPC Consumer if it accepts an EPC Pure Identity URI as an input, or an EPC Tag/Raw URI Consumer if it accepts an EPC Tag URI or EPC Raw URI as input.
	 EPC URI Producer A hardware or software component that produces an EPC URI as output via some external interface. An EPC URI Producer may be further classified as a Pure Identity URI EPC Producer if it produces an EPC Pure Identity URI as an output, or an EPC Tag/Raw URI Producer if it produces an EPC Tag URI or EPC Raw URI as output.
	 A Pure Identity URI EPC Consumer SHALL accept as input any string that satisfies the grammar of Section 6, including all constraints on the number of characters in various components.
	 A Pure Identity URI EPC Consumer SHALL reject as invalid any input string that begins with the characters urn:epc:id: that does not satisfy the grammar of Section 6, including all constraints on the number of characters in various components.
	 If a Pure Identity URI EPC Consumer interprets the contents of a Pure Identity URI, it SHALL do so in a manner consistent with the definitions of the Pure Identity EPC URI in this specification and the specifications referenced herein (including the GS1 General Specifications).
	 A Pure Identity EPC URI Producer SHALL produce as output strings that satisfy the grammar in Section 6, including all constraints on the number of characters in various components.
	 A Pure Identity EPC URI Producer SHALL NOT produce as output a string that begins with the characters urn:epc:id: that does not satisfy the grammar of Section 6, including all constraints on the number of characters in various components.
	 If a Pure Identity EPC URI Producer constructs a Pure Identity EPC URI from component parts, it SHALL do so in a manner consistent with this specification.
	 An EPC Tag/Raw URI Consumer SHALL accept as input any string that satisfies the TagURI production of the grammar of Section 12.4, and that can be encoded according to Section 14.3 without causing an exception.
	 An EPC Tag/Raw URI Consumer MAY accept as input any string that satisfies the RawURI production of the grammar of Section 12.4.
	 An EPC Tag/Raw URI Consumer SHALL reject as invalid any input string that begins with the characters urn:epc:tag: that does not satisfy the grammar of Section 12.4, or that causes the encoding procedure of Section 14.3 to raise an exception.
	 An EPC Tag/Raw URI Consumer that accepts EPC Raw URIs as input SHALL reject as invalid any input string that begins with the characters urn:epc:raw: that does not satisfy the grammar of Section 12.4.
	 To the extent that an EPC Tag/Raw URI Consumer interprets the contents of an EPC Tag URI or EPC Raw URI, it SHALL do so in a manner consistent with the definitions of the EPC Tag URI and EPC Raw URI in this specification and the specifications referenced herein (including the GS1 General Specifications).
	 An EPC Tag/Raw URI Producer SHALL produce as output strings that satisfy the TagURI production or the RawURI production of the grammar of Seciton 12.4, provided that any output string that satisfies the TagURI production must be encodable according to the encoding procedure of Section 14.3 without raising an exception.
	 An EPC Tag/Raw URI Producer SHALL NOT produce as output a string that begins with the characters urn:epc:tag: or urn:epc:raw: except as specified in the previous bullet.
	 If an EPC Tag/Raw URI Producer constructs an EPC Tag URI or EPC Raw URI.from component parts, it SHALL do so in a manner consistent with this specification.
	 A hardware or software component that takes the contents of the EPC memory bank of a Gen 2 tag as input and produces the corresponding EPC Tag URI or EPC Raw URI as output SHALL produce an output equivalent to applying the decoding procedure of Section 15.2.2 to the input.
	 A hardware or software component that takes the contents of the EPC memory bank of a Gen 2 tag as input and produces the corresponding EPC Tag URI or EPC Raw URI as output SHALL produce an output equivalent to applying the decoding procedure of Section 15.2.3 to the input.
	 A hardware or software component that takes an EPC Tag URI as input and produces the corresponding Pure Identity EPC URI as output SHALL produce an output equivalent to applying the procedure of Section 12.3.3 to the input.
	 A hardware or software component that takes an EPC Tag URI as input and produces the contents of the EPC memory bank of a Gen 2 tag as output (whether by actually writing a tag or by producing a software representation of raw memory contents as output) SHALL produce an output equivalent to applying the procedure of Section 15.1.1 to the input.
	 To conform to this specification, a human readable representation of an electronic product code SHALL be a Pure Identity EPC URI as specified in Section 6.
	 To conform to this specification, a human readable representation of the entire contents of the EPC memory bank of a Gen 2 tag SHALL be an EPC Tag URI or an EPC Raw URI as specified in Section 12. An EPC Tag URI SHOULD be used when it is possible to do so (that is, when the memory bank contents contains a valid EPC).
	Appendix A Character Set for Alphanumeric Serial Numbers
	 Graphic Symbol The printed representation of the character as used in human-readable forms.
	 Name The common name for the character
	 Hex Value A hexadecimal numeral that gives the 7-bit binary value for the character as used in EPC binary encodings. This hexadecimal value is always equal to the ISO 646 (ASCII) code for the character.
	 URI Form The representation of the character within Pure Identity EPC URI and EPC Tag URI forms. This is either a single character whose ASCII code is equal to the value in the “hex value” column, or an escape triplet consisting of a percent character followed by two characters giving the hexadecimal value for the character.
	Table 51. Characters Permitted in Alphanumeric Serial Numbers
	Appendix B Glossary (non-normative)
	Appendix C References
	[RFC2141] R. Moats, “URN Syntax,” RFC2141, May 1997, http://www.ietf.org/rfc/rfc2141.
	[RFC3986] T. Berners-Lee, R. Fielding, L. Masinter, “Uniform Resource Identifier (URI): Generic Syntax,” RFC3986, January 2005, http://www.ietf.org/rfc/rfc3986.
	Appendix D Extensible Bit Vectors
	Appendix E (non-normative) Examples: EPC Encoding and Decoding
	E.1 Encoding a Serialized Global Trade Item Number (SGTIN) to SGTIN-96
	E.2 Decoding an SGTIN-96 to a Serialized Global Trade Item Number (SGTIN)
	E.3 Summary Examples of All EPC Schemes

	 Note 1: The step of converting a GS1 Element String into the EPC Pure Identity URI requires that the number of digits in the GS1 Company Prefix be determined; e.g., by reference to an external table of company prefixes. In this example, the GS1 Company Prefix is shown to be seven digits.
	 Note 2: The check digit in GTIN as it appears in the GS1 Element String is not included in the EPC Pure Identity URI.
	 Note 3: The SGTIN-96 EPC scheme may only be used if the Serial Number meets certain constraints. Specifically, the serial number must (a) consist only of digit characters; (b) not begin with a zero digit (unless the entire serial number is the single digit ‘0’); and (c) correspond to a decimal numeral whose numeric value that is less than 238 (less than 274,877,906,944). For all other serial numbers, the SGTIN-198 EPC scheme must be used. Note that the EPC URI is identical regardless of whether SGTIN-96 or SGTIN-198 is used in the RFID Tag.
	 Note 4: EPC Binary Encoding header values are defined in Section 14.2.
	 Note 5: The number of bits in the GS1 Company Prefix and Indicator/Item Reference fields in the EPC Binary Encoding depends on the number of digits in the GS1 Company Prefix portion of the EPC URI, and this is indicated by a code in the Partition field of the EPC Binary Encoding. See Table 17 (for the SGTIN EPC only).
	 Note 6: The Serial field of the EPC Binary Encoding for SGTIN-96 is 38 bits; not all bits are shown here due to space limitations.
	 Note 1: The EPC Binary Encoding header indicates how to interpret the remainder of the binary data, and the EPC scheme name to be included in the EPC Tag URI. EPC Binary Encoding header values are defined in Section 14.2.
	 Note 2: The Partition field of the EPC Binary Encoding contains a code that indicates the number of bits in the GS1 Company Prefix field and the Indicator/Item Reference field. The partition code also determines the number of decimal digits to be used for those fields in the EPC Tag URI (the decimal representation for those two fields is padded on the left with zero characters as necessary). See Table 17 (for the SGTIN EPC only).
	 Note 3: For the SGTIN-96 EPC scheme, the Serial Number field is decoded by interpreting the bits as a binary integer and converting to a decimal numeral without leading zeros (unless all serial number bits are zero, which decodes as the string “0”). Serial numbers containing non-digit characters or that begin with leading zero characters may only be encoded in the SGTIN-198 EPC scheme.
	 Note 4: The check digit in the GS1 Element String is calculated from other digits in the EPC Pure Identity URI, as specified in Section 7.1.
	Appendix F Packed Objects ID Table for Data Format 9
	F.1 Tabular Format (non-normative)
	F.2 Comma-Separated-Value (CSV) Format

