

EPC Information Services (EPCIS)
Standard

enables disparate applications to create and share visibility
event data, both within and across enterprises.

Release 1.2, Ratified, Sep 2016

EPC Information Services (EPCIS) Standard

Release 1.2, Ratified, Sep 2016 © 2016 GS1 AISBL Page 2 of 138

Document Summary 1

Document Item Current Value

Document Name EPC Information Services (EPCIS) Standard

Document Date Sep 2016

Document Version 1.2

Document Issue

Document Status Ratified

Document Description enables disparate applications to create and share visibility event data,
both within and across enterprises.

Contributors 2

Name Company

Andrew Kennedy, Co-chair FoodLogiQ

Ralph Troeger, Co-chair GS1 Germany

Gena Morgan, Facilitator GS1 Global Office

Ken Traub, Editor Ken Traub Consulting LLC

Philip Allgaier bpcompass GmbH

Paul Arguin r-pac international

Karla Biggs-Gregory Oracle

Zsolt Bocsi GS1 Hungary

Jonas Buskenfried GS1 Sweden

Jaewook Byun Auto-ID Labs, KAIST

Karolin Catela GS1 Sweden

Mario Chavez GS1 Guatemala

Luiz Costa GS1 Brasil

Deniss Dobrovolskis GS1 Sweden

Michael Dols MET Laboratories

Hussam El-Leithy GS1 US

Jürgen Engelhardt Robert Bosch GmbH

Heinz Graf GS1 Switzerland

Danny Haak Nedap

Tany Hui GS1 Hong Kong, China

Jianhua Jia GS1 China

Peter Jonsson GS1 Sweden

Art Kaufmann Frequentz LLC

Janice Kite GS1 Global Office

Jens Kungl METRO Group

Roar Lorvik GS1 Norway

Paul Lothian Tyson

Fargeas Ludovic Courbon

EPC Information Services (EPCIS) Standard

Release 1.2, Ratified, Sep 2016 © 2016 GS1 AISBL Page 3 of 138

Name Company

Noriyuki Mama GS1 Japan

Kevan McKenzie McKesson

Reiko Moritani GS1 Japan

Alice Mukaru GS1 Sweden

Mauricio Munoz Axway

Falk Nieder EECC

Juan Ochoa GS1 Columbia

Ted Osinski MET Laboratories

Ben Östman GS1 Finland

James Perng GS1 Chinese Taipei

Craig Alan Repec GS1 Global Office

Chris Roberts GlaxoSmithKline

Thomas Rumbach SAP AG

Chuck Sailer Frequentz

Michael Sarachman GS1 Global Office

Hans Peter Scheidt GS1 Germany

Michael Smith Merck & Co., Inc.

Michele Southall GS1 US

Peter Spellman TraceLink

Peter Sturtevant GS1 US

Hristo Todorov Axway

Geir Vevle HRAFN AS

Elizabeth Waldorf TraceLink

Ruoyun Yan GS1 China

Tony Zhang FSE, Inc.

Mike Zupec Abbvie

Log of Changes 3

Release Date of Change Changed By Summary of Change

1.0 Initial version

EPC Information Services (EPCIS) Standard

Release 1.2, Ratified, Sep 2016 © 2016 GS1 AISBL Page 4 of 138

Release Date of Change Changed By Summary of Change

1.1 May 2014 EPCIS 1.1 is fully backward compatible with EPCIS 1.0.1.
EPCIS 1.1 includes these new or enhanced features:
Support for class-level identification is added to
ObjectEvent, AggregationEvent, and
TransformationEvent through the addition of quantity lists.
A new event type, TransformationEvent, provides for the
description of events in which inputs are consumed and
outputs are produced.
The “why” dimension of all event types are enhanced so that
information about the sources and destinations of business
transfers may be included.
The “why” dimension of certain event types are enhanced so
that item/lot master data may be included.
The SimpleEventQuery is enhanced to encompass the above
changes to event types.
The introductory material is revised to align with the GS1
System Architecture.
The XML extension mechanism is explained more fully.
The QuantityEvent is deprecated, as its functionality is fully
subsumed by ObjectEvent with the addition of quantity lists.

1.2 Sep 2016 EPCIS 1.2 is fully backward compatible with EPCIS 1.1 and
1.0.1.
EPCIS 1.2 includes these new or enhanced features:
A mechanism is introduced to declare that a prior EPCIS
event is in error, for use when it is impossible to correct the
historical trace by means of ordinary EPCIS events. This
mechanism includes the errorDeclaration structure in an
EPCIS event and associated query parameters.
An optional eventID is added to all EPCIS events. Its main
intended use is to allow for an error declaration event to
(optionally) refer to one or more corrective events.
The Simple Event Query is enhanced to clarify that queries
for extension or ILMD fields apply only to top-level XML
elements, and a new set of query parameters is introduced
to query for XML elements nested within top-level elements.
The role of an EPCIS document as a means to transmit
events point-to-point is clarified.
The EPCIS Header in the XML schemas is enhanced to allow
for optional inclusion of master data.
The use of extension elements within <readPoint> and
<bizLocation> is deprecated.

Section 12 regarding conformance is added.

Disclaimer 4

GS1®, under its IP Policy, seeks to avoid uncertainty regarding intellectual property claims by requiring the participants in 5
the Work Group that developed this EPC Information Services (EPCIS) Standard to agree to grant to GS1 members a 6
royalty-free licence or a RAND licence to Necessary Claims, as that term is defined in the GS1 IP Policy. Furthermore, 7
attention is drawn to the possibility that an implementation of one or more features of this Specification may be the subject 8
of a patent or other intellectual property right that does not involve a Necessary Claim. Any such patent or other 9
intellectual property right is not subject to the licencing obligations of GS1. Moreover, the agreement to grant licences 10
provided under the GS1 IP Policy does not include IP rights and any claims of third parties who were not participants in the 11
Work Group. 12

Accordingly, GS1 recommends that any organisation developing an implementation designed to be in conformance with this 13
Specification should determine whether there are any patents that may encompass a specific implementation that the 14
organisation is developing in compliance with the Specification and whether a licence under a patent or other intellectual 15
property right is needed. Such a determination of a need for licencing should be made in view of the details of the specific 16
system designed by the organisation in consultation with their own patent counsel. 17

EPC Information Services (EPCIS) Standard

Release 1.2, Ratified, Sep 2016 © 2016 GS1 AISBL Page 5 of 138

THIS DOCUMENT IS PROVIDED “AS IS” WITH NO WARRANTIES WHATSOEVER, INCLUDING ANY WARRANTY OF 18
MERCHANTABILITY, NONINFRINGMENT, FITNESS FOR PARTICULAR PURPOSE, OR ANY WARRANTY OTHER WISE ARISING 19
OUT OF THIS SPECIFICATION. GS1 disclaims all liability for any damages arising from use or misuse of this Standard, 20
whether special, indirect, consequential, or compensatory damages, and including liability for infringement of any 21
intellectual property rights, relating to use of information in or reliance upon this document. 22

