
Semantic Data Modelling
Technical Bulletin
Normatively referenced by the GS1 System Architecture Release 10.0, Section 6.5.
GS1 data models can be defined independently of data formats, using Semantic

Web/Linked Data standards.

Release 1.0, Approved, Jun 2021

Semantic Data Modelling Technical Bulletin

Release 1.0, Approved, Jun 2021 © 2021 GS1 AISBL Page 2 of 15

1 Introduction
As a Standards Development Organisation, GS1 oversees the community standardisation of data
models and interfaces for the efficient exchange of data, whether master data, transaction data or
event data.

For future-proofing this data modelling work, it is important that data models and interfaces are
defined at an abstract layer, independent of any particular syntax so that as new data formats
emerge, the semantic data model does not change at the abstract layer but a new data binding is
defined for the new data format. This is consistent with the GS1 Architecture Principles of
Technology Independence and Re-Use of Components.

Although XML has long been used for exchange of information via structured documents, alternative
data formats such as JSON (JavaScript Object Notation) and JSON-LD (JSON for Linked Data) are
rapidly gaining traction as alternatives. JSON is a much simpler data format than XML and expresses
lists/arrays as well as associative arrays (key:value lookup tables). JSON is often natively supported
by modern programming and scripting languages and is useful for exchanging structured data
between systems that might use different programming languages. Many developers find it much
easier to work with JSON than with XML. However, JSON lacks some of the features of XML,
including support for multiple namespaces. The W3C JSON-LD standard defines a version of JSON
that is also a Linked Data format with support for multiple namespaces and explicit data types.

Linked Data provides a lowest common denominator across various data formats and includes
standardised tools and techniques for easier data integration across multiple information systems.
This capability to query across multiple information systems can be useful when performing an
upstream root cause analysis to find the source of a defective product, as well as performing
subsequent downstream impact analysis, to identify other products and product instances that
might also have been affected by the source of the defect (such as a defective or contaminated
ingredient, mis-calibrated or defective processing equipment etc.).

Regardless of whether the data is exchanged in XML, JSON, JSON-LD or any other format or via
Web Services, AS2 or Open API / REST Web APIs or other protocols, the meanings (semantics) of
the components of our standardised data model should be defined in a way that can be used
consistently in any data format and through any interface protocol.

Semantic Data Modelling Technical Bulletin

Release 1.0, Approved, Jun 2021 © 2021 GS1 AISBL Page 3 of 15

2 Building blocks of a data model
The main building blocks of a data model include:

■ Classes

■ Properties (also called data fields, attributes, predicates)

■ Code Lists and their values

Every component within a data model (whether a class, property, code list or value within a code
list) is a term. Each term should have an identifier, a human-friendly name or label, ideally in
multiple languages, and a precise semantic definition.

Semantic Web / Linked Data technologies recommend the use of Web URIs as globally unambiguous
Web-friendly identifiers for every term within a data model. Standards such as UML and Linked Data
standards such as RDF, RDFS, OWL and SKOS provide a way of describing a data model and its
structure in an abstract way, independent of syntax, that supports multi-lingual names/labels,
definitions and other intrinsic details about meaning and usage.

Models comprising classes, properties and code lists form the basis of any meaningful exchange of
data. However, they can be used by different actors in different contexts. A term that might be
essential to one kind of transaction may be optional or even irrelevant to another.

The existence of a term does not itself require its use. It is therefore not possible to validate a given
dataset against a data model in isolation.

A further building block is required for this: a profile. This is a set of constraints on the usage of
terms from one or more data models that define cardinalities (how many times a term MAY or MUST
be used), and it might also include further terms or alternative code lists.

2.1 Identifiers and namespaces
Web URIs have the extremely useful characteristic that they can be looked up, usually by simply
clicking them. You can ‘follow your nose’ across the Web to the data you want. Like any global
identifier scheme, they have structure. Within that structure, the domain name is crucial as it
defines the authority for the rest of the identifier. So, for example, https://www.smh.com.au/politics
identifies a different resource than https://edition.cnn.com/politics, even though they both end with
‘politics’. The usual term for this authority is namespace.