	K-Text = GS1 AI ID Table for ISO/IEC 15961 Format 9,,,,,,
	K-Version = 1.00,,,,,,
	K-ISO15434=05,,,,,,
	K-Text = Primary Base Table,,,,,,
	K-TableID = F9B0,,,,,,
	K-RootOID = urn:oid:1.0.15961.9,,,,,,
	K-IDsize = 90,,,,,,
	AI or AIs,IDvalue,OIDs,IDstring,Name,Data Title,FormatString
	00,1,0,"00",SSCC (Serial Shipping Container Code),SSCC,18n
	01,2,1,"01",Global Trade Item Number,GTIN,14n
	02 + 37,3,(2)(37),(02)(37),GTIN + Count of trade items contained in a logistic unit,CONTENT + COUNT,(14n)(1*8n)
	10,4,10,10,Batch or lot number,BATCH/LOT,1*20an
	11,5,11,11,Production date (YYMMDD),PROD DATE,6n
	12,6,12,12,Due date (YYMMDD),DUE DATE,6n
	13,7,13,13,Packaging date (YYMMDD),PACK DATE,6n
	15,8,15,15,Best before date (YYMMDD),BEST BEFORE OR SELL BY,6n
	17,9,17,17,Expiration date (YYMMDD),USE BY OR EXPIRY,6n
	20,10,20,20,Product variant,VARIANT,2n
	21,11,21,21,Serial number,SERIAL,1*20an
	22,12,22,22,Secondary data for specific health industry products ,QTY/DATE/BATCH,1*29an
	240,13,240,240,Additional product identification assigned by the manufacturer,ADDITIONAL ID,1*30an
	241,14,241,241,Customer part number,CUST. PART NO.,1*30an
	242,15,242,242,Made-to-Order Variation Number,VARIATION NUMBER,1*6n
	250,16,250,250,Secondary serial number,SECONDARY SERIAL,1*30an
	251,17,251,251,Reference to source entity,REF. TO SOURCE ,1*30an
	253,18,253,253,Global Document Type Identifier,DOC. ID,13n 0*17an
	30,19,30,30,Variable count,VAR. COUNT,1*8n
	310n 320n etc,20,K-Secondary = S00,,"Net weight, kilograms or pounds or troy oz (Variable Measure Trade Item)",,
	311n 321n etc,21,K-Secondary = S01,,Length of first dimension (Variable Measure Trade Item),,
	312n 324n etc,22,K-Secondary = S02,,"Width, diameter, or second dimension (Variable Measure Trade Item)",,
	313n 327n etc,23,K-Secondary = S03,,"Depth, thickness, height, or third dimension (Variable Measure Trade Item)",,
	314n 350n etc,24,K-Secondary = S04,,Area (Variable Measure Trade Item),,
	315n 316n etc,25,K-Secondary = S05,,Net volume (Variable Measure Trade Item),,
	330n or 340n,26,330%x30-36 / 340%x30-36,330%x30-36 / 340%x30-36,"Logistic weight, kilograms or pounds",█
	GROSS WEIGHT (kg) or (lb),6n / 6n
	"331n, 341n, etc",27,K-Secondary = S09,,Length or first dimension,,
	"332n, 344n, etc",28,K-Secondary = S10,,"Width, diameter, or second dimension",,
	"333n, 347n, etc",29,K-Secondary = S11,,"Depth, thickness, height, or third dimension",,
	334n 353n etc,30,K-Secondary = S07,,Logistic Area,,
	335n 336n etc,31,K-Secondary = S06,335%x30-36,Logistic volume,,
	337(***),32,337%x30-36,337%x30-36,Kilograms per square metre,KG PER m2,6n
	390n or 391n,33,390%x30-39 / 391%x30-39,390%x30-39 / 391%x30-39,Amount payable – single monetary area or with █
	ISO currency code,AMOUNT,1*15n / 4*18n
	392n or 393n,34,392%x30-39 / 393%x30-39,392%x30-39 / 393%x30-39,Amount payable for Variable Measure Trade Item – █
	single monetary unit or ISO cc, PRICE,1*15n / 4*18n
	400,35,400,400,Customer's purchase order number,ORDER NUMBER,1*30an
	401,36,401,401,Global Identification Number for Consignment,GINC,1*30an
	402,37,402,402,Global Shipment Identification Number,GSIN,17n
	403,38,403,403,Routing code,ROUTE,1*30an
	410,39,410,410,Ship to - deliver to Global Location Number ,SHIP TO LOC,13n
	411,40,411,411,Bill to - invoice to Global Location Number,BILL TO ,13n
	412,41,412,412,Purchased from Global Location Number,PURCHASE FROM,13n
	413,42,413,413,Ship for - deliver for - forward to Global Location Number,SHIP FOR LOC,13n
	414 and 254,43,(414) [254],(414) [254],"Identification of a physical location GLN, and optional Extension",LOC No + █
	GLN EXTENSION,(13n) [1*20an]
	415 and 8020,44,(415) (8020),(415) (8020),Global Location Number of the Invoicing Party and Payment Slip Reference █
	Number,PAY + REF No,(13n) (1*25an)
	420 or 421,45,(420/421),(420/421),Ship to - deliver to postal code,SHIP TO POST,(1*20an / 3n 1*9an)
	422,46,422,422,Country of origin of a trade item,ORIGIN,3n
	423,47,423,423,Country of initial processing,COUNTRY - INITIAL PROCESS.,3*15n
	424,48,424,424,Country of processing,COUNTRY - PROCESS.,3n
	425,49,425,425,Country of disassembly,COUNTRY - DISASSEMBLY,3n
	426,50,426,426,Country covering full process chain,COUNTRY – FULL PROCESS,3n
	7001,51,7001,7001,NATO stock number,NSN,13n
	7002,52,7002,7002,UN/ECE meat carcasses and cuts classification,MEAT CUT,1*30an
	7003,53,7003,7003,Expiration Date and Time,EXPIRY DATE/TIME,10n
	7004,54,7004,7004,Active Potency,ACTIVE POTENCY,1*4n
	703s,55,7030,7030,Approval number of processor with ISO country code,PROCESSOR # s,3n 1*27an
	703s,56,7031,7031,Approval number of processor with ISO country code,PROCESSOR # s,3n 1*27an
	703s,57,7032,7032,Approval number of processor with ISO country code,PROCESSOR # s,3n 1*27an
	703s,58,7033,7033,Approval number of processor with ISO country code,PROCESSOR # s,3n 1*27an
	703s,59,7034,7034,Approval number of processor with ISO country code,PROCESSOR # s,3n 1*27an
	703s,60,7035,7035,Approval number of processor with ISO country code,PROCESSOR # s,3n 1*27an
	703s,61,7036,7036,Approval number of processor with ISO country code,PROCESSOR # s,3n 1*27an
	703s,62,7037,7037,Approval number of processor with ISO country code,PROCESSOR # s,3n 1*27an
	703s,63,7038,7038,Approval number of processor with ISO country code,PROCESSOR # s,3n 1*27an
	703s,64,7039,7039,Approval number of processor with ISO country code,PROCESSOR # s,3n 1*27an
	8001,65,8001,8001,"Roll products - width, length, core diameter, direction, and splices",DIMENSIONS,14n
	8002,66,8002,8002,Electronic serial identifier for cellular mobile telephones,CMT No,1*20an
	8003,67,8003,8003,Global Returnable Asset Identifier,GRAI,14n 0*16an
	8004,68,8004,8004,Global Individual Asset Identifier,GIAI,1*30an
	8005,69,8005,8005,Price per unit of measure,PRICE PER UNIT,6n
	8006,70,8006,8006,Identification of the component of a trade item,GCTIN,18n
	8007,71,8007,8007,International Bank Account Number ,IBAN,1*30an
	8008,72,8008,8008,Date and time of production,PROD TIME,8*12n
	8018,73,8018,8018,Global Service Relation Number ,GSRN,18n
	8100 8101 etc,74,K-Secondary = S08,,Coupon Codes,,
	90,75,90,90,Information mutually agreed between trading partners (including FACT DIs),INTERNAL,1*30an
	91,76,91,91,Company internal information,INTERNAL,1*30an
	92,77,92,92,Company internal information,INTERNAL,1*30an
	93,78,93,93,Company internal information,INTERNAL,1*30an
	94,79,94,94,Company internal information,INTERNAL,1*30an
	95,80,95,95,Company internal information,INTERNAL,1*30an
	96,81,96,96,Company internal information,INTERNAL,1*30an
	97,82,97,97,Company internal information,INTERNAL,1*30an
	98,83,98,98,Company internal information,INTERNAL,1*30an
	99,84,99,99,Company internal information,INTERNAL,1*30an
	K-TableEnd = F9B0,,,,,,
	"K-Text = Sec. IDT - Net weight, kilograms or pounds or troy oz (Variable Measure Trade Item)",,,,,,
	K-TableID = F9S00,,,,,,
	K-RootOID = urn:oid:1.0.15961.9,,,,,,
	K-IDsize = 4,,,,,,
	AI or AIs,IDvalue,OIDs,IDstring,Name,Data Title,FormatString
	310(***),0,310%x30-36,310%x30-36,"Net weight, kilograms (Variable Measure Trade Item)",NET WEIGHT (kg),6n
	320(***),1,320%x30-36,320%x30-36,"Net weight, pounds (Variable Measure Trade Item)",NET WEIGHT (lb),6n
	356(***),2,356%x30-36,356%x30-36,"Net weight, troy ounces (Variable Measure Trade Item)",NET WEIGHT (t),6n
	K-TableEnd = F9S00,,,,,,
	K-Text = Sec. IDT - Length of first dimension (Variable Measure Trade Item),,,,,,
	K-TableID = F9S01,,,,,,
	K-RootOID = urn:oid:1.0.15961.9,,,,,,
	K-IDsize = 4,,,,,,
	AI or AIs,IDvalue,OIDs,IDstring,Name,Data Title,FormatString
	311(***),0,311%x30-36,311%x30-36,"Length of first dimension, metres (Variable Measure Trade Item)",LENGTH (m),6n
	321(***),1,321%x30-36,321%x30-36,"Length or first dimension, inches (Variable Measure Trade Item)",LENGTH (i),6n
	322(***),2,322%x30-36,322%x30-36,"Length or first dimension, feet (Variable Measure Trade Item)",LENGTH (f),6n
	323(***),3,323%x30-36,323%x30-36,"Length or first dimension, yards (Variable Measure Trade Item)",LENGTH (y),6n
	K-TableEnd = F9S01,,,,,,