GS1 retains the right to make changes to this document at any time, without notice. GS1 makes no warranty for the use of 23
this document and assumes no responsibility for any errors which may appear in the document, nor does it make a 24
commitment to update the information contained herein. 25

GS1 and the GS1 logo are registered trademarks of GS1 AISBL. 26
 27

EPC Information Services (EPCIS) Standard

Release 1.2, Ratified, Sep 2016 © 2016 GS1 AISBL Page 6 of 138

Table of Contents 28

1 Introduction ... 9 29

2 Relationship to the GS1 System Architecture .. 9 30
2.1 Overview of GS1 standards .. 10 31
2.2 EPCIS in relation to the “Capture” and “Share” layers .. 10 32
2.3 EPCIS in Relation to trading partners ... 12 33
2.4 EPCIS in relation to other GS1 System Architecture components ... 13 34

3 EPCIS specification principles ... 15 35

4 Terminology and typographical conventions ... 16 36

5 EPCIS specification framework ... 16 37
5.1 Layers ... 16 38
5.2 Extensibility .. 18 39
5.3 Modularity .. 18 40

6 Abstract data model layer ... 18 41
6.1 Event data and master data ... 19 42

6.1.1 Transmission of master data in EPCIS ... 21 43
6.2 Vocabulary kinds ... 22 44
6.3 Extension mechanisms ... 23 45
6.4 Identifier representation .. 24 46
6.5 Hierarchical vocabularies .. 24 47

7 Data definition layer ... 25 48
7.1 General rules for specifying data definition layer modules .. 25 49

7.1.1 Content ... 25 50
7.1.2 Notation .. 26 51
7.1.3 Semantics .. 27 52

7.2 Core event types module – overview ... 27 53
7.3 Core event types module – building blocks ... 31 54

7.3.1 Primitive types ... 31 55
7.3.2 Action type .. 31 56
7.3.3 The “What” dimension ... 32 57
7.3.4 The “Where” Dimension – read point and business location .. 35 58
7.3.5 The “Why” dimension .. 38 59
7.3.6 Instance/Lot master data (ILMD) .. 41 60

7.4 Core event types module – events .. 42 61
7.4.1 EPCISEvent .. 42 62
7.4.2 ObjectEvent (subclass of EPCISEvent) ... 45 63
7.4.3 AggregationEvent (subclass of EPCISEvent) ... 48 64
7.4.4 QuantityEvent (subclass of EPCISEvent) – DEPRECATED .. 51 65
7.4.5 TransactionEvent (subclass of EPCISEvent) .. 52 66
7.4.6 TransformationEvent (subclass of EPCISEvent) ... 55 67

8 Service layer ... 57 68

EPC Information Services (EPCIS) Standard

Release 1.2, Ratified, Sep 2016 © 2016 GS1 AISBL Page 7 of 138

8.1 Core capture operations module .. 59 69
8.1.1 Authentication and authorisation .. 59 70
8.1.2 Capture service .. 59 71

8.2 Core Query operations module .. 60 72
8.2.1 Authentication .. 61 73
8.2.2 Authorisation .. 61 74
8.2.3 Queries for large amounts of data ... 62 75
8.2.4 Overly complex queries ... 62 76
8.2.5 Query framework (EPCIS query control interface) ... 62 77
8.2.6 Error conditions .. 68 78
8.2.7 Predefined queries for EPCIS .. 70 79
8.2.8 Query callback interface .. 81 80

9 XML bindings for data definition modules ... 82 81
9.1 Extensibility mechanism ... 82 82
9.2 Standard business document header ... 84 83
9.3 EPCglobal Base schema ... 85 84
9.4 Master data in the XML binding ... 86 85
9.5 Schema for core event types .. 87 86

9.6 Core event types – examples (Non-Normative) ... 99 87

9.6.1 Example 1 – Object Events with instance-level identification 99 88
9.6.2 Example 2 – Object Event with class-level identification .. 100 89
9.6.3 Example 3 – Aggregation event with mixed identification .. 101 90
9.6.4 Example 4 – Transformation event ... 102 91

9.7 Schema for master data document ... 103 92

9.8 Master data – example (non-normative) ... 105 93

10 Bindings for core capture operations module 106 94
10.1 Message queue binding ... 106 95
10.2 HTTP binding ... 107 96

11 Bindings for core query operations module ... 108 97
11.1 XML schema for core query operations module .. 108 98
11.2 SOAP/HTTP binding for the query control interface ... 116 99
11.3 AS2 Binding for the query control interface ... 124 100

11.3.1 GS1 AS2 guidelines (Non-Normative) ... 126 101

11.4 Bindings for query callback interface... 128 102
11.4.1 General Considerations for all XML-based bindings ... 129 103
11.4.2 HTTP binding of the query callback interface ... 129 104
11.4.3 HTTPS binding of the query callback interface ... 129 105
11.4.4 AS2 Binding of the query callback interface ... 130 106

12 Conformance ... 131 107
12.1 Conformance of EPCIS data ... 131 108
12.2 Conformance of EPCIS capture interface clients ... 131 109
12.3 Conformance of EPCIS capture interface servers .. 131 110
12.4 Conformance of EPCIS query interface clients .. 132 111
12.5 Conformance of EPCIS query interface servers ... 132 112

EPC Information Services (EPCIS) Standard

Release 1.2, Ratified, Sep 2016 © 2016 GS1 AISBL Page 8 of 138

12.6 Conformance of EPCIS query callback interface implementations 132 113

13 References .. 132 114

14 Contributors to earlier versions ... 133 115

 116

EPC Information Services (EPCIS) Standard

Release 1.2, Ratified, Sep 2016 © 2016 GS1 AISBL Page 9 of 138

1 Introduction 117

This document is a GS1 standard that defines Version 1.2 of EPC Information Services (EPCIS). The 118
goal of EPCIS is to enable disparate applications to create and share visibility event data, both 119
within and across enterprises. Ultimately, this sharing is aimed at enabling users to gain a shared 120
view of physical or digital objects within a relevant business context. 121

“Objects” in the context of EPCIS typically refers to physical objects that are identified either at a 122
class or instance level and which are handled in physical handling steps of an overall business 123
process involving one or more organisations. Examples of such physical objects include trade items 124
(products), logistic units, returnable assets, fixed assets, physical documents, etc. “Objects” may 125
also refer to digital objects, also identified at either a class or instance level, which participate in 126
comparable business process steps. Examples of such digital objects include digital trade items 127
(music downloads, electronic books, etc.), digital documents (electronic coupons, etc.), and so 128
forth. Throughout this document the word “object” is used to denote a physical or digital object, 129
identified at a class or instance level, that is the subject of a business process step. EPCIS data 130
consist of “visibility events,” each of which is the record of the completion of a specific business 131
process step acting upon one or more objects. 132