Useful though they clearly are, Web URIs are clunky and relatively long. If we want to use terms
from the GS1 Web vocabulary, for example, it’s inconvenient to have to include the whole URI. We
do not really want to have to write terms like https://gs1.org/voc/additive and
https://gs1.org/voc/bestBeforeDate in full every time, especially as the majority of the identifier is
repeated from one to another.

The answer is to define a short prefix that can be substituted for the namespace. For example, we
can define ‘gs1:’ to mean ‘https://gs1.org/voc/’. This allows us then to use the shorthand
gs1:additive and gs1:bestBeforeDate rather than the full URI. As well as being shorter, it’s a lot
more readable. These shortened URIs are known as Compact URIs or CURIEs [CURIE].

Since prefixes are just short strings, they are not guaranteed to be globally unique. In any machine-
readable data, they must be tied to the base URI for which they can be substituted. It would be
possible, although very unhelpful and bad practice, to define the term ‘gs1:’ to replace a different
base URL. Thankfully, this is never done in practice. By convention, ‘gs1:’ always means
‘https://gs1.org/voc/’, ‘schema:’ always means ‘https://schema.org/’ and ‘xsd:’ always means
‘http://www.w3.org/2001/XMLSchema#’. There’s a handy look up service for widely-used
conventional prefixes at https://prefix.cc.

2.2 Classes
Classes (sometimes called data objects) group collections of related properties together and often
correspond to a real-world thing such as a product or asset, invoice or something less tangible, such
as a traceability observation or sensor measurement or department within an organisation.

https://www.smh.com.au/politics
https://edition.cnn.com/politics
https://gs1.org/voc/additive
https://gs1.org/voc/
https://prefix.cc/

Semantic Data Modelling Technical Bulletin

Release 1.0, Approved, Jun 2021 © 2021 GS1 AISBL Page 4 of 15

Figure 1 – simple examples of classes, shown in a UML class diagram

Figure 1 shows two simple examples of classes defined in schema.org and the GS1 Web vocabulary.
In this example, the Product class represents real-world products or trade items and defines a
number of properties that are useful for describing a product and distinguishing one product from
another. The diagram only shows a small sample of the properties defined for the Product class. In
contrast, a QuantitativeValue class does not correspond to a tangible real-world thing, but to a
concept or a useful collection of combination of interdependent properties. The
QuantitativeValue class (referred to as Measurement in the GDSN data model) includes
properties such as value and unitCode. To express a measurement of weight, length,
temperature etc. it is necessary to be able to specify not only the floating-point value but also a unit
code, such a UN ECE Rec20 code string. The QuantitativeValue class acts as a container for the
value and unitCode properties and ensures that if there are multiple measurements (e.g.
netWeight, inPackageHeight etc.), there is no ambiguity about which unit code corresponds to
which floating-point value because they are always paired together within a QuantitativeValue
class.

2.2.1 Sub-Classes

Classes can be organised in a hierarchy, in which subclasses represent a subset of the superclass
that has some specialised characteristics. For example, Vegetables, Fruit, Meat, Poultry, Seafood are
all subclasses of a superclass, Food. Further subclasses can be defined. For example, Legumes and
Root Vegetables are subclasses of Vegetables. Apples, Oranges, Bananas, Melons and Berries are
subclasses of Fruit.

Figure 2 – examples of subclasses and inheritance of properties

Semantic Data Modelling Technical Bulletin

Release 1.0, Approved, Jun 2021 © 2021 GS1 AISBL Page 5 of 15

Figure 2 shows examples of a hierarchy of classes and subclasses defined within the GS1 Web
vocabulary. In this example, the Product class is the superclass and
FoodBeverageTobaccoProduct class and WearableProduct class are subclasses of the
Product class. Each of these subclasses represent specialised subsets of the Product superclass
and they define properties that are relevant within members of their own subclass. For example,
WearableProduct defines a property isWaterproof. FoodBeverageTobaccoProduct defines a
property ingredientStatement.

Any properties defined for a class are also available to any subclasses below them in the hierarchy,
while subclasses may define their own properties in addition to the properties that they inherit from
superclasses above them in the hierarchy.

For example, every member of the Clothing class can use any of the properties defined within the
Clothing class (such as textileMaterial), as well as any of the properties defined within the
WearableProduct class (such as isWaterproof) as well as any of the properties defined within
the Product class (such as productDescription or gtin).