	"K-Text = Sec. IDT - Width, diameter, or second dimension (Variable Measure Trade Item)",,,,,,
	K-TableID = F9S02,,,,,,
	K-RootOID = urn:oid:1.0.15961.9,,,,,,
	K-IDsize = 4,,,,,,
	AI or AIs,IDvalue,OIDs,IDstring,Name,Data Title,FormatString
	312(***),0,312%x30-36,312%x30-36,"Width, diameter, or second dimension, metres (Variable Measure Trade Item)", █
	WIDTH (m),6n
	324(***),1,324%x30-36,324%x30-36,"Width, diameter, or second dimension, inches (Variable Measure Trade Item)", █
	WIDTH (i),6n
	325(***),2,325%x30-36,325%x30-36,"Width, diameter, or second dimension, (Variable Measure Trade Item)", █
	WIDTH (f),6n
	326(***),3,326%x30-36,326%x30-36,"Width, diameter, or second dimension, yards (Variable Measure Trade Item)", █
	WIDTH (y),6n
	K-TableEnd = F9S02,,,,,,
	"K-Text = Sec. IDT - Depth, thickness, height, or third dimension (Variable Measure Trade Item)",,,,,,
	K-TableID = F9S03,,,,,,
	K-RootOID = urn:oid:1.0.15961.9,,,,,,
	K-IDsize = 4,,,,,,
	AI or AIs,IDvalue,OIDs,IDstring,Name,Data Title,FormatString
	313(***),0,313%x30-36,313%x30-36,"Depth, thickness, height, or third dimension, metres (Variable Measure █
	Trade Item)",HEIGHT (m),6n
	327(***),1,327%x30-36,327%x30-36,"Depth, thickness, height, or third dimension, inches (Variable Measure █
	Trade Item)",HEIGHT (i),6n
	328(***),2,328%x30-36,328%x30-36,"Depth, thickness, height, or third dimension, feet (Variable Measure █
	Trade Item)",HEIGHT (f),6n
	329(***),3,329%x30-36,329%x30-36,"Depth, thickness, height, or third dimension, yards (Variable Measure █
	Trade Item)",HEIGHT (y),6n
	K-TableEnd = F9S03,,,,,,
	K-Text = Sec. IDT - Area (Variable Measure Trade Item),,,,,,
	K-TableID = F9S04,,,,,,
	K-RootOID = urn:oid:1.0.15961.9,,,,,,
	K-IDsize = 4,,,,,,
	AI or AIs,IDvalue,OIDs,IDstring,Name,Data Title,FormatString
	314(***),0,314%x30-36,314%x30-36,"Area, square metres (Variable Measure Trade Item)",AREA (m2),6n
	350(***),1,350%x30-36,350%x30-36,"Area, square inches (Variable Measure Trade Item)",AREA (i2),6n
	351(***),2,351%x30-36,351%x30-36,"Area, square feet (Variable Measure Trade Item)",AREA (f2),6n
	352(***),3,352%x30-36,352%x30-36,"Area, square yards (Variable Measure Trade Item)",AREA (y2),6n
	K-TableEnd = F9S04,,,,,,
	K-Text = Sec. IDT - Net volume (Variable Measure Trade Item),,,,,,
	K-TableID = F9S05,,,,,,
	K-RootOID = urn:oid:1.0.15961.9,,,,,,
	K-IDsize = 8,,,,,,
	AI or AIs,IDvalue,OIDs,IDstring,Name,Data Title,FormatString
	315(***),0,315%x30-36,315%x30-36,"Net volume, litres (Variable Measure Trade Item)",NET VOLUME (l),6n
	316(***),1,316%x30-36,316%x30-36,"Net volume, cubic metres (Variable Measure Trade Item)",NET VOLUME (m3),6n
	357(***),2,357%x30-36,357%x30-36,"Net weight (or volume), ounces (Variable Measure Trade Item)",NET VOLUME (oz),6n
	360(***),3,360%x30-36,360%x30-36,"Net volume, quarts (Variable Measure Trade Item)",NET VOLUME (q),6n
	361(***),4,361%x30-36,361%x30-36,"Net volume, gallons U.S. (Variable Measure Trade Item)",NET VOLUME (g),6n
	364(***),5,364%x30-36,364%x30-36,"Net volume, cubic inches","VOLUME (i3), log",6n
	365(***),6,365%x30-36,365%x30-36,"Net volume, cubic feet (Variable Measure Trade Item)","VOLUME (f3), log",6n
	366(***),7,366%x30-36,366%x30-36,"Net volume, cubic yards (Variable Measure Trade Item)","VOLUME (y3), log",6n
	K-TableEnd = F9S05,,,,,,
	K-Text = Sec. IDT - Logistic Volume,,,,,,
	K-TableID = F9S06,,,,,,
	K-RootOID = urn:oid:1.0.15961.9,,,,,,
	K-IDsize = 8,,,,,,
	AI or AIs,IDvalue,OIDs,IDstring,Name,Data Title,FormatString
	335(***),0,335%x30-36,335%x30-36,"Logistic volume, litres","VOLUME (l), log",6n
	336(***),1,336%x30-36,336%x30-36,"Logistic volume, cubic metres","VOLUME (m3), log",6n
	362(***),2,362%x30-36,362%x30-36,"Logistic volume, quarts","VOLUME (q), log",6n
	363(***),3,363%x30-36,363%x30-36,"Logistic volume, gallons","VOLUME (g), log",6n
	367(***),4,367%x30-36,367%x30-36,"Logistic volume, cubic inches","VOLUME (q), log",6n
	368(***),5,368%x30-36,368%x30-36,"Logistic volume, cubic feet","VOLUME (g), log",6n
	369(***),6,369%x30-36,369%x30-36,"Logistic volume, cubic yards","VOLUME (i3), log",6n
	K-TableEnd = F9S06,,,,,,
	K-Text = Sec. IDT - Logistic Area,,,,,,
	K-TableID = F9S07,,,,,,
	K-RootOID = urn:oid:1.0.15961.9,,,,,,
	K-IDsize = 4,,,,,,
	AI or AIs,IDvalue,OIDs,IDstring,Name,Data Title,FormatString
	334(***),0,334%x30-36,334%x30-36,"Area, square metres","AREA (m2), log",6n
	353(***),1,353%x30-36,353%x30-36,"Area, square inches","AREA (i2), log",6n
	354(***),2,354%x30-36,354%x30-36,"Area, square feet","AREA (f2), log",6n
	355(***),3,355%x30-36,355%x30-36,"Area, square yards","AREA (y2), log",6n
	K-TableEnd = F9S07,,,,,,
	K-Text = Sec. IDT - Coupon Codes,,,,,,
	K-TableID = F9S08,,,,,,
	K-RootOID = urn:oid:1.0.15961.9,,,,,,
	K-IDsize = 8,,,,,,
	AI or AIs,IDvalue,OIDs,IDstring,Name,Data Title,FormatString
	8100,0,8100,8100,GS1-128 Coupon Extended Code - NSC + Offer Code,-,6n
	8101,1,8101,8101,GS1-128 Coupon Extended Code - NSC + Offer Code + end of offer code,-,10n
	8102,2,8102,8102,GS1-128 Coupon Extended Code – NSC,-,2n
	8110,3,8110,8110,Coupon Code Identification for Use in North America,,1*70an
	K-TableEnd = F9S08,,,,,,
	K-Text = Sec. IDT - Length or first dimension,,,,,,
	K-TableID = F9S09,,,,,,
	K-RootOID = urn:oid:1.0.15961.9,,,,,,
	K-IDsize = 4,,,,,,
	AI or AIs,IDvalue,OIDs,IDstring,Name,Data Title,FormatString
	331(***),0,331%x30-36,331%x30-36,"Length or first dimension, metres","LENGTH (m), log",6n
	341(***),1,341%x30-36,341%x30-36,"Length or first dimension, inches","LENGTH (i), log",6n
	342(***),2,342%x30-36,342%x30-36,"Length or first dimension, feet","LENGTH (f), log",6n
	343(***),3,343%x30-36,343%x30-36,"Length or first dimension, yards","LENGTH (y), log",6n
	K-TableEnd = F9S09,,,,,,
	"K-Text = Sec. IDT - Width, diameter, or second dimension",,,,,,
	K-TableID = F9S10,,,,,,
	K-RootOID = urn:oid:1.0.15961.9,,,,,,
	K-IDsize = 4,,,,,,
	AI or AIs,IDvalue,OIDs,IDstring,Name,Data Title,FormatString
	332(***),0,332%x30-36,332%x30-36,"Width, diameter, or second dimension, metres","WIDTH (m), log",6n
	344(***),1,344%x30-36,344%x30-36,"Width, diameter, or second dimension","WIDTH (i), log",6n
	345(***),2,345%x30-36,345%x30-36,"Width, diameter, or second dimension","WIDTH (f), log",6n
	346(***),3,346%x30-36,346%x30-36,"Width, diameter, or second dimension","WIDTH (y), log",6n
	K-TableEnd = F9S10,,,,,,
	"K-Text = Sec. IDT - Depth, thickness, height, or third dimension",,,,,,
	K-TableID = F9S11,,,,,,
	K-RootOID = urn:oid:1.0.15961.9,,,,,,
	K-IDsize = 4,,,,,,
	AI or AIs,IDvalue,OIDs,IDstring,Name,Data Title,FormatString
	333(***),0,333%x30-36,333%x30-36,"Depth, thickness, height, or third dimension, metres","HEIGHT (m), log",6n
	347(***),1,347%x30-36,347%x30-36,"Depth, thickness, height, or third dimension","HEIGHT (i), log",6n
	348(***),2,348%x30-36,348%x30-36,"Depth, thickness, height, or third dimension","HEIGHT (f), log",6n
	349(***),3,349%x30-36,349%x30-36,"Depth, thickness, height, or third dimension","HEIGHT (y), log",6n
	K-TableEnd = F9S11,,,,,,
	Appendix G 6-Bit Alphanumeric Character Set
	 Graphic Symbol The printed representation of the character as used in human-readable forms.
	 Name The common name for the character
	 Binary Value A Binary numeral that gives the 6-bit binary value for the character as used in EPC binary encodings. This binary value is always equal to the least significant six bits of the ISO 646 (ASCII) code for the character.
	 URI Form The representation of the character within Pure Identity EPC URI and EPC Tag URI forms. This is either a single character whose ASCII code’s least significant six bits is equal to the value in the “binary value” column, or an escape triplet consisting of a percent character followed by two characters giving the hexadecimal value for the character.
	Table 52. Characters Permitted in 6-bit Alphanumeric Fields
	Appendix H (Intentionally Omitted)
	Appendix I Packed Objects Structure
	I.1 Overview
	I.2 Overview of Packed Objects Documentation
	I.3 High-Level Packed Objects Format Design
	I.3.1 Overview
	I.3.2 Descriptions of each section of a Packed Object’s structure