The EPCIS standard was originally conceived as part of a broader effort to enhance collaboration 133
between trading partners by sharing of detailed information about physical or digital objects. The 134
name EPCIS reflects the origins of this effort in the development of the Electronic Product Code 135
(EPC). It should be noted, however, that EPCIS does not require the use of Electronic Product 136
Codes, nor of Radio-Frequency Identification (RFID) data carriers, and as of EPCIS 1.2 does not 137
even require instance-level identification (for which the Electronic Product Code was originally 138
designed). The EPCIS standard applies to all situations in which visibility event data is to be 139
captured and shared, and the presence of “EPC” within the name is of historical significance only. 140

EPCIS provides open, standardised interfaces that allow for seamless integration of well-defined 141
services in inter-company environments as well as within companies. Standard interfaces are 142
defined in the EPCIS standard to enable visibility event data to be captured and queried using a 143
defined set of service operations and associated data standards, all combined with appropriate 144
security mechanisms that satisfy the needs of user companies. In many or most cases, this will 145
involve the use of one or more persistent databases of visibility event data, though elements of the 146
Services approach could be used for direct application-to-application sharing without persistent 147
databases. 148

With or without persistent databases, the EPCIS specification specifies only a standard data sharing 149
interface between applications that capture visibility event data and those that need access to it. It 150
does not specify how the service operations or databases themselves should be implemented. This 151
includes not defining how the EPCIS services should acquire and/or compute the data they need, 152
except to the extent the data is captured using the standard EPCIS capture operations. The 153
interfaces are needed for interoperability, while the implementations allow for competition among 154
those providing the technology and implementing the standard. 155

EPCIS is intended to be used in conjunction with the GS1 Core Business Vocabulary (CBV) standard 156
[CBV1.2]. The CBV standard provides definitions of data values that may be used to populate the 157
data structures defined in the EPCIS standard. The use of the standardised vocabulary provided by 158
the CBV standard is critical to interoperability and critical to provide for querying of data by reducing 159
the variation in how different businesses express common intent. Therefore, applications should use 160
the CBV standard to the greatest extent possible in constructing EPCIS data. 161

The companion EPCIS and CBV Implementation Guideline [EPCISGuideline] provides additional 162
guidance for building visibility systems using EPCIS and CBV, including detailed discussion of how to 163
model specific business situations using EPCIS/CBV data and methods for sharing such data 164
between trading partners. 165

2 Relationship to the GS1 System Architecture 166

This section is largely quoted from [EPCAF] and [GS1Arch], and shows the relationship of EPCIS to 167
other GS1 standards. 168

EPC Information Services (EPCIS) Standard

Release 1.2, Ratified, Sep 2016 © 2016 GS1 AISBL Page 10 of 138

2.1 Overview of GS1 standards 169

GS1 standards support the information needs of end users interacting with each other in supply 170
chains, specifically the information required to support the business processes through which supply 171
chain participants interact. The subjects of such information are the real-world entities that are part 172
of those business processes. Real-world entities include things traded between companies, such as 173
products, parts, raw materials, packaging, and so on. Other real-world entities of relevance to 174
trading partners include the equipment and material needed to carry out the business processes 175
surrounding trade such as containers, transport, machinery; entities corresponding to physical 176
locations in which the business processes are carried out; legal entities such as companies, 177
divisions; service relationships; business transactions and documents; and others. Real-world 178
entities may exist in the tangible world, or may be digital or conceptual. Examples of physical 179
objects include a consumer electronics product, a transport container, and a manufacturing site 180
(location entity). Examples of digital objects include an electronic music download, an eBook, and an 181
electronic coupon. Examples of conceptual entities include a trade item class, a product category, 182
and a legal entity. 183

GS1 standards may be divided into the following groups according to their role in supporting 184
information needs related to real-world entities in supply chain business processes: 185

■ Standards which provide the means to identify real-world entities so that they may be the 186
subject of electronic information that is stored and/or communicated by end users. GS1 187
identification standards include standards that define unique identification codes (called GS1 188
identification keys). 189

■ Standards which provide the means to automatically capture data that is carried directly on 190
physical objects, bridging the world of physical things and the world of electronic information. 191
GS1 data capture standards include definitions of barcode and radio-frequency identification 192
(RFID) data carriers which allow identifiers to be affixed directly to a physical object, and 193
standards that specify consistent interfaces to readers, printers, and other hardware and 194
software components that connect the data carriers to business applications. 195

■ Standards which provide the means to Share information, both between trading partners and 196
internally, providing the foundation for electronic business transactions, electronic visibility of 197
the physical or digital world, and other information applications. GS1 standards for information 198
sharing include this EPCIS Standard which is a standard for visibility event data. Other 199
standards in the “Share” group are standards for master data and for business transaction data, 200
as well as discovery standards that help locate where relevant data resides across a supply 201
chain and trust standards that help establish the conditions for sharing data with adequate 202
security. 203

The EPCIS Standard fits into the “Share” group, providing the data standard for visibility event data 204
and the interface standards for capturing such information from data capture infrastructure (which 205
employs standards from the “Capture” group) and for sharing such information with business 206
applications and with trading partners. 207

2.2 EPCIS in relation to the “Capture” and “Share” layers 208

The following diagram shows the relationship between EPCIS and other GS1 standards in the 209
“Capture” and “Share” groups. (The “Identify” group of standards pervades the data at all levels of 210
this architecture, and so is not explicitly shown.) 211

EPC Information Services (EPCIS) Standard

Release 1.2, Ratified, Sep 2016 © 2016 GS1 AISBL Page 11 of 138

 212

As depicted in the diagram above, the EPCIS Capture Interface exists as a bridge between the 213
“Capture” and “Share” standards. The EPCIS Query Interface provides visibility event data both to 214
internal applications and for sharing with trading partners. 215

At the centre of a data capture application is the data capture workflow that supervises the business 216
process step within which data capture takes place. This is typically custom logic that is specific to 217
the application. Beneath the data capture workflow in the diagram is the data path between the 218
workflow and GS1 data carriers: barcodes and RFID. The green bars in the diagram denote GS1 219
standards that may be used as interfaces to the data carriers. At the top of the diagram are the 220
interfaces between the data capture workflow and larger-scale enterprise applications. Many of 221
these interfaces are application- or enterprise-specific, though using GS1 data as building blocks; 222
however, the EPCIS interface is a GS1 standard. Note that the interfaces at the top of the diagram, 223
including EPCIS, are independent of the data carrier used at the bottom of the diagram. 224