2.3 Properties
Properties (also called data fields, attributes, predicates) express a particular relationship and a
value associated with that relationship. As shown in Figure 3, some properties (called 'data type'
properties) expect a simple literal value such as a string, language-tagged string, date, integer or
floating-point value.

Figure 3 – examples of 'data type' properties that expect a simple literal value

Other properties (such as minimumFishContent shown in Figure 4 or netWeight shown in Figure
1) expect a class or complex data object (such as QuantitativeValue) that itself expresses
further properties, such as value and unitCode.

Figure 4 – minimumFishContent is an example of an object property whose value is a class or

complex data object.

Semantic Data Modelling Technical Bulletin

Release 1.0, Approved, Jun 2021 © 2021 GS1 AISBL Page 6 of 15

2.3.1 Sub-Properties
Sub-properties are used to take the meaning of a more general property and to make it more
specific.

For example, the schema.org vocabulary has a general purpose property https://schema.org/name

The GS1 Web vocabulary defines a number of sub-properties of this, such as
https://www.gs1.org/voc/productName (for the names of products) and
https://www.gs1.org/voc/organizationName (for the names of organisations).

2.3.2 Domain of a Property (Class in which it is defined)
The domain of a property indicates the class in which it is defined. Figure 5 shows a couple of
examples of properties defined within the GS1 Web vocabulary and indicates the domain and range
for each.

Figure 5 – examples of properties and their domain and range.

In the examples shown in Figure 5, the domain of the minimumFishContent property is the
Seafood class, whereas the domain of the unitCode property is the QuantitativeValue class.

2.3.3 Range of a Property (Expected value type)

The range of a property indicates the expected data type for the value of the property. In the
examples shown in Figure 5, the range of the minimumFishContent property is the
QuantitativeValue class, and the range of the unitCode property is an xsd:string literal
value (a string, in this case a UN ECE Rec 20 unit code).

2.4 Code Lists
Code Lists (sometimes called enumerations) are used to define a set of defined code values and
meanings / definitions. The main advantages of using code lists are:

■ code lists limit the number of choices to a finite set, unlike a free-form text field

■ everyone globally uses the same code value instead of a free-form text string that needs to be
translated into different human languages

■ each code value can be used globally and associated with a human-readable meaning or
definition can be translated into various human languages

https://schema.org/name
https://www.gs1.org/voc/productName
https://www.gs1.org/voc/organizationName

Semantic Data Modelling Technical Bulletin

Release 1.0, Approved, Jun 2021 © 2021 GS1 AISBL Page 7 of 15

Figure 6 – FreshOrSeawaterFarmedCode is an example of a code list or enumeration.

A code list is modelled as a class that does not have any associated properties; enumerated defined
values within the code list are members of the class that represents the code list. Figure 6 shows
the use of a code list; FreshOrSeawaterFarmedCode is a code list (or enumeration within a UML
class diagram) and defines some code values to be used on a global basis. Each code value, such as
FRESHWATER_FARMED is used without translation for interoperable global data exchange, although
each code value might have defined labels translated into multiple human languages, such as
"freshwater farmed" in English, "élevé en eau douce" in French, "in Süßwasser gezüchtet" in
German.

In this way, software that needs to take a decision based upon the standardised global code value
does not need to be concerned with translation into various human languages at the data exchange
layer, only at the user-interface or presentation layer, when the code value within the code list
might be displayed in a Web interface as a pull-down menu or label against a checkbox, showing the
label for the code value in the user's preferred language.

Semantic Data Modelling Technical Bulletin

Release 1.0, Approved, Jun 2021 © 2021 GS1 AISBL Page 8 of 15

3 Use of W3C Linked Data standards for semantic modelling
The World Wide Web Consortium (W3C) has defined a number of technical recommendations
(standards) that are useful for expressing a semantic data model at an abstract layer, independent
of syntax. Effectively they provide a machine-interpretable equivalent of a UML class diagram that a
human can interpret.

The foundation of Linked Data are URIs (primarily Web URIs / URLs) and Resource Description
Framework (RDF) in which any arbitrary data structure can be collapsed to a set of RDF triples that
connect a Subject via a Property to a Value, as shown in Figure 7. A RDF triple can be viewed as a
simple logical fact / assertion or 3-word sentence, Subject –> Property –> Value.