	I.4 Format Flags section
	I.4.1 Data Terminating Flag Pattern
	I.4.2 Format Flag section starting bit patterns
	I.4.3 IDLPO Format Flags
	I.4.4 Patterns for use between Packed Objects

	I.5 Object Info section
	I.5.1 Object Info formats
	I.5.1.1 IDLPO default Object Info format
	I.5.1.2 IDLPO non-default Object Info format
	I.5.1.3 IDMPO Object Info format

	I.5.2 Length Information
	I.5.3 General description of ID values
	I.5.3.1 Application Indicator subsection
	I.5.3.2 Full/Restricted Use bits

	I.5.4 ID Values representation in an ID Value-list Packed Object
	I.5.5 ID Values representation in an ID Map Packed Object
	I.5.6 Optional Addendum subsection of the Object Info section
	I.5.6.1 Addendum “EditingOP” list (only in ID List Packed Objects)
	I.5.6.2 Packed Objects containing an Addendum subsection

	I.6 Secondary ID Bits section
	I.7 Aux Format section
	I.7.1 Support for No-Directory compaction methods
	I.7.2 Support for the Packed-Object compaction method

	I.8 Data section
	I.8.1 Known-length-Numerics subsection of the Data Section
	I.8.2 Alphanumeric subsection of the Data section
	I.8.2.1 A/N Header Bits
	I.8.2.2 Dual-base Character-map encoding
	I.8.2.3 Prefix and Suffix Run-Length encoding
	I.8.2.4 Encoding into Binary Segments
	I.8.2.5 Padding the last Byte

	I.9 ID Map and Directory encoding options
	I.9.1 ID Map Section structure
	I.9.1.1 ID Map and ID Map bit field
	I.9.1.2 Data/Directory and AuxMap indicator bits
	I.9.1.3 Closing Flags bit(s)

	I.9.2 Directory Packed Objects
	I.9.2.1 ID Maps in a Directory IDMPO
	I.9.2.2 Optional AuxMap Section (Directory IDMPOs only)
	I.9.2.3 Usage as a Presence/Absence Directory
	I.9.2.4 Usage as an Indexed Directory