Filtering &
Collection Engine

EPCIS Accessing
Applications and other

Enterprise-level
Applications

LLRP Interface

ALE Interface

EPCIS Capture
Interface

Data Capture Workflow

Composite
Element
String

Data
Capture
Application

Various app-specific Interfaces

Human
Interfaces

RFID Reader

RFID Air Interface

RFID Tag

Barcode Symbology

Barcode

= System Component

= Interface

EPCIS Query Interface

eCOM (GS1 XML / EANCOM) Interface

GDSN Interface

To/from
external
parties

Capture

Share

EPCIS
Repository

Possible
bypass for
real-time

“push”

http://www.prlog.org/10135910-uhf-rfid-reader.jpg
http://www.prlog.org/10135910-uhf-rfid-reader.jpg

EPC Information Services (EPCIS) Standard

Release 1.2, Ratified, Sep 2016 © 2016 GS1 AISBL Page 12 of 138

The purpose of the interfaces and the reason for a multi-layer data capture architecture is to provide 225
isolation between different levels of abstraction. Viewed from the perspective of an enterprise 226
application (i.e., from the uppermost blue box in the figure), the entire data capture application 227
shields the enterprise application from the details of exactly how data capture takes place. Through 228
the application-level interfaces (uppermost green bars), an enterprise application interacts with the 229
data capture workflow through data that is data carrier independent and in which all of the 230
interaction between data capture components has been consolidated into that data. At a lower level, 231
the data capture workflow is cognizant of whether it is interacting with barcode scanners, RFID 232
interrogators, human input, etc., but the transfer interfaces (green bars in the middle) shield the 233
data capture workflow from low-level hardware details of exactly how the data carriers work. The 234
lowest level interfaces (green bars on the bottom) embody those internal data carrier details. EPCIS 235
and the “Share” layer in general differ from elements in the Capture layer in three key respects: 236

1. EPCIS deals explicitly with historical data (in addition to current data). The Capture layer, in 237
contrast, is oriented exclusively towards real-time processing of captured data. 238

2. EPCIS often deals not just with raw data captured from data carriers such as barcodes and RFID 239
tags, but also in contexts that imbue those observations with meaning relative to the physical or 240
digital world and to specific steps in operational or analytical business processes. The Capture 241
layers are more purely observational in nature. An EPCIS event, while containing much of the 242
same “Identify” data as a Filtering & Collection event or a barcode scan, is at a semantically 243
higher level because it incorporates an understanding of the business context in which the 244
identifier data were obtained. Moreover, there is no requirement that an EPCIS event be directly 245
related to a specific physical data carrier observation. For example, an EPCIS event may indicate 246
that a perishable trade item has just crossed its expiration date; such an event may be 247
generated purely by software. 248

3. EPCIS operates within enterprise IT environments at a level that is much more diverse and 249
multi-purpose than exists at the Capture layer, where typically systems are self-contained and 250
exist to serve a single business purpose. In part, and most importantly, this is due to the desire 251
to share EPCIS data between enterprises which are likely to have different solutions deployed to 252
perform similar tasks. In part, it is also due to the persistent nature of EPCIS data. And lastly, it 253
is due to EPCIS being at the highest level of the overall architecture, and hence the natural point 254
of entry into other enterprise systems, which vary widely from one enterprise to the next (or 255
even within parts of the same enterprise). 256

2.3 EPCIS in Relation to trading partners 257

GS1 standards in the “Share” layer pertain to three categories of data that are shared between end 258
users: 259

Data Description GS1 standards

Master data Data, shared by one trading partner to many trading partners, that provide
descriptive attributes of real-world entities identified by GS1 identification keys,
including trade items, parties, and physical locations.

GDSN

Transaction
data

Trade transactions triggering or confirming the execution of a function within a
business process as defined by an explicit business agreement (e.g., a supply
contract) or an implicit one (e.g., customs processing), from the start of the
business process (e.g., ordering the product) to the end of it (e.g., final
settlement), also making use of GS1 identification keys.

GS1 XML
EANCOM

Visibility event
data

Details about physical or digital activity in the supply chain of products and
other assets, identified by keys, detailing where these objects are in time, and
why; not just within one organisation’s four walls, but across organisations.

EPCIS

 260

Transaction Data and Visibility Event Data have the characteristic that new documents of those 261
types are continually created as more business is transacted in a supply chain in steady state, even 262
if no new real-world entities are being created. Master data, in contrast, is more static: the master 263
data for a given entity changes very slowly (if at all), and the quantity of master data only increases 264
as new entities are created, not merely because existing entities participate in business processes. 265
For example, as a given trade item instance moves through the supply chain, new transaction data 266
and visibility event data are generated as that instance undergoes business transactions (such as 267

EPC Information Services (EPCIS) Standard

Release 1.2, Ratified, Sep 2016 © 2016 GS1 AISBL Page 13 of 138

purchase and sale) and physical handling processes (packing, picking, stocking, etc.). But new 268
master data is only created when a new trade item or location is added to the supply chain. 269

The following figure illustrates the flow of data between trading partners, emphasising the parts of 270
the EPCIS standard involved in the flow of visibility event data. 271

 272
In addition to the use of the EPCIS Query Interface as illustrated above, trading partners may by 273
mutual agreement use the EPCIS Document structure defined in Section 9.3 as a means to transport 274
a collection of EPCIS events, optionally accompanied by relevant master data, as a single electronic 275
document. 276

2.4 EPCIS in relation to other GS1 System Architecture components 277

The following outlines the responsibilities of each element of the GS1 System Architecture as 278
illustrated in the figures in the preceding sections. Further information may be found in [GS1Arch], 279
from which the above diagram and much of the above text is quoted, and [EPCAF], from which 280
much of the following text is quoted. 281

EPCIS Accessing
Applications and

other Enterprise-level
Applications

EPCIS Capture
Interface

Data Capture Infrastructure

App-specific
Interfaces

eCOM (GS1 XML / EANCOM) Interface

GDSN Interface
and data pools

EPCIS
Repository

EPCIS Query
Interface (Control

and Callback)

EPCIS Accessing
Applications and

other Enterprise-level
Applications

App-specific
Interfaces

EPCIS Capture
Interface

EPCIS
Repository

Data Capture Infrastructure

EPCIS Query traffic – on-demand queries and
standing queries

EPCIS Query
Interface (Control

and Callback)

Trading Partner 1 Trading Partner 2

GS1 Networked Services

Services for
Discovery (ONS, etc)