Figure 7 – simple examples of RDF triples to express a Subject – Property – Value relationship.

The two RDF triples in Figure 7 assert that:

1. The thing identified by GS1 Digital Link URI
https://example.com/01/09528765123457/21/ABC123 is a Product
(a member of the gs1:Product class, whose Web URI is https://gs1.org/voc/Product)
The property rdf:type (= http://www.w3.org/1999/02/22-rdf-syntax-ns#type) links an
individual to a class to which it belongs.

2. The thing identified by GS1 Digital Link URI
https://example.com/01/09528765123457/21/ABC123 has a GTIN value of
"09528765123457".
The property gs1:gtin (= https://gs1.org/voc/gtin) links a thing to its GTIN identifier.

Note that in Linked Data, every class, property, code list or code value within a code list has a
corresponding Web URI, which enables the corresponding name, definition and usage details to be
easily retrieved by making a Web request. Linked Data often makes use of Compact URI
Expressions [CURIE] to more compactly express a long Web URI as a CURIE prefix (e.g. 'rdf', 'gs1'
followed by a colon followed by a local part. Sites such as https://prefix.cc make it easy to lookup
such CURIE prefixes. Linked Data 'documents' declare the CURIE prefixes used within the document
and the corresponding URI stems.

The example in Figure 7 also shows that GS1 Digital Link URIs are not only a Web-friendly
representation of GS1 identifiers for linking to information and services on the Web.

GS1 Digital Link URIs can also be used in machine-interpretable Linked Data to express facts and
relationships about the identified things in a way that can be interpreted by Web search engines and
other software. GS1 Digital Link URIs can be used with Linked Data properties defined in the GS1
Web vocabulary, schema.org and other Linked Data vocabularies to express facts about the things
they identify.

The W3C RDF standard [RDF] defines a number of useful terms, including:

rdf:Property Each Linked Data property is a member of the rdf:Property class

https://example.com/01/09528765123457/21/ABC123
https://gs1.org/voc/Product
http://www.w3.org/1999/02/22-rdf-syntax-ns#type
https://example.com/01/09528765123457/21/ABC123
https://gs1.org/voc/gtin

Semantic Data Modelling Technical Bulletin

Release 1.0, Approved, Jun 2021 © 2021 GS1 AISBL Page 9 of 15

rdf:type Links the Subject to one or more classes to which it belongs

rdf:langString A literal data type corresponding to a language-tagged string, to
support multi-lingual values.

The W3C RDF Schema [RDFS] standard defines some further useful terms, including:

rdfs:Class Each Linked Data class is a member of the rdfs:Class class

rdfs:domain Links a property to its domain (the class in which it is defined)

rdfs:range Links a property to its range (the expected value type)

rdfs:label Is used to express a label or name for any term (class, property, code
list, code list value etc.) within a Linked Data vocabulary or semantic
ontology

rdfs:comment Is used to express a description or definition for any term (class,
property, code list, code list value etc.) within a Linked Data vocabulary
or semantic ontology

rdfs:subClassOf Links from a subclass to one of its superclasses

rdfs:subPropertyOf Links from a subproperty to one of its superproperties

The W3C Web Ontology Language [OWL] standard defines some further useful terms, including:

owl:Class Each Linked Data class is a member of the owl:Class class

owl:DatatypeProperty Each Linked Data property that expects to a data value such as a
string, language-tagged string, date, date+time, integer. A floating-
point value is a member of the owl:DatatypeProperty class

owl:ObjectProperty Each Linked Data property that expects a complex data object or class
or individual Linked Data resource is a member the
owl:DatatypeProperty class

owl:Thing The most general class of things. Most top-level classes within a Linked
Data vocabulary are defined to be an rdfs:subclassOf owl:Thing

owl:unionOf Used to express the class that is the union ('OR') combination of two or
more classes

owl:intersectionOf Used to express the class that is the intersection ('AND') combination of
two or more classes

The W3C Simple Knowledge Organization System [SKOS] standard is used for describing concepts
and relationships between these concepts. SKOS has the often useful flexibility to describe
conceptual relationships (narrower, broader, related etc.) that are looser than formal sub-property
or sub-class relationships.