	 The overall structure of Packed Objects is described in Section I.3.
	 The individual sections of a Packed Object are described in Sections I.4 through I.9.
	 The structure and features of ID Tables (utilized by Packed Objects to represent various data system identifiers) are described in Appendix J.
	 The numerical bases and character sets used in Packed Objects are described in Appendix K.
	 An encoding algorithm and worked example are described in Appendix L.
	 The decoding algorithm for Packed Objects is described in Appendix M.
	Figure I 31: Overall Memory structure when using Packed Objects
	 An ID List Packed Object (IDLPO) encodes a series of ID Values as a list, whose length depends on the number of data items being represented;
	 An ID Map Packed Object (IDMPO) instead encodes a fixed-length bit array, whose length depends on the total number of entries defined in the registered Base Table. Each bit in the array is ‘1’ if the corresponding table entry is represented by the Packed Object, and is ‘0’ otherwise.
	Figure I 32 Packed Object Structure
	 Format Flags: A Packed Object may optionally begin with the pattern ‘0000’ which is reserved to introduce one or more Format Flags, as described in I.4.2. These flags may indicate use of the non-default ID Map format. If the Format Flags are not present, then the Packed Object defaults to the ID List format.
	 Certain flag patterns indicate an inter-Object pattern (Directory Pointer or Padding)
	 Other flag patterns indicate the Packed Object’s type (Map or. List), and may indicated the presence of an optional Addendum subsection for editing.
	 Object Info: All Packed Objects contain an Object Info Section which includes Object Length Information and ID Value Information:
	 Object Length Information includes an ObjectLength field (indicating the overall length of the Packed Object in octets) followed by Pad Indicator bit, so that the number of significant bits in the Packed Object can be determined.
	 ID Value Information indicates which Identifiers are present and in what order, and (if an IDLPO) also includes a leading NumberOfIDs field, indicating how many ID Values are encoded in the ID List.
	The Object Info section is encoded in one of the following formats, as shown in Figure I 3-3 and Figure I 3-4.
	 ID List (IDLPO) Object Info format:
	 Object Length (EBV-6) plus Pad Indicator bit
	 A single ID List or an ID Lists Section (depending on Format Flags)
	 ID Map (IDMPO) Object Info format:
	 One or more ID Map sections
	 Object Length (EBV-6) plus Pad Indicator bit
	For either of these Object Info formats, an Optional Addendum subsection may be present at the end of the Object Info section.
	 Secondary ID Bits: A Packed Object may include a Secondary ID section, if needed to encode additional bits that are defined for some classes of IDs (these bits complete the definition of the ID).
	 Aux Format Bits: A Data Packed Object may include an Aux Format Section, which if present encodes one or more bits that are defined to support data compression, but do not contribute to defining the ID.
	 Data Section: A Data Packed Object includes a Data Section, representing the compressed data associated with each of the identifiers listed within the Packed Object. This section is omitted in a Directory Packed Object, and in a Packed Object that uses No-directory compaction (see I.7.1). Depending on the declaration of data format in the relevant ID table, the Data section will contain either or both of two subsections:
	 Known-Length Numerics subsection: this subsection compacts and concatenates all of the non-empty data strings that are known a priori to be numeric.
	 AlphaNumeric subsection: this subsection concatenates and compacts all of the non-empty data strings that are not a priori known to be all-numeric.
	Figure I 33: IDLPO Object Info Structure
	Figure I 34: IDMPO Object Info Structure
	Table I 41: Format Flags
	 A following two-bit pattern of ‘10’ (creating an initial pattern of ‘000010’) indicates an IDLPO with at least one non-default optional feature (see I.4.3)
	 A following two-bit pattern of ‘11’ indicates an IDMPO, which is a Packed Object using an ID Map format instead of ID List-format The ID Map section (see I.9) immediately follows this two-bit pattern.
	 A following two-bit pattern of ‘01’ signifies an External pattern (Padding pattern or Pointer) prior to the start of the next Packed Object (see I.4.4)
	A leading EBV-6 Object Length of less than four is invalid as a Packed Objects length.
	 If the first additional bit ‘N’ is ‘1’, then a non-default format is employed for the IDLPO Object Info section. Whereas the default IDLPO format allows for only a single ID List (utilizing the registration’s default Base ID Table), the optional non-default IDLPO Object Info format supports a sequence of one or more ID Lists, and each such list begins with identifying information as to which registered table it represents (see I.5.1).
	 If the second additional bit ‘A’ is ‘1’, then an Addendum subsection is present at the end of the Object Info section (see I.5.6).
	 A following two-bit pattern of ‘11’ indicates that a Directory Packed Object Pointer follows the pattern. The pointer is one or more octets in length, in EBV-8 format. This pointer may be Null (a value of zero), but if non-zero, indicates the number of octets from the start of the pointer to the start of a Directory Packed Object (which if editable, shall be the first in its “chain”). For example, if the Format Flags byte for a Directory Pointer is encoded at byte offset 1, the Pointer itself occupies bytes beginning at offset 2, and the Directory starts at byte offset 9, then the Dir Ptr encodes the value “7” in EBV-8 format. A Directory Packed Object Pointer may appear before the first Packed Object in memory, or at any other position where a Packed Object may begin, but may only appear once in a given data carrier memory, and (if non-null) must be at a lower address than the Directory it points to. The first octet after this pointer may be padding (as defined immediately below), a new set of Format Flag patterns, or the start of an ID List Packed Object.
	 A following two-bit pattern of ‘00’ indicates that the full eight-bit pattern of ‘00000100’ serves as a padding byte, so that the next Packed Object may begin on a desired word or block boundary. This pattern may repeat as necessary to achieve the desired alignment.
	 A following two-bit pattern of ‘01’ as a run-length padding indicator, and shall be immediately followed by an EBV-8 indicating the number of octets from the start of the EBV-8 itself to the start of the next Packed Object (for example, if the next Packed Object follows immediately, the EBV-8 has a value of one). This mechanism eliminates the need to write many words of memory in order to pad out a large memory block.
	 A following two-bit pattern of ‘10’ is Reserved.
	Table I 51: Default IDLPO Object Info format
	Table I 52: Non-Default IDLPO Object Info format
	Table I 53: IDMPO Object Info format
	Table I 54: Packed Object Length information
	Table I 55: Defined ID Value sizes
	 A single AppIndicatorPresent bit, which if ‘0’ means that no additional ID List or Map follows. Note that this bit is always omitted for the first List or Map in an Object Info section. When this bit is present and ‘0’, then none of the following bit fields are encoded.
	 A single ExternalReg bit that, if ‘1’, indicates use of an ID Table from a registration other than the memory’s default. If ‘1’, this bit is immediately followed by a 9-bit representation of a Data Format registered under ISO/IEC 15961.
	 An ID Size pattern which denotes a table size (and therefore an ID Map bit length, when used in an IDMPO), which shall be one of the patterns defined by Table I 5-5. The table size indicated in this field must be less than or equal to the table size indicated in the selected ID table. The purpose of this field is so that the decoder can parse past the ID List or ID Map, even if the ID Table is not available to the decoder.
	 a three-bit ID Subset pattern. The registered data format’s Primary Base ID Table, if used by the current Packed Object, shall always be indicated by an encoded ID Subset pattern of ‘000’. However, up to seven Alternate Base Tables may also be defined in the registration (with varying ID Sizes), and a choice from among these can be indicated by the encoded Subset pattern. This feature can be useful to define smaller sector-specific or application-specific subsets of a full data system, thus substantially reducing the size of the encoded ID Map.
	 for each encoded ID Value, the encoder added an EBV-3 indicator to the Secondary ID section, to indicate how many Secondary ID bits were invoked by that ID Value. If the EBV-3 is nonzero, then the Secondary ID bits (as indicated by the table entry) immediately follow, followed in turn by another EBV-3, until the entire list of ID Values has been represented.
	 the encoder did not take advantage of the information from the referenced table’s FormatString column. Instead, corresponding to each ID Value, the encoder inserted an EBV-3 into the Aux Format section, indicating the number of discrete data string lengths invoked by the ID Value (which could be more than one due to combinations and/or optional components), followed by the indicated number of string lengths, each length encoded as though there were no FormatString in the ID table. All data items were encoded in the A/N subsection of the Data section.
	 If the Reverse Links bit is ‘0’, then each child in this chain of Packed Objects is at a higher memory location then its parent. The link to a Child is encoded as the number of octets (plus one) that are in between the last octet of the current Packed Object and the first octet of the Child. The link to the parent is encoded as the number of octets (plus one) that are in between the first octet of the parent Packed Object and the first octet of the current Packed Object.
	 If the Reverse Links bit is ‘1’, then each child in this chain of Packed Objects is at a lower memory location then its parent. The link to a Child is encoded as the number of octets (plus one) that are in between the first octet of the current Packed Object and the first octet of the Child. The link to the parent is encoded as the number of octets (plus one) that are in between the last octet of the current Packed Object and the first octet of the parent.
	 If the Child bit is a ‘0’, then this Packed Object is an editable “Parentless” Packed Object (i.e., the first of a chain), and in this case the Child bit is immediately followed by a single EBV-6 link to the first “child” Packed Object that contains editing addenda for the parent.
	 If the Child bit is a ‘1’, then this Packed Object is an editable “child” of an edited “parent,” and the bit is immediately followed by one EBV-6 link to the “parent” and a second EBV-6 line to the next “child” Packed Object that contains editing addenda for the parent.
	 ‘1’ means that the corresponding Fully-Qualified ID Value (FQIDV) is Replaced. A Replace operation has the effect that the data originally associated with the FQIDV matching the FQIDV in this Addendum Packed Object shall be ignored, and logically replaced by the Aux Format bits and data encoded in this Addendum Packed Object)
	 ‘00’ means that the corresponding FQIDV is Deleted but not replaced. In this case, neither the Aux Format bits nor the data associated with this ID Value are encoded in the Addendum Packed Object.
	 ‘01’ means that the corresponding FQIDV is Added (either this FQIDV was not previously encoded, or it was previously deleted without replacement). In this case, the associated Aux Format Bits and data shall be encoded in the Addendum Packed Object.