GDSN Global
Registry

EPC Information Services (EPCIS) Standard

Release 1.2, Ratified, Sep 2016 © 2016 GS1 AISBL Page 14 of 138

■ RFID and Barcode Readers Make observations of RFID tags while they are in the read zone, and 282
observations of barcodes when reading is triggered. 283

■ Low-Level [RFID] Reader Protocol (LLRP) Interface Defines the control and delivery of raw RFID 284
tag reads from RFID Readers to the Filtering & Collection role. Events at this interface say 285
“Reader A saw EPC X at time T.” 286

■ Filtering & Collection This role filters and collects raw RFID tag reads, over time intervals 287
delimited by events defined by the EPCIS Capturing Application (e.g. tripping a motion 288
detector). No comparable role typically exists for reading barcodes, because barcode readers 289
typically only read a single barcode when triggered. 290

■ Filtering & Collection (ALE) Interface Defines the control and delivery of filtered and collected 291
RFID tag read data from the Filtering & Collection role to the Data Capture Workflow role. 292
Events at this interface say “At Logical Reader L, between time T1 and T2, the following EPCs 293
were observed,” where the list of EPCs has no duplicates and has been filtered by criteria 294
defined by the EPCIS Capturing Application. In the case of barcodes, comparable data is 295
delivered to the Data Capture Workflow role directly from the barcode reader in the form of a 296
GS1 Element String. 297

■ Data Capture Workflow Supervises the operation of the lower-level architectural elements, and 298
provides business context by coordinating with other sources of information involved in 299
executing a particular step of a business process. The Data Capture Workflow may, for example, 300
coordinate a conveyor system with Filtering & Collection events and barcode reads, may check 301
for exceptional conditions and take corrective action (e.g., diverting a bad object into a rework 302
area), may present information to a human operator, and so on. The Data Capture Workflow 303
understands the business process step or steps during which EPCIS event data capture takes 304
place. This role may be complex, involving the association of multiple Filtering & Collection 305
events and/or barcode reads with one or more business events, as in the loading of a shipment. 306
Or it may be straightforward, as in an inventory business process where there may be readers 307
deployed that generate observations about objects that enter or leave the shelf. Here, the 308
Filtering & Collection-level event or barcode read and the EPCIS-level event may be so similar 309
that very little actual processing at the Data Capture Workflow level is necessary, and the Data 310
Capture Workflow merely configures and routes events from the Filtering & Collection interface 311
and/or barcode readers directly through the EPCIS Capture Interface to an EPCIS-enabled 312
Repository or a business application. A Data Capture Workflow whose primary output consists of 313
EPCIS events is called an “EPCIS Capturing Application” within this standard. 314

■ EPCIS Interfaces The interfaces through which EPCIS data is delivered to enterprise-level roles, 315
including EPCIS Repositories, EPCIS Accessing Applications, and data exchange with partners. 316
Events at these interfaces say, for example, “At location X, at time T, the following contained 317
objects (cases) were verified as being aggregated to the following containing object (pallet).” 318
There are actually three EPCIS Interfaces. The EPCIS Capture Interface defines the delivery of 319
EPCIS events from EPCIS Capturing Applications to other roles that consume the data in real 320
time, including EPCIS Repositories, and real-time “push” to EPCIS Accessing Applications and 321
trading partners. The EPCIS Query Control Interface defines a means for EPCIS Accessing 322
Applications and trading partners to obtain EPCIS data subsequent to capture, typically by 323
interacting with an EPCIS Repository. The EPCIS Query Control Interface provides two modes of 324
interaction. In “on-demand” or “synchronous” mode, a client makes a request through the 325
EPCIS Query Control Interface and receives a response immediately. In “standing request” or 326
“asynchronous” mode, a client establishes a subscription for a periodic query. Each time the 327
periodic query is executed, the results are delivered asynchronously (or “pushed”) to a recipient 328
via the EPCIS Query Callback Interface. The EPCIS Query Callback Interface may also be used 329
to deliver information immediately upon capture; this corresponds to the “possible bypass for 330
real-time push” arrow in the diagram. All three of these EPCIS interfaces are specified 331
normatively in this document. 332

■ EPCIS Accessing Application: Responsible for carrying out overall enterprise business processes, 333
such as warehouse management, shipping and receiving, historical throughput analysis, and so 334
forth, aided by EPC-related data. 335

■ EPCIS-enabled Repository: Records EPCIS-level events generated by one or more EPCIS 336
Capturing Applications, and makes them available for later query by EPCIS Accessing 337
Applications. 338

EPC Information Services (EPCIS) Standard

Release 1.2, Ratified, Sep 2016 © 2016 GS1 AISBL Page 15 of 138

■ Partner Application: Trading Partner systems that perform the same role as an EPCIS Accessing 339
Application, though from outside the responding party’s network. Partner Applications may be 340
granted access to a subset of the information that is available from an EPCIS Capturing 341
Application or within an EPCIS Repository. 342

The interfaces within this stack are designed to insulate the higher levels of the architecture from 343
unnecessary details of how the lower levels are implemented. One way to understand this is to 344
consider what happens if certain changes are made: 345

■ The Low-Level [RFID] Reader Protocol (LLRP) and GS1 Element String insulate the higher layers 346
from knowing what RF protocols or barcode symbologies are in use, and what reader 347
makes/models have been chosen. If a different reader is substituted, the information sent 348
through these interfaces remains the same. 349

■ In situations where RFID is used, the Filtering & Collection Interface insulates the higher layers 350
from the physical design choices made regarding how RFID tags are sensed and accumulated, 351
and how the time boundaries of events are triggered. If a single four-antenna RFID reader is 352
replaced by a constellation of five single-antenna “smart antenna” readers, the events at the 353
Filtering & Collection level remain the same. Likewise, if a different triggering mechanism is 354
used to mark the start and end of the time interval over which reads are accumulated, the 355
Filtering & Collection event remains the same. 356

■ EPCIS insulates enterprise applications from understanding the details of how individual steps in 357
a business process are carried out at a detailed level. For example, a typical EPCIS event is “At 358
location X, at time T, the following cases were verified as being on the following pallet.” In a 359
conveyor-based business implementation, this may correspond to a single Filtering & Collection 360
event, in which reads are accumulated during a time interval whose start and end is triggered 361
by the case crossing electric eyes surrounding a reader mounted on the conveyor. But another 362
implementation could involve three strong people who move around the cases and use hand-363
held readers to read the tags. At the Filtering & Collection level, this looks very different (each 364
triggering of the hand-held reader is likely a distinct Filtering & Collection event), and the 365
processing done by the EPCIS Capturing Application is quite different (perhaps involving an 366
interactive console that the people use to verify their work). But the EPCIS event is still the 367
same for all these implementations. 368