The GS1 Web vocabulary makes use of RDF, RDFS, OWL and SKOS to express its classes,
subclasses, properties, code lists and also cross-references and relationships to related terms in
other Linked Data vocabularies such as schema.org.

schema.org also defines some useful properties including:

schema:domainIncludes Links a property to one or more classes in which it is defined

schema:rangeIncludes Links a property to one or more expected value types

schema:domainIncludes and schema:rangeIncludes overcome some of the cumbersome use of
owl:unionOf when using rdfs:domain or rdfs:range to point to multiple classes that define the
property or multiple expected value types; when rdfs:domain or rdfs:range are used with a list or
set of classes, the default interpretation is that the domain or range corresponds to the logical

Semantic Data Modelling Technical Bulletin

Release 1.0, Approved, Jun 2021 © 2021 GS1 AISBL Page 10 of 15

intersection ('AND') of all of these, whereas often the logical union ('OR') is what we more often
want to express.

Semantic Data Modelling Technical Bulletin

Release 1.0, Approved, Jun 2021 © 2021 GS1 AISBL Page 11 of 15

3.1 Using Linked Data to make a UML class diagram machine-interpretable
Taking a very simple UML class diagram such as that shown in Figure 1 (repeated here), it is
possible to use such fundamental terms from RDF, RDFS and OWL to convert the UML class diagram
into a machine-interpretable Linked Data definition of the same data model.

gs1:Product rdf:type owl:Class .

gs1:Product rdf:type rdfs:Class .

gs1:Product rdfs:subClassOf owl:Thing .

gs1:gtin rdf:type rdf:Property .

gs1:gtin rdf:type owl:DatatypeProperty .

gs1:gtin rdfs:domain gs1:Product .

gs1:gtin rdfs:range xsd:string .

gs1:expirationDate rdf:type rdf:Property .

gs1:expirationDate rdf:type owl:DatatypeProperty .

gs1:expirationDate rdfs:domain gs1:Product .

gs1:expirationDate rdfs:range xsd:date .

gs1:productName rdf:type rdf:Property .

gs1:productName rdf:type owl:DatatypeProperty .

gs1:productName rdfs:domain gs1:Product .

gs1:productName rdfs:range rdf:langString .

gs1:productName rdfs:subPropertyOf schema:name .

gs1:productDescription rdf:type rdf:Property .

gs1:productDescription rdf:type owl:DatatypeProperty .

gs1:productDescription rdfs:domain gs1:Product .

gs1:productDescription rdfs:range rdf:langString .

gs1:QuantitativeValue rdf:type owl:Class .

gs1:QuantitativeValue rdf:type rdfs:Class .

gs1:QuantitativeValue rdfs:subClassOf owl:Thing .

gs1:netWeight rdf:type rdf:Property .

gs1:netWeight rdf:type owl:ObjectProperty .

gs1:netWeight rdfs:domain gs1:Product .

gs1:netWeight rdfs:range gs1:QuantitativeValue .

gs1:inPackageHeight rdf:type rdf:Property .

gs1:inPackageHeight rdf:type owl:ObjectProperty .

gs1:inPackageHeight rdfs:domain gs1:Product .

gs1:inPackageHeight rdfs:range gs1:QuantitativeValue .

gs1:value rdf:type rdf:Property .

gs1:value rdf:type owl:DatatypeProperty .

gs1:value rdfs:domain gs1:QuantitativeValue .

gs1:value rdfs:range xsd:float .

gs1:unitCode rdf:type rdf:Property .

gs1:unitCode rdf:type owl:DatatypeProperty .

gs1:unitCode rdfs:domain gs1:QuantitativeValue .

gs1:unitCode rdfs:range xsd:string .

Semantic Data Modelling Technical Bulletin

Release 1.0, Approved, Jun 2021 © 2021 GS1 AISBL Page 12 of 15

4 Profiles and validation of a data model
There is also a need to be able to validate data, to check that all mandatory data is present and that
the data values are expressed using the appropriate data types, e.g. to reject a date value where an
integer or floating-point value was expected. Validation schema (often expressed in XSD, JSON
Schema or SHACL or Open API interfaces) enable validation to be performed automatically.

It's important to note that different validation schemas exist independently of the data model itself.
One can validate a single XML document against multiple XML Schemas which may vary. Therefore
it’s useful to think of validation as a layer on top of the data model. These layers are called profiles.
In the GS1 community, one can imagine a profile for a sector like consumer packaged goods being
very different from a profile for pharmaceuticals, and yet they may both selectively use terms from
the same data models.