	 A “parentless” Packed Object (the first in a chain) may be either an ID List Packed Object or an ID Map Packed Object (and a parentless IDMPO may be either a Data or Directory IDMPO). When a “parentless” PO is a directory, only directory IDMPOs may be used as addenda. A Directory IDMPO’s Map bits shall be updated to correctly reflect the end state of the chain of additions and deletions to the memory bank; an Addendum to the Directory is not utilized to perform this maintenance (a Directory Addendum may only add new structural components, as described later in this section). In contrast, when the edited parentless object is an ID List Packed Object or ID Map Packed Object, its ID List or ID Map cannot be updated to reflect the end state of the aggregate Object (parents plus children).
	 Although a “child” may be either an ID List or an ID Map Packed Object, only an IDLPO can indicate deletions or changes to the current set of fully-qualified ID Values and associated data that is embodied in the chain.
	 When a child is an IDMPO, it shall only be utilized to add (not delete or modify) structural information, and shall not be used to modify existing information. In a Directory chain, a child IDMPO may add new ID tables, or may add a new AuxMap section or subsections, or may extend an existing PO Index Table or ObjectOffsets list. In a Data chain, an IDMPO shall not be used as an Addendum, except to add new ID Tables.
	 When a child is an IDLPO, its ID list (followed by “EditingOp” bits) lists only those FQIDVs that have been deleted, added, or replaced, relative to the cumulative ID list from the prior Objects linked to it.
	 The Object-Identifier is not encoded in the “No-Directory Data section”, because it has already been encoded into the Object Info and Secondary ID sections.
	 The Precursor is modified in that only the three Compaction Type Code bits are significant, and the other bits in the Precursor are set to ‘0’.
	 If a maximum length is specified, and the specified range (defined as the maximum length minus the minimum length) is less than eight, or greater than 44, then lengths in this range are encoded in the fewest number of bits that can express lengths within that range, and an encoded value of zero represents the minimum length specified in the format string. For example, if the range is specified as from three to six characters, then lengths are encoded using two bits, and ‘00’ represents a length of three.
	 Otherwise (including the case of an unspecified maximum length), the value (actual length – specified minimum) is encoded in a variable number of bits, as follows:
	 Values from 0 to 14 (representing lengths from 1 to 15, if the specified minimum length is one character, for example) are encoded in four bits
	 Values from 15 to 29 are encoded in eight bits (a prefix of ‘1111’ followed by four bits representing values from 15 (‘0000’) to 29 (‘1110’)
	 Values from 30 to 44 are encoded in twelve bits (a prefix of ‘1111 1111’ followed by four bits representing values from 30 (‘0000’) to 44 (‘1110’)
	 Values greater than 44 are encoded as a twelve-bit prefix of all ‘1’s, followed by an EBV-6 indication of (value – 44).
	 Notes:
	 if a range is specified with identical upper and lower bounds (i.e., a range of zero), this is treated as a fixed length, not a variable length, and no Aux Format bits are invoked.
	 If a range is unspecified, or has unspecified upper or lower bounds, then this is treated as a default lower bound of one, and/or an unlimited upper bound.
	Figure I 81: Maximum Structure of a Packed Objects Data section
	 One or two Non-Numeric Base bits, as follows:
	 ‘0’ indicates that Base 30 was chosen for the non-numeric Base;
	 ‘10’ indicates that Base 74 was chosen for the non-numeric Base;
	 ‘11’ indicates that Base 256 was chosen for the non-numeric Base
	 Either a single ‘0’ bit (indicating that no Character Map Prefix is encoded), or a ‘1’ bit followed by one or more “Runs” of six Prefix bits as defined in I.8.2.3.
	 Either a single ‘0’ bit (indicating that no Character Map Suffix is encoded), or a ‘1’ bit followed by one or more “Runs” of six Suffix bits as defined in I.8.2.3.
	 A variable-length “Character Map” bit pattern (see I.8.2.2), representing the base of each of the data characters, if any, that were not accounted for by a Prefix or Suffix.
	 The Run Position bit, if ‘0’, indicates that at least one more Prefix Run is encoded following this one (representing another set of source characters to the right of the current set). The Run Position bit, if ‘1’, indicates that the current Prefix Run is the last (rightmost) Prefix Run of the A/N subsection.
	 The first basis bit indicates a choice of numeric vs. non-numeric base, and the second basis bit, if ‘1’, indicates that the chosen base is extended to include characters from the “opposite” base. Thus, ‘00’ indicates a run-length-encoded sequence of base 10 values; ‘01’ indicates a sequence that is primarily (but not entirely) digits, encoded in Base 13; ‘10’ indicates a sequence a sequence of values from the non-numeric base that was selected earlier in the A/N header, and ‘11’ indicates a sequence of values primarily from that non-numeric base, but extended to include digit characters as well. Note an exception: if the non-numeric base that was selected in the A/N header is Base 256, then the “extended” version is defined to be Base 40.
	 The 3-bit Run Length value assumes a minimum useable run of six same-base characters, and the length value is further divided by 2. Thus, the possible 3-bit Run Length values of 0, 1, 2, … 7 indicate a Run of 6, 8, 10, … 20 characters from the same base. Note that a trailing “odd” character value at the end of a same-base sequence must be represented by adding a bit to the Character Map.
	 An Application Indicator subsection (see I.5.3.1)
	 an ID Map bit field (whose length is determined from the ID Size in the Application Indicator)
	 a Full/Restricted Use bit (see I.5.3.2)
	 (the above sequence forms an ID Map, which may optionally repeat multiple times)
	 a Data/Directory indicator bit,
	 an optional AuxMap section (never present in a Data IDMPO), and
	 Closing Flag(s), consisting of an “Addendum Flag” bit. If ‘1’, then an Addendum subsection is present at the end of the Object Info section (after the Object Length Information).
	Figure I 91: ID Map section
	 Another data item of the same class can be encoded in an Addendum IDLPO of the IDMPO. Multiple occurrences of the same ID Value can appear on an ID List, each associated with different encoded values of the Secondary ID bits.
	 A series of two or more encoded instances of the same “class” can be efficiently indicated by a single instance of an ID Value (or equivalently by a single ID Map bit), if the corresponding Base Table entry defines a “Repeat” Bit (see J.2.2).
	 The final bit of the Closing Flags is an Addendum Flag Bit which, if ‘1’, indicates that there is an optional Addendum subsection encoded at the end of the Object Info section of the Packed Object. If present, the Addendum subsection is as described in Section I .5.6.
	Figure I 92: Optional AuxMap section structure
	 A three-bit POindexLength field, indicating the number of index bits encoded for each entry in the PO Index Table that immediately follows this field (unless the POindex length is ‘000’, which means that no PO Index Table follows).
	 A PO Index Table, consisting of an array of bits, one bit (or group of bits, depending on the POIndexLength) for every bit in the corresponding ID Map of this directory packed object. A PO Index Table entry (i.e., a “PO Index”) indicates (by relative order) which Packed Object contains the data item indicated by the corresponding ‘1’ bit in the ID Map. If an ID Map bit is '0', the corresponding PO Index Table entry is present but its contents are ignored.
	 Every Packed Object is assigned an index value in sequence, without regard as to whether it is a “parentless” Packed Object or a “child” of another Packed Object, or whether it is a Data or Directory Packed Object.
	 If the PO Index is within the first PO Index Table (for the associated ID Map) of the Directory “chain”, then:
	 a PO Index of zero refers to the first Packed Object in memory,
	 a value of one refers to the next Packed Object in memory, and so on
	 a value of m, where m is the largest value that can be encoded in the PO Index (given the number of bits per index that was set in the POindexLength), indicates a Packed Object whose relative index (position in memory) is m or higher. This definition allows Packed Objects higher than m to be indexed in an Addendum Directory Packed Object, as described immediately below. If no Addendum exists, then the precise position is either m or some indeterminate position greater than m.
	 If the PO Index is not within the first PO Index Table of the directory chain for the associated ID Map (i.e., it is in an Addendum IDMPO), then:
	 a PO Index of zero indicates that a prior PO Index Table of the chain provided the index information,
	 a PO Index of n (n > 0) refers to the nth Packed Object above the highest index value available in the immediate parent directory PO; e.g., if the maximum index value in the immediate parent directory PO refers to PO number “3 or greater,” then a PO index of 1 in this addendum refers to PO number 4.
	 A PO Index of m (as defined above) similarly indicates a Packed Object whose position is the mth position, or higher, than the limit of the previous table in the chain.
	 If the valid instance of an ID Value is in an Addendum Packed Object, an implementation may choose to set a PO Index to point directly to that Addendum, or may instead continue to point to the Packed Object in the chain that originally contained the ID Value. NOTE: The first approach sometimes leads to faster searching; the second sometimes leads to faster directory updates.
	 An EBV-6 ObjectOffsetsMultiplier, whose value, when multiplied by 6, sets the total number of bits reserved for the entire ObjectOffsets list. The value of this multiplier should be selected to ideally result in sufficient storage to hold the offsets for the maximum number of Packed Objects that can be indexed by this Directory Packed Object’s PO Index Table (given the value in the POIndexLength field, and given some estimated average size for those Packed Objects).
	 a fixed-sized field containing a list of EBV-6 ObjectOffsets. The size of this field is exactly the number of bits as calculated from the ObjectOffsetsMultiplier. The first ObjectOffset represents the start of the second Packed Object in memory, relative to the first octet of memory (there would be little benefit in reserving extra space to store the offset of the first Packed Object). Each succeeding ObjectOffset indicates the start of the next Packed Object (relative to the previous ObjectOffset on the list), and the final ObjectOffset on the list points to the all-zero termination pattern where the next Packed Object may be written. An invalid offset of zero (EBV-6 pattern “000000”) shall be used to terminate the ObjectOffset list. If the reserved storage space is fully occupied, it need not include this terminating pattern.
	 In applications where the average Packed Object Length is difficult to predict, the reserved ObjectOffset storage space may sometimes prove to be insufficient. In this case, an Addendum Packed Object can be appended to the Directory Packed Object. This Addendum Directory Packed Object may contain null subsections for all but its ObjectOffsets subsection. Alternately, if it is anticipated that the capacity of the PO Index Table will also eventually be exceeded, then the Addendum Packed Object may also contain one or more non-null PO Index fields. Note that in a given instance of an AuxMap section, either a PO Index Table or an ObjectOffsets subsection may be the first to exceed its capacity. Therefore, the first position referenced by an ObjectOffsets list in an Addendum Packed Object need not coincide with the first position referenced by the PO Index Table of that same Addendum. Specifically, in an Addendum Packed Object, the first ObjectOffset listed is an offset referenced to the last ObjectOffset on the list of the “parent” Directory Packed Object.
	Appendix J Packed Objects ID Tables
	J.1 Packed Objects Data Format registration file structure
	J.1.1 File Header section
	J.1.2 Table Header section
	J.1.3 ID Table section