In summary, EPCIS-level data differs from data employed at the Capture level in the GS1 System 369
Architecture by incorporating semantic information about the business process in which data is 370
collected, and providing historical observations. In doing so, EPCIS insulates applications that 371
consume this information from knowing the low-level details of exactly how a given business 372
process step is carried out. 373

3 EPCIS specification principles 374

The considerations in the previous two sections reveal that the requirements for standards at the 375
EPCIS layer are considerably more complex than in the Capture layer of the GS1 System 376
Architecture. The historical nature of EPCIS data implies that EPCIS interfaces need a richer set of 377
access techniques than ALE or RFID and barcode reader interfaces. The incorporation of operational 378
or business process context into EPCIS implies that EPCIS traffics in a richer set of data types, and 379
moreover needs to be much more open to extension in order to accommodate the wide variety of 380
business processes in the world. Finally, the diverse environment in which EPCIS operates implies 381
that the EPCIS Standard be layered carefully so that even when EPCIS is used between external 382
systems that differ widely in their details of operation, there is consistency and interoperability at 383
the level of what the abstract structure of the data is and what the data means. 384

In response to these requirements, EPCIS is described by a framework specification and narrower, 385
more detailed specifications that populate that framework. The framework is designed to be: 386

■ Layered: In particular, the structure and meaning of data in an abstract sense is specified 387
separately from the concrete details of data access services and bindings to particular interface 388
protocols. This allows for variation in the concrete details over time and across enterprises while 389
preserving a common meaning of the data itself. It also permits EPCIS data specifications to be 390
reused in approaches other than the service-oriented approach of the present specification. For 391
example, data definitions could be reused in an EDI framework. 392

EPC Information Services (EPCIS) Standard

Release 1.2, Ratified, Sep 2016 © 2016 GS1 AISBL Page 16 of 138

■ Extensible: The core specifications provide a core set of data types and operations, but also 393
provide several means whereby the core set may be extended for purposes specific to a given 394
industry or application area. Extensions not only provide for proprietary requirements to be 395
addressed in a way that leverages as much of the standard framework as possible, but also 396
provides a natural path for the standards to evolve and grow over time. 397

■ Modular: The layering and extensibility mechanisms allow different parts of the complete EPCIS 398
framework to be specified by different documents, while promoting coherence across the entire 399
framework. This allows the process of standardisation (as well as of implementation) to scale. 400

The remainder of this document specifies the EPCIS framework. It also populates that framework 401
with a core set of data types and data interfaces. The companion standard, the GS1 Core Business 402
Vocabulary (CBV), provides additional data definitions that layer on top of what is provided by the 403
EPCIS standard. 404

4 Terminology and typographical conventions 405

Within this specification, the terms SHALL, SHALL NOT, SHOULD, SHOULD NOT, MAY, NEED NOT, 406
CAN, and CANNOT are to be interpreted as specified in Annex G of the ISO/IEC Directives, Part 2, 407
2001, 4th edition [ISODir2]. When used in this way, these terms will always be shown in ALL CAPS; 408
when these words appear in ordinary typeface they are intended to have their ordinary English 409
meaning. 410

All sections of this document, with the exception of Sections 2, 33, and 4 are normative, except 411
where explicitly noted as non-normative. 412

The following typographical conventions are used throughout the document: 413

■ ALL CAPS type is used for the special terms from [ISODir2] enumerated above. 414

■ Monospace type is used to denote programming language, UML, and XML identifiers, as well as 415
for the text of XML documents. 416

 Placeholders for changes that need to be made to this document prior to its reaching the final 417
stage of approved GS1 standard are prefixed by a rightward-facing arrowhead, as this 418
paragraph is. 419

5 EPCIS specification framework 420

The EPCIS specification is designed to be layered, extensible, and modular. 421

5.1 Layers 422

The EPCIS specification framework is organised into several layers, as illustrated below: 423

EPC Information Services (EPCIS) Standard

Release 1.2, Ratified, Sep 2016 © 2016 GS1 AISBL Page 17 of 138

 424
These layers are described below. 425

■ Abstract Data Model Layer: The Abstract Data Model Layer specifies the generic structure of 426
EPCIS data. This is the only layer that is not extensible by mechanisms other than a revision to 427
the EPCIS specification itself. The Abstract Data Model Layer specifies the general requirements 428
for creating data definitions within the Data Definition Layer. 429

■ Data Definition Layer: The Data Definition Layer specifies what data is exchanged through 430
EPCIS, what its abstract structure is, and what it means. One data definition module is defined 431
within the present specification, called the Core Event Types Module. Data definitions in the 432
Data Definition Layer are specified abstractly, following rules defined by the Abstract Data Model 433
Layer. 434

■ Service Layer: The Service Layer defines service interfaces through which EPCIS clients interact. 435
In the present specification, two service layer modules are defined. The Core Capture 436
Operations Module defines a service interface (the EPCIS Capture Interface) through which 437
EPCIS Capturing Applications use to deliver Core Event Types to interested parties. The Core 438
Query Operations Module defines two service interfaces (the EPCIS Query Control Interface and 439

Data
Definition

Layer

Core Event
Types

(sect. 7.2)

Core
Capture

Operations
(sect. 8.1)
Capture
Interface

Core
Query

Operations
(sect. 8.2)

Query
Control

Interface
Query

Callback
Interface

Service
Layer

Bindings

Core Event
XSD

(sect. 8)

Capture
Interface
Msg Q

(sect.10.1)

Query
Control

Interface
SOAP

(sect. 11.2)

depends on

depends on

implements

implement

Abstract
Data

Model
Layer

EPCIS
Abstract

Data Model
(sect. 6)

depends on

Capture
Interface

HTTP
(sect.10.2)

Query
Control

Interface
AS2

(sect. 11.3)

Core Query
XSD

(sect.11.1)

Query
Callback
Interface

HTTP
(sect. 11.4.2)

Query
Callback
Interface
HTTPS

(sect. 11.4.3)

Query
Callback
Interface

AS2
(sect. 11.4.4)

GS1 Core
Business

Vocabulary
Standard

populates

EPC Information Services (EPCIS) Standard

Release 1.2, Ratified, Sep 2016 © 2016 GS1 AISBL Page 18 of 138

the EPCIS Query Callback Interface) that EPCIS Accessing Applications use to obtain data 440
previously captured. Interface definitions in the Service Layer are specified abstractly using 441
UML. 442

■ Bindings: Bindings specify concrete realisations of the Data Definition Layer and the Service 443
Layer. There may be many bindings defined for any given Data Definition or Service module. In 444
this specification, a total of nine bindings are specified for the three modules defined in the Data 445
Definition and Service Layers. The data definitions in the Core Event Types data definition 446
module are given a binding to an XML schema. The EPCIS Capture Interface in the Core Capture 447
Operations Module is given bindings for Message Queue and HTTP. The EPCIS Query Control 448
Interface in the Core Query Operations Module is given a binding to SOAP over HTTP via a WSDL 449
web services description, and a second binding for AS2. The EPCIS Query Callback Interface in 450
the Core Query Operations Module is given bindings to HTTP, HTTPS, and AS2. 451