Cardinality constraints indicate the minimum and maximum number of values a property or
attribute can express. They are often not intrinsic characteristics of the attribute but depend on the
context or profile in which it is used. In contrast, a Linked Data property or attribute can be declared
to be a functional property if it logically, semantically can only have one value, such as the date of
manufacture of a product for a particular product instance.

XML Schema Definition language (XSD) is concerned with validation of a structured document in
which each element must appear within a well-defined sequence and where special provision must
be made for user extensions. This is sometimes referred to as a 'closed shape' validation.

JSON Schema and SHACL are concerned with validation of a 'data graph' rather than a rigidly
defined document structure of XML. A data graph is typically a tree structure and might visually
resemble a 'mind map' in which ovals represent concepts or data classes and the arrows that
connect these correspond to defined attributes/properties that express specific relationships.

Compared with XML, it is much easier to add user extensions to a data graph. JSON Schema and
SHACL are often configured to do 'open shape' validation in which they simply ignore any user
extensions that they were not expecting to validate.

The following table provides a comparison of how some simple validation constraints can be
expressed in XSD, JSON Schema and SHACL.

Validation
Rule

XSD JSON Schema SHACL

Applies to
named field

name="fieldname"
type="defined_type"

Fieldname appears
within list of
"properties"

sh:path fieldname

Mandatory
Field

minOccurs="1"

(may be omitted since
default values of
minOccurs="1")

Include fieldname
within the list of
"required" properties

sh:minCount 1

(must be asserted since default value
of sh:minCount=0)

Note on
default values
for
minOccurs,
maxOccurs
and
sh:minCount,
sh:maxCount

default of XSD minOccurs
= 1, maxOccurs = 1)

Only properties
specified within
"required" are
considered mandatory

default of sh:minCount = 0, default of
sh:maxCount = unbounded

Optional Field minOccurs="0"

(must be asserted since
default value of
minOccurs="1")

Include fieldname
within the list of
"properties" but omit
from list of "required"
properties

sh:minCount 0

(may be omitted since default value
of sh:minCount=0)

Field expects
a string

type="xsd:string" "type":"string" sh:datatype xsd:string

Field expects
a dateTime

type="xsd:dateTime" "type":"string",
"format":"date-
time"

sh:datatype xsd:dateTime

Semantic Data Modelling Technical Bulletin

Release 1.0, Approved, Jun 2021 © 2021 GS1 AISBL Page 13 of 15

Validation
Rule

XSD JSON Schema SHACL

Field expects
an integer

type="xsd:int" "type":"integer" sh:datatype xsd:int

Field expects
a decimal
value

type="xsd:decimal" "type":"number" sh:datatype xsd:decimal

Field expects
a floating-
point value

type="xsd:float" "type":"number" sh:datatype xsd:float

Field expects
a URI

type="xsd:anyURI"
or references an
xsd:simpleType with an
xsd:restriction
base="xsd:anyURI"

"type":"string",
"format":"uri"

sh:nodeKind sh:IRI

Field expects
a string from
a restricted
list of
enumerated
values

references an
xsd:simpleType with an
xsd:restriction
base="xsd:string"
containing
xsd:enumeration child
elements that express the
permitted values

e.g.
 <xsd:simpleType
name="ActionType">

 <xsd:restriction
base="xsd:string">

 <xsd:enumeration
value="ADD"/>

 <xsd:enumeration
value="OBSERVE"/>

 <xsd:enumeration
value="DELETE"/>

 </xsd:restriction>

 </xsd:simpleType>

"type":"string",
"enum":[…]

e.g.
"type":"string",
"enum":[

"ADD",
"OBSERVE",

"DELETE"

]

sh:datatype xsd:string
sh:in ("ADD" "OBSERVE" "DELETE")

e.g.
epcis:Action_TypeAndFormat
owl:sameAs [

 sh:path epcis:action ;

 sh:datatype xsd:string ;

 sh:name "action" ;

 sh:in epcis:ActionEnum

].

epcis:ActionEnum owl:sameAs

("ADD" "OBSERVE" "DELETE").