	J.2 Mandatory and Optional ID Table columns
	J.2.1 IDvalue column (Mandatory)
	J.2.2 OIDs and IDstring columns (Optional)
	J.2.3 FormatString column (Optional)
	J.2.4 Interp column (Optional)

	J.3 Syntax of OIDs, IDstring, and FormatString Columns
	J.3.1 Semantics for OIDs, IDString, and FormatString Columns
	J.3.2 Formal Grammar for OIDs, IDString, and FormatString Columns

	J.4 OID input/output representation
	J.4.1 “ID Value OID” output representation

	 A Keyword line consists of a Keyword (which always starts with “K-“) followed by an equals sign and a character string, which assigns a value to that Keyword. Zero or more space characters may be present on either side of the equals sign. Some Keyword lines shall appear only once, at the top of the registration file, and others may appear multiple times, once for each ID Table in the file.
	 An ID Table lists a series of ID Values (as defined in I.5.3). Each row of an ID Table contains a single ID Value (in a required “IDvalue” column), and additional columns may associate Object IDs (OIDs), ID strings, Format strings, and other information with that ID Value. A registration file always includes a single “Primary” Base ID Table, zero or more “Alternate” Base ID Tables, and may also include one or more Secondary ID Tables (that are referenced by one or more Base ID Table entries).
	 (Mandatory) K-Version = nn.nn, which the registering body assigns, to ensure that any future revisions to their registration are clearly labeled.
	 (Optional) K-Interpretation = string, where the “string” argument shall be one of the following: “ISO-646”, “UTF-8”, “ECI-nnnnnn” (where nnnnnn is a registered six-digit ECI number), ISO-8859-nn, or “UNSPECIFIED”. The Default interpretation is “UNSPECIFIED”. This keyword line allows non-default interpretations to be placed on the octets of data strings that are decoded from Packed Objects.
	 (Optional) K-ISO15434=nn, where “nn” represents a Format Indicator (a two-digit numeric identifier) as defined in ISO/IEC 15434. This keyword line allows receiving systems to optionally represent a decoded Packed Object as a fully-compliant ISO/IEC 15434 message. There is no default value for this keyword line.
	 (Optional) K-AppPunc = nn, where nn represents (in decimal) the octet value of an ASCII character that is commonly used for punctuation in this application. If this keyword line is not present, the default Application Punctuation character is the hyphen.
	 (Mandatory) K-TableID = FnnXnn, where Fnn represents the ISO-assigned Data Format number (where 'nn' represents one or more decimal digits), and Xnn (where 'X' is either 'B' or 'S') is a registrant-assigned Table ID for each ID Table in the file. The first ID Table shall always be the Primary Base ID Table of the registration, with a Table ID of “B0”. As many as seven additional “Alternate” Base ID Tables may be included, with higher sequential “Bnn” Table IDs. Secondary ID Tables may be included, with sequential Table IDs of the form “Snn”.
	 (Mandatory) K-IDsize = nn. For a base ID table, the value nn shall be one of the values from the “Maximum number of Table Entries” column of Table I 5-5. For a secondary ID table, the value nn shall be a power of two (even if not present in Table I 5-5.
	 (Optional) K-RootOID = urn:oid:i.j.k.ff where:
	 I, j, and k are the leading arcs of the OID (as many arcs as required) and
	 ff is the last arc of the Root OID (typically, the registered Data Format number)
	If the K-RootOID keyword is not present, then the default Root OID is:
	 urn:oid:1.0.15961.ff, where “ff” is the registered Data Format number
	 Other optional Keyword lines: in order to override the file-level defaults (to set different values for a particular table), a Table Header may invoke one or more of the Optional Keyword lines listed in for the File Header section.
	 K-TableEnd = FnnXnn, where FnnXnn shall match the preceding K-TableID keyword line that introduced the table.
	 K-Verbatim = OIDddBnn, where “dd” represents the chosen penultimate arc of the OID, and “Bnn” indicates one of the Base 10, Base 40, or Base 74 encoding tables. This entry invokes a number of Secondary ID bits that serve two purposes:
	 They encode an ASCII identifier “name” that might not have existed at the time the table was registered. The name is encoded in the Secondary ID bits section as a series of Base-n values representing the ASCII characters of the name, preceded by a four-bit field indicating the number of Base-n values that follow (zero is permissible, in order to support RFA entries as described below).
	 The cumulative value of these Secondary ID bits, considered as a single unsigned binary integer and converted to decimal, is the final “arc” of the OID for this “verbatim-encoded’ identifier.
	 K-Secondary = Snn, where “Snn” represents the Table ID of a Secondary ID Table in the same registration file. This is equivalent to a Base ID Table row OID entry that contains a single Selection list (with no other components at the top level), but instead of listing these components in the Base ID Table, each component is listed as a separate row in the Secondary ID Table, where each may be assigned a unique OID, ID string, and FormatString.
	 K-Proprietary=OIDddPnn, where nn represents a fixed number of Secondary ID bits that encode an optional Enterprise Identifier indicating who wrote the proprietary data (an entry of K-Proprietary=OIDddP0 indicates an “anonymous” proprietary data item).
	 K-RFA = OIDddBnn, where “Bnn” is as defined above for Verbatim encoding, except that “B0” is a valid assignment (meaning that no Secondary ID bits are invoked). This keyword represents a Reserved for Future Assignment entry, with an option for Verbatim encoding of the Identifier “name” once a name is assigned by the entity who registered this Data Format. Encoders may use this entry, with a four-bit “verbatim” length of zero, until an Identifier “name” is assigned. A specific FormatString may be assigned to K-RFA entries, or the default a/n encoding may be utilized.
	 A length qualifier followed by “n” (for always-numeric data);
	 A length qualifier followed by “an” (for data that may contain non-digits); or
	 A fixed-length qualifier, followed by “n”, followed by one or more space characters, followed by a variable-length qualifier, followed by “an”.
	 K-RootOID = urn:oid:i.j.k.l…
	 K-Interpretation = string
	 K-ISO15434=nn
	 A Single component resolving to a single Identifier, in which case no additional Secondary ID bits are invoked.
	 (For OIDs and IDString columns only) A single component resolving to one of a series of closely-related Identifiers, where the Identifier’s string representation varies only at one or more character positions. This is indicated using the Concatenation operator ‘%’ to introduce a range of ASCII characters at a specified position. For example, an OID whose final arc is defined as “391n”, where the fourth digit ‘n’ can be any digit from ‘0’ to ‘6’ (ASCII characters 30hex to 36hex inclusive) is represented by the component 391%x30-36 (note that no spaces are allowed) A Concatenation invokes the minimum number of Secondary ID digits needed to indicate the specified range. When both an OIDs column and an IDstring column are populated for a given row, both shall contain the same number of concatations, with the same ranges (so that the numbers and values of Secondary ID bits invoked are consistent). However, the minimum value listed for the two ranges can differ, so that (for example) the OID’s digit can range from 0 to 3, while the corresponding IDstring character can range from “B” to “E” if so desired. Note that the use of Concatenation inherently constrains the relationship between OID and IDString, and so Concatenation may not be useable under all circumstances (the Selection operation described below usually provides an alternative).
	 A Combination of two or more identifier components in an ordered sequence, indicated by surrounding each component of the sequence with parentheses. For example, an IDstring entry (A)(%x30-37B)(2C) indicates that the associated ID Value represents a sequence of the following three identifiers:
	 Identifier “A”, then
	 An identifier within the range “0B” to “7B” (invoking three Secondary ID bits to represent the choice of leading character), then
	 Identifier “2C
	Note that a Combination does not itself invoke any Secondary ID bits (unless one or more of its components do).
	 An Optional component is indicated by surrounding the component in brackets, which may viewed as a “conditional combination.” For example the entry (A) [B][C][D] indicates that the ID Value represents identifier A, optionally followed by B, C, and/or D. A list of Options invokes one Secondary ID bit for each component in brackets, wherein a ‘1’ indicates that the optional component was encoded.
	 A Selection between several mutually-exclusive components is indicated by separating the components by forward slash characters. For example, the IDstring entry (A/B/C/(D)(E)) indicates that the fully-qualified ID Value represents a single choice from a list of four choices (the fourth of which is a Combination). A Selection invokes the minimum number of Secondary ID bits needed to indicate a choice from a list of the specified number of components.
	 A given Identifier may only appear once in an OIDs entry. For example, the entry (A)(B/A) is invalid
	 A OIDs entry may contain at most a single Selection list
	 There is no restriction on the number of Combinations (because they invoke no Secondary ID bits)
	 There is no restriction on the total number of Concatenations in an OIDs entry, but no single Component may contain more than two Concatenation operators.
	 An Optional component may be a component of a Selection list, but an Optional component may not be a compound component, and therefore shall not include a Selection list nor a Combination nor Concatenation.
	 A OIDs or IDstring entry may not include the characters ‘(‘, ‘)’, ‘[‘, ‘]’, ‘%’, ‘-‘, or ‘/’, unless used as an Operator as described above. If one of these characters is part of a defined data system Identifier “name”, then it shall be represented as a single literal Concatenated character.
	Expr ::= SelectionExpr | “(” SelectionExpr “)” | SelectionSubexpr
	SelectionExpr ::= SelectionSubexpr (“/” SelectionSubexpr)+
	SelectionSubexpr ::= COMPONENT | ComboExpr
	ComboExpr ::= ComboSubexpr+
	ComboSubexpr ::= “(” COMPONENT “)” | “[" COMPONENT “]”
	COMPONENT_OIDs ::= (COMPONENT_OIDs_Char | Concat)+
	COMPONENT_OIDs_Char ::= (“0”..“9”)+
	COMPONENT_IDString ::= UnquotedIDString | QuotedIDString
	UnquotedIDString ::= (UnQuotedIDStringChar | Concat)+
	UnquotedIDStringChar ::=
	 “0”..“9” | “A”..“Z” | “a”..“z” | “_”
	QuotedIDString ::= QUOTE QuotedIDStringConstituent+ QUOTE
	QuotedIDStringConstituent ::=
	 “ ” | “!” | “#”..“~” | (QUOTE QUOTE)
	COMPONENT_FormatString ::= Range? (“an” | “n”)
	 | FixedRange “n” “ ”+ VarRange “an”
	Range ::= FixedRange | VarRange
	FixedRange ::= Number
	VarRange ::= Number “*” Number?
	Number ::= (“0”..“9”)+
	HexChar ::= (“0”..“9” | “A”..“F”)
	Appendix K Packed Objects Encoding tables
	 Base 10, which encodes each of the digits ‘0’ through ‘9’ in one Base 10 value
	 Base 30, which encodes the capital letters and selectable punctuation in one Base-30 value, and encodes punctuation and control characters from the remainder of the ASCII character set in two base-30 values (using a Shift mechanism)
	 The values in the Base 74 set correspond to the invariant subset of ISO 646 (which includes the GS1 character set), but with the digits eliminated, and with the addition of GS and <space> (GS is supported for uses other than as a data delimiter).
	 The values in the Base 256 set may convey octets with no graphical-character interpretation, or “extended ASCII values” as defined in ISO 8859-6, or UTF-8 (the interpretation may be set in the registered ID Table for an application). The characters ‘0’ through ‘9’ (ASCII values 48 through 57) are supported, and an encoder may therefore encode the digits either by using a prefix or suffix (in Base 256) or by using a character map (in Base 10). Note that in GS1 data, FNC1 is represented by ASCII <GS> (octet value 29dec).
	 In order to support run-length encoding of a primarily-numeric string with a few interspersed letters, a Base 13 is defined, per Table B-2
	 Two of these extension bases (Base 40 and Base 84) are simply defined, in that they extend the corresponding non-numeric bases (Base 30 and Base 74, respectively) to also include the ten decimal digits. The additional entries, for characters ‘0’ through ‘9’, are added as the next ten sequential values (values 30 through 39 for Base 40, and values 74 through 83 for Base 84).
	 The “extended” version of Base 256 is defined as Base 40. This allows an encoder the option of encoding a few ASCII control or upper-ASCII characters in Base 256, while using a Prefix and/or Suffix to more efficiently encode the remaining non-numeric characters.
	32
	space
	0
	NUL
	N/A
	A-Punc1
	0
	1
	33
	!
	1
	SOH
	65
	A
	34
	“
	2
	STX
	66
	B
	2
	35
	#
	3
	ETX
	67
	C
	3
	4
	36
	$
	4
	EOT
	68
	D
	37
	%
	5
	ENQ
	69
	E
	5
	38
	&
	6
	ACK
	70
	F
	6
	39
	‘
	7
	BEL
	71
	G
	7
	40
	(
	8
	BS
	72
	H
	8
	41
)
	9
	HT
	73
	I
	9
	42
	*
	10
	LF
	74
	J
	10
	11
	43
	+
	11
	VT
	75
	K
	44
	,
	12
	FF
	76
	L
	12
	45
	-
	13
	CR
	77
	M
	13
	14
	46
	.
	14
	SO
	78
	N
	47
	/
	15
	SI
	79
	O
	15
	58
	:
	16
	DLE
	80
	P
	16
	59
	;
	23
	ETB
	81
	Q
	17
	60
	<
	27
	ESC
	82
	R
	18
	61
	=
	28
	FS
	83
	S
	19
	62
	>
	29
	GS
	84
	T
	20
	21
	63
	?
	30
	RS
	85
	U
	Shift 2 set
	Shift 1 set
	Basic set
	Val
	Decimal
	Char
	Decimal
	Char
	Decimal
	Char
	64
	@
	31
	US
	86
	V
	22
	23
	92
	\
	N/A
	invalid
	87
	W
	94
	^
	N/A
	invalid
	88
	X
	24
	95
	_
	N/A
	invalid
	89
	Y
	25
	26
	96
	‘
	91
	[
	90
	Z
	124
	|
	93
]
	N/A
	Shift 1
	27
	126
	~
	123
	{
	N/A
	Shift 2
	28
	29
	N/A
	invalid
	125
	}
	N/A
	P-Punc2
	Shift 3 set
	Shift 2 set
	Shift 1 set
	Basic set
	Value
	Decimal
	Char
	Decimal
	Char
	Decimal
	Char
	Decimal
	Char
	32
	space
	78
	N
	65
	A
	48
	0
	0
	1
	36
	$
	79
	O
	66
	B
	49
	1
	37
	%
	80
	P
	67
	C
	50
	2
	2
	38
	&
	81
	Q
	68
	D
	51
	3
	3
	4
	42
	*
	82
	R
	69
	E
	52
	4
	43
	+
	83
	S
	70
	F
	53
	5
	5
	44
	,
	84
	T
	71
	G
	54
	6
	6
	45
	-
	85
	U
	72
	H
	55
	7
	7
	46
	.
	86
	V
	73
	I
	56
	8
	8
	47
	/
	87
	W
	74
	J
	57
	9
	9
	63
	?
	88
	X
	75
	K
	N/A
	Shift1
	10
	11
	95
	_
	89
	Y
	76
	L
	N/A
	Shift2
	29
	<GS>
	90
	Z
	77
	M
	N/A
	Shift3
	12
	See Table K-1
	0
	…
	…
	29
	See Table K-1
	Shift 2 set
	Shift 1 set
	Basic set
	Val
	Decimal
	Char
	Decimal
	Char
	Decimal
	Char
	48
	0
	30
	31
	49
	1
	50
	2
	32
	51
	3
	33
	34
	52
	4
	53
	5
	35
	54
	6
	36
	37
	55
	7
	56
	8
	38
	57
	9
	39
	25
	0
	26
	1
	27
	2
	28
	3
	29
	4
	30
	5
	31
	6
	32
	7
	33
	8
	34
	9
	35
	10
	36
	11
	37
	12
	38
	13
	39
	14
	40
	15
	41
	16
	42
	17
	43
	18
	44
	19
	45
	20
	46
	21
	47
	22
	48
	23
	49
	24
	25
	0
	1-73
	56
	8
	52
	4
	78
	48
	0
	74
	57
	9
	53
	5
	79
	49
	1
	75
	54
	6
	80
	50
	2
	76
	81
	77
	55
	7
	51
	3
	Appendix L Encoding Packed Objects (non-normative)
	 An Expiration date (OID 7) of October 31, 2006, represented as a six-digit number 061031.
	 An Amount Payable (OID 3n) of 1234.56 Euros, represented as a digit string 978123456 (“978” is the ISO Country Code indicating that the amount payable is in Euros). As shown in Table L-1, this data element is all-numeric, with at least 4 digits and at most 18 digits. In this example, the OID “3n” will be “32”, where the “2” in the data element name indicates the decimal point is located two digits from the right.
	 A Lot Number (OID 1) of 1A23B456CD
	 Three data elements are to be encoded, using Table L-1.
	 As shown in the table’s IDstring column, the combination of OID 7 and OID 1 is efficiently supported (because it is commonly seen in applications), and thus the encoder re-orders the input so that 7 and 1 are adjacent and in the order indicated in the OIDs column:
	(7)061031(1)1A23B456CD(32)978123456
	Now, this OID pair can be assigned a single ID Value of 125 (decimal). The FormatString column for this entry shows that the encoded data will always consist of a fixed-length 6-digit string, followed by a variable-length alphanumeric string.
	 Also as shown in Table L-1, OID 3n has an ID Value of 51 (decimal). The OIDs column for this entry shows that the OID is formed by concatenating “3” with a suffix consisting of a single character in the range 30hex to 39hex (i.e., a decimal digit). Since that is a range of ten possibilities, a four-bit number will need to be encoded in the Secondary ID section to indicate which suffix character was chosen. The FormatString column for this entry shows that its data is variable-length numeric; the variable length information will require four bits to be encoded in the Aux Format section.
	 Since only a small percentage of the 128-entry ID Table is utilized in this Packed Object, the encoder chooses an ID List format, rather than an ID Map format. As this is the default format, no Format Flags section is required.
	 This results in the following Object Info section:
	 EBV-6 (ObjectLength): the value is TBD at this stage of the encoding process
	 Pad Indicator bit: TBD at this stage
	 EBV-3 (numberOfIDs) of 001 (meaning two ID Values will follow)
	 An ID List, including:
	 First ID Value: 125 (dec) in 7 bits, representing OID 7 followed by OID 1
	 Second ID Value: 51 (decimal) in 7 bits, representing OID 3n
	 A Secondary ID section is encoded as ‘0010’, indicating the trailing ‘2’ of the 3n OID. It so happens this ‘2’ means that two digits follow the implied decimal point, but that information is not needed in order to encode or decode the Packed Object.
	 Next, an Aux Format section is encoded. An initial ‘1’ bit is encoded, invoking the Packed-Object compaction method. Of the three OIDs, only OID (3n) requires encoded Aux Format information: a four-bit pattern of ‘0101’ (representing “six” variable-length digits – as “one” is the first allowed choice, a pattern of “0101” denotes “six”).
	 Next, the encoder encodes the first data item, for OID 7, which is defined as a fixed-length six-digit data item. The six digits of the source data string are “061031”, which are converted to a sequence of six Base-10 values by subtracting 30hex from each character of the string (the resulting values are denoted as values v5 through v0 in the formula below). These are then converted to a single Binary value, using the following formula:
	 105 * v5 + 104 * v4+ 103 * v3+ 102 * v2+ 101 * v1+ 100 * v0
	According to Figure K-1, a six-digit number is always encoded into 20 bits (regardless of any leading zero’s in the input), resulting in a Binary string of:
	 The next data item is for OID 1, but since the table indicates that this OID’s data is alphanumeric, encoding into the Packed Object is deferred until after all of the known-length numeric data is encoded.
	 Next, the encoder finds that OID 3n is defined by Table L-1 as all-numeric, whose length of 9 (in this example) was encoded as (9 – 4 = 5) into four bits within the Aux Format subsection. Thus, a Known-Length-Numeric subsection is encoded for this data item, consisting of a binary value bit-pattern encoding 9 digits. Using Figure K-1 in Annex K, the encoder determines that 30 bits need to be encoded in order to represent a 9-digit number as a binary value. In this example, the binary value equivalent of “978123456” is the 30-bit binary sequence:
	“111010010011001111101011000000”
	 At this point, encoding of the Known-Length Numeric subsection of the Data Section is complete.
	Appendix M Decoding Packed Objects (non-normative)
	M.1 Overview
	M.2 Decoding Alphanumeric data