■ GS1 Core Business Vocabulary Standard: The GS1 Core Business Vocabulary standard [CBV1.2] 452
is a companion to the EPCIS standard. It defines specific vocabulary elements that may be used 453
to populate the data definitions specified in the Data Definition Layer of the EPCIS standard. 454
While EPCIS may be used without CBV, by employing only private or proprietary data values, it 455
is far more beneficial for EPCIS applications to make as much use of the CBV Standard as 456
possible. 457

5.2 Extensibility 458

The layered technique for specification promotes extensibility, as one layer may be reused by more 459
than one implementation in another layer. For example, while this specification includes an XML 460
binding of the Core Event Types data definition module, another specification may define a binding 461
of the same module to a different syntax, for example a CSV file. 462

Besides the extensibility inherent in layering, the EPCIS specification includes several specific 463
mechanisms for extensibility: 464

■ Subclassing: Data definitions in the Data Definition Layer are defined using UML, which allows a 465
new data definition to be introduced by creating a subclass of an existing one. A subclass is a 466
new type that includes all of the fields of an existing type, extending it with new fields. An 467
instance of a subclass may be used in any context in which an instance of the parent class is 468
expected. 469

■ Extension Points: Data definitions and service specifications also include extension points, which 470
vendors may use to provide extended functionality without creating subclasses. 471

5.3 Modularity 472

The EPCIS specification framework is designed to be modular. That is, it does not consist of a single 473
specification, but rather a collection of individual specifications that are interrelated. This allows 474
EPCIS to grow and evolve in a distributed fashion. The layered structure and the extension 475
mechanisms provide the essential ingredients to achieving modularity, as does the grouping into 476
modules. 477

While EPCIS specifications are modular, there is no requirement that the module boundaries of the 478
specifications be visible or explicit within implementations of EPCIS. For example, there may be a 479
particular software product that provides a SOAP/HTTP-based implementation of a case-to-pallet 480
association service and a product catalogue service that traffics in data defined in the relevant data 481
definition modules. This product may conform to as many as six different modules from the EPCIS 482
standard: the data definition module that describes product catalogue data, the data definition 483
module that defines case-to-pallet associations, the specifications for the respective services, and 484
the respective SOAP/HTTP bindings. But the source code of the product may have no trace of these 485
boundaries, and indeed the concrete database schema used by the product may denormalise the 486
data so that product catalogue and case-to-pallet association data are inextricably entwined. But as 487
long as the net result conforms to the specifications, this implementation is permitted. 488

6 Abstract data model layer 489

This section gives a normative description of the abstract data model that underlies EPCIS. 490

EPC Information Services (EPCIS) Standard

Release 1.2, Ratified, Sep 2016 © 2016 GS1 AISBL Page 19 of 138

6.1 Event data and master data 491

Generically, EPCIS deals in two kinds of data: event data and master data. Event data arises in the 492
course of carrying out business processes, and is captured through the EPCIS Capture Interface and 493
made available for query through the EPCIS Query Interfaces. Master data is additional data that 494
provides the necessary context for interpreting the event data. It is available for query through the 495
EPCIS Query Control Interface, but the means by which master data enters the system is not 496
specified in the EPCIS standard. 497

The Abstract Data Model Layer does not attempt to define the meaning of the terms “event data” or 498
“master data,” other than to provide precise definitions of the structure of the data as used by the 499
EPCIS specification. The modelling of real-world business information as event data and master data 500
is the responsibility of the Data Definition Layer, and of industry and end-user agreements that build 501
on top of this specification. 502

 Non-Normative: Explanation: While for the purposes of this specification the terms “event 503
data” and “master data” mean nothing more than “data that fits the structure provided here,” 504
the structures defined in the Abstract Data Model Layer are designed to provide an 505
appropriate representation for data commonly requiring exchange through EPCIS. Informally, 506
these two types of data may be understood as follows. Event data grows in quantity as more 507
business is transacted, and refers to things that happen at specific moments in time. An 508
example of event data is “At 1:23pm on 15 March 2004, EPC X was observed at Location L.” 509
Master data does not generally grow merely because more business is transacted (though 510
master data does tend to grow as organisations grow in size), is not typically tied to specific 511
moments in time (though master data may change slowly over time), and provides 512
interpretation for elements of event data. An example of master data is “Location L refers to 513
the distribution centre located at 123 Elm Street, Anytown, US.” All of the data in the set of 514
use cases considered in the creation of the EPCIS standard can be modelled as a combination 515
of event data and master data of this kind. 516

The structure of event data and master data in EPCIS is illustrated below. (Note that this is an 517
illustration only: the specific vocabulary elements and master data attribute names in this figure are 518
not defined within this specification.) 519

EPC Information Services (EPCIS) Standard

Release 1.2, Ratified, Sep 2016 © 2016 GS1 AISBL Page 20 of 138

 520
The ingredients of the EPCIS Abstract Data Model are defined below: 521

■ Event Data: A set of Events. 522

■ Event: A structure consisting of an Event Type and one or more named Event Fields. 523

■ Event Type: A namespace-qualified name (qname) that indicates to which of several possible 524
Event structures (as defined by the Data Definition Layer) a given event conforms. 525

■ Event Field: A named field within an Event. The name of the field is given by a qname, referring 526
either to a field name specified by the Data Definition Layer or a field name defined as an 527
extension to this specification. The value of the field may be a primitive type (such as an integer 528
or timestamp), a Vocabulary Element, or a list of primitive types or Vocabulary Elements. 529

■ Master data: A set of Vocabularies, together with master data attributes associated with 530
elements of those Vocabularies. 531

■ Vocabulary: A named set of identifiers. The name of a Vocabulary is a qname that may be used 532
as a type name for an event field. The identifiers within a Vocabulary are called Vocabulary 533
Elements. A Vocabulary represents a set of alternative values that may appear as the values of 534
specific Event Fields. Vocabularies in EPCIS are used to model sets such as the set of available 535
location names, the set of available business process step names, and so on. 536

■ Vocabulary Element: An identifier that names one of the alternatives modelled by a Vocabulary. 537
The value of an Event Field may be a Vocabulary Element. Vocabulary Elements are represented 538
as Uniform Resource Identifiers (URIs). Each Vocabulary Element may have associated master 539
data attributes. 540