Semantic Data Modelling Technical Bulletin

Release 1.0, Approved, Jun 2021 © 2021 GS1 AISBL Page 14 of 15

5 References
CURIE = Compact URI Expressions

■ https://www.w3.org/TR/curie/

GS1 Architecture Principles

■ Linked from https://www.gs1.org/standards/gs1-architecture

JSON = JavaScript Object Notation

■ https://tools.ietf.org/html/rfc8259

JSON-LD = JavaScript Object Notation for Linked Data

■ https://www.w3.org/TR/json-ld/

JSON Schema

■ https://json-schema.org/

Open API = Open Application Programming Interfaces

■ https://www.openapis.org/

OWL = Web Ontology Language

■ https://www.w3.org/TR/owl2-overview/

■ https://www.w3.org/2002/07/owl#

RDF = Resource Description Framework

■ https://www.w3.org/TR/rdf11-concepts/

■ https://www.w3.org/TR/rdf11-primer/

■ https://www.w3.org/1999/02/22-rdf-syntax-ns#

RDFS = Resource Description Framework Schema

■ https://www.w3.org/TR/rdf-schema/

SHACL = Shapes Constraint Language

■ https://www.w3.org/TR/shacl/

SKOS = Simple Knowledge Organization System

■ https://www.w3.org/TR/skos-primer/

■ http://www.w3.org/2004/02/skos/core#

UML = Unified Modelling Language

■ https://www.omg.org/spec/UML/

XML = eXtensible Markup Language

■ https://www.w3.org/TR/REC-xml/

XSD = XML Scheme Definition language

■ https://www.w3.org/TR/xmlschema-1/

■ https://www.w3.org/TR/xmlschema-2/

https://www.w3.org/TR/curie/
https://www.gs1.org/standards/gs1-architecture
https://tools.ietf.org/html/rfc8259
https://www.w3.org/TR/json-ld/
https://json-schema.org/
https://www.openapis.org/
https://www.w3.org/TR/owl2-overview/
https://www.w3.org/2002/07/owl
https://www.w3.org/TR/rdf11-concepts/
https://www.w3.org/TR/rdf11-primer/
https://www.w3.org/1999/02/22-rdf-syntax-ns
https://www.w3.org/TR/rdf-schema/
https://www.w3.org/TR/shacl/
https://www.w3.org/TR/skos-primer/
http://www.w3.org/2004/02/skos/core
https://www.omg.org/spec/UML/
https://www.w3.org/TR/REC-xml/
https://www.w3.org/TR/xmlschema-1/
https://www.w3.org/TR/xmlschema-2/

Semantic Data Modelling Technical Bulletin

Release 1.0, Approved, Jun 2021 © 2021 GS1 AISBL Page 15 of 15

Contributors to this Technical Bulletin
Name Organisation

Dr Mark Harrison Consultant to GS1 Global Office

Phil Archer Director, Web Solutions, GS1 Global Office

Disclaimer

THIS DOCUMENT IS PROVIDED “AS IS” WITH NO WARRANTIES WHATSOEVER, INCLUDING ANY WARRANTY
OF MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR PARTICULAR PURPOSE, OR ANY WARRANTY
OTHER WISE ARISING OUT OF THIS SPECIFICATION. GS1 disclaims all liability for any damages arising from
use or misuse of this document, whether special, indirect, consequential, or compensatory damages, and
including liability for infringement of any intellectual property rights, relating to use of information in or
reliance upon this document.

GS1 retains the right to make changes to this document at any time, without notice. GS1 makes no warranty
for the use of this document and assumes no responsibility for any errors which may appear in the document,
nor does it make a commitment to update the information contained herein.

GS1 and the GS1 logo are registered trademarks of GS1 AISBL.

	1 Introduction
	2 Building blocks of a data model
	2.1 Identifiers and namespaces
	2.2 Classes
	2.2.1 Sub-Classes

	2.3 Properties
	2.3.1 Sub-Properties
	2.3.2 Domain of a Property (Class in which it is defined)
	2.3.3 Range of a Property (Expected value type)

	2.4 Code Lists

	3 Use of W3C Linked Data standards for semantic modelling
	3.1 Using Linked Data to make a UML class diagram machine-interpretable

	4 Profiles and validation of a data model
	5 References
	Contributors to this Technical Bulletin