	 Determine the total number of non-pad bits in the Packed Object, as described in section I.8.2
	 Keep a count of the total number of bits parsed thus far, as each of the subsections prior to the Alphanumeric subsection is processed
	 Parse the initial Header bits of the Alphanumeric subsection, up to but not including the Character Map, and add this number to previous value of TotalBitsParsed.
	 Initialize a DigitsCount to the total number of base-10 values indicated by the Prefix and Suffix (which may be zero)
	 Initialize an ExtDigitsCount to the total number of base-13 values indicated by the Prefix and Suffix (which may be zero)
	 Initialize a NonDigitsCount to the total number of base-30, base 74, or base-256 values indicated by the Prefix and Suffix (which may be zero)
	 Initialize an ExtNonDigitsCount to the total number of base-40 or base 84 values indicated by the Prefix and Suffix (which may be zero)
	 Calculate Extended-base Bit Counts: Using the tables in Annex K, calculate two numbers:
	 ExtDigitBits, the number of bits required to encode the number of base-13 values indicated by ExtDigitsCount, and
	 ExtNonDigitBits, the number of bits required to encode the number of base-40 (or base-84) values indicated by ExtNonDigitsCount
	 Add ExtDigitBits and ExtNonDigitBits to TotalBitsParsed
	 Create a PrefixCharacterMap bit string, a sequence of zero or more quad-base character-map pairs, as indicated by the Prefix bits just parsed. Use quad-base bit pairs defined as follows:
	 ‘00’ indicates a base 10 value;
	 ‘01’ indicates a character encoded in Base 13;
	 ‘10’ indicates the non-numeric base that was selected earlier in the A/N header, and
	 ‘11’ indicates the Extended version of the non-numeric base that was selected earlier
	 Create a SuffixCharacterMap bit string, a sequence of zero or more quad-base character-map pairs, as indicated by the Suffix bits just parsed.
	 Initialize the FinalCharacterMap bit string and the MainCharacterMap bit string to an empty string
	 Calculate running Bit Counts: Using the tables in Annex B, calculate two numbers:
	 DigitBits, the number of bits required to encode the number of base-10 values currently indicated by DigitsCount, and
	 NonDigitBits, the number of bits required to encode the number of base-30 (or base 74 or base-256) values currently indicated by NonDigitsCount
	 set AlnumBits equal to the sum of DigitBits plus NonDigitBits
	 if the sum of TotalBitsParsed and AlnumBits equals the total number of non-pad bits in the Packed Object, then no more bits remain to be parsed from the character map, and so the remaining bit patterns, representing Binary values, are ready to be converted back to extended base values and/or base 10/base 30/base 74/base-256 values (skip to the Final Decoding steps below). Otherwise, get the next encoded bit from the encoded Character map, convert the bit to a quad-base bit-pair by converting each ‘0’ to ‘00’ and each ‘1’ to ‘10’, append the pair to the end of the MainCharacterMap bit string, and:
	 If the encoded map bit was ‘0’, increment DigitsCount,
	 Else if ‘1’, increment NonDigitsCount
	 Loop back to the Calculate running Bit Counts step above and continue
	 Final Decoding steps: once the encoded Character Map bits havSe been fully parsed:
	 Fetch the next set of zero or more bits, whose length is indicated by ExtDigitBits. Convert this number of bits from Binary values to a series of base 13 values, and store the resulting array of values as ExtDigitVals.
	 Fetch the next set of zero or more bits, whose length is indicated by ExtNonDigitBits. Convert this number of bits from Binary values to a series of base 40 or base 84 values (depending on the selection indicated in the A/N Header), and store the resulting array of values as ExtNonDigitVals.
	 Fetch the next set of bits, whose length is indicated by DigitBits. Convert this number of bits from Binary values to a series of base 10 values, and store the resulting array of values as DigitVals.
	 Fetch the final set of bits, whose length is indicated by NonDigitBits. Convert this number of bits from Binary values to a series of base 30 or base 74 or base 256 values (depending on the value of the first bits of the Alphanumeric subsection), and store the resulting array of values as NonDigitVals.
	 Create the FinalCharacterMap bit string by copying to it, in this order, the previously-created PrefixCharacterMap bit string, then the MainCharacterMap string , and finally append the previously-created SuffixCharacterMap bit string to the end of the FinalCharacterMap string.
	 Create an interleaved character string, representing the concatenated data strings from all of the non-numeric data strings of the Packed Object, by parsing through the FinalCharacterMap, and:
	 For each ‘00’ bit-pair encountered in the FinalCharacterMap, copy the next value from DigitVals to InterleavedString (add 48 to each value to convert to ASCII);
	 For each ‘01’ bit-pair encountered in the FinalCharacterMap, fetch the next value from ExtDigitVals, and use Table K-2 to convert that value to ASCII (or, if the value is a Base 13 shift, then increment past the next ‘01’ pair in the FinalCharacterMap, and use that Base 13 shift value plus the next Base 13 value from ExtDigitVals to convert the pair of values to ASCII). Store the result to InterleavedString;
	 For each ‘10’ bit-pair encountered in the FinalCharacterMap, get the next character from NonDigitVals, convert its base value to an ASCII value using Annex K, and store the resulting ASCII value into InterleavedString. Fetch and process an additional Base 30 value for every Base 30 Shift values encountered, to create and store a single ASCII character.
	 For each ‘11’ bit-pair encountered in the FinalCharacterMap, get the next character from ExtNonDigitVals, convert its base value to an ASCII value using Annex K, and store the resulting ASCII value into InterleavedString, processing any Shifts as previously described.
	Appendix N Acknowledgement of Contributors and Companies Opted-in during the Creation of this Standard (Informative)