■ Master data attributes: An unordered set of name/value pairs associated with an individual 541
Vocabulary Element. The name part of a pair is a qname. The value part of a pair may be a 542
value of arbitrary type. A special attribute is a (possibly empty) list of children, each child being 543
another vocabulary element from the same vocabulary. See Section 6.5. 544

BizStep Vocabulary
urn:…:receiving
urn:…:shipping
…

BizLocation Vocabulary
urn:epc:id:sgln:0614141.12345.0
urn:epc:id:sgln:0614141.33254.0
urn:epc:id:sgln:0614141.33254.1
…

Event Data

Master Data

sampleAttrName = sampleValue
…

ObjectEvent
 Time = 1:23pm 15 Mar 2004
 EPC = urn:epc:id:sgtin:0614141.100734.400
 bizStep = urn:epcglobal:cbv:bizstep:shipping
 bizLocation = urn:epc:id:sgln:0614141.12345.0

address = 123 Elm St
city = Anytown
postalCode = 12345

Children urn:epc:id:sgln: …

Master Data Vocabularies Master Data Attributes

Event

Event Type

EPC Information Services (EPCIS) Standard

Release 1.2, Ratified, Sep 2016 © 2016 GS1 AISBL Page 21 of 138

New EPCIS Events are generated at the edge and delivered into EPCIS infrastructure through the 545
EPCIS Capture Interface, where they can subsequently be delivered to interested applications 546
through the EPCIS Query Interfaces. There is no mechanism provided in either interface by which an 547
application can delete or modify an EPCIS Event. The only way to “retract” or “correct” an EPCIS 548
Event is to generate a subsequent event whose business meaning is to rescind or amend the effect 549
of a prior event (Section 7.4.1.3 discusses how this may be done). 550

While the EPCIS Capture Interface and EPCIS Query Interfaces provide no means for an application 551
to explicitly request the deletion of an event, EPCIS Repositories MAY implement data retention 552
policies that cause old EPCIS events to become inaccessible after some period of time. 553

Master data, in contrast, may change over time, though such changes are expected to be infrequent 554
relative to the rate at which new event data is generated. The current version of this specification 555
does not specify how master data changes (nor, as noted above, does it specify how master data is 556
entered in the first place). 557

6.1.1 Transmission of master data in EPCIS 558

The EPCIS Capture and Query Interfaces are primarily concerned with the transmission of EPCIS 559
Events. The means by which master data enters a system that implements these interfaces is not 560
specified in the EPCIS standard. However, the EPCIS standard does provide mechanisms for 561
transmission of master data, which an implementation may use to ensure that the recipient of 562
EPCIS event data has access to the master data necessary to interpret that event data. 563
Alternatively, master data may be transmitted by means entirely outside the EPCIS standard. The 564
EPCIS standard does not impose any requirements on whether EPCIS event data is accompanied by 565
master data or not, other than to require that master data accompanying event data be consistent 566
with any master data in ILMD sections of those events. 567

The EPCIS standard provides four mechanisms for transmission of master data, summarised in the 568
table below: 569

Mechanism Section Description Constraint

Master data
query

8.2.7.2 An EPCIS query client may query an
implementation of the EPCIS Query
Interface for master data matching
specified criteria.

The master data returned from the query SHALL
reflect the current values of master data
attributes, as known to the query responder, as
of the time the query response is created.

ILMD 7.3.6 An EPCIS event that marks the
beginning of life for an instance-level
or lot-level identifier may include
corresponding master data directly in
the event.

The master data in the event SHALL reflect the
current values of master data attributes, as
known to the event creator, as of the event
time. Note that because this data is embedded
directly in the event, it is permanently a part of
that event and will always be included when this
event is queried for (subject to redaction as
specified in Section 8.2.2).

Header of
EPCIS
document

9.5 An EPCIS document used for point-to-
point transmission of a collection of
EPCIS events outside of the EPCIS
Query Interface may include relevant
master data in the document header.

The master data in the document header SHALL
reflect the current values of master data
attributes, as known to the document creator,
as of the time the document is created. Master
data in the header of an EPCIS document SHALL
NOT specify attribute values that conflict with
the ILMD section of any event contained within
the EPCIS document body.

EPCIS master
data document

9.7 An EPCIS master data document may
be used for point-to-point
transmission of master data outside of
the EPCIS Query Interface.

The master data in the document SHALL reflect
the current values of master data attributes, as
known to the document creator, as of the time
the document is created.

 570

 571

EPC Information Services (EPCIS) Standard

Release 1.2, Ratified, Sep 2016 © 2016 GS1 AISBL Page 22 of 138

6.2 Vocabulary kinds 572

Vocabularies are used extensively within EPCIS to model physical, digital, and conceptual entities 573
that exist in the real world. Examples of vocabularies defined in the core EPCIS Data Definition 574
Layer are location names, object class names (an object class name is something like “Acme Deluxe 575
Widget,” as opposed to an EPC which names a specific instance of an Acme Deluxe Widget), and 576
business step names. In each case, a vocabulary represents a finite (though open-ended) set of 577
alternatives that may appear in specific fields of events. 578

It is useful to distinguish two kinds of vocabularies, which follow different patterns in the way they 579
are defined and extended over time: 580

■ Standard Vocabulary: A Standard Vocabulary represents a set of Vocabulary Elements whose 581
definition and meaning must be agreed to in advance by trading partners who will exchange 582
events using the vocabulary. For example, the EPCIS Core Data Definition Layer defines a 583
vocabulary called “business step,” whose elements are identifiers denoting such things as 584
“shipping,” “receiving,” and so on. One trading partner may generate an event having a 585
business step of “shipping,” and another partner receiving that event through a query can 586
interpret it because of a prior agreement as to what “shipping” means. 587

Standard Vocabulary elements tend to be defined by organisations of multiple end users, such 588
as GS1, industry consortia outside GS1, private trading partner groups, and so on. The master 589
data associated with Standard Vocabulary elements are defined by those same organisations, 590
and tend to be distributed to users as part of a specification or by some similar means. New 591
vocabulary elements within a given Standard Vocabulary tend to be introduced through a very 592
deliberate and occasional process, such as the ratification of a new version of a standard or 593
through a vote of an industry group. While an individual end user organisation acting alone may 594
introduce a new Standard Vocabulary element, such an element would have limited use in a 595
data exchange setting, and would probably only be used within an organisation’s four walls. 596

■ User Vocabulary: A User Vocabulary represents a set of Vocabulary Elements whose definition 597
and meaning are under the control of a single organisation. For example, the EPCIS Core Data 598
Definition Layer defines a vocabulary called “business location,” whose elements are identifiers 599
denoting such things as “Acme Corp. Distribution Centre #3.” Acme Corp may generate an 600
event having a business location of “Acme Corp. Distribution Centre #3,” and another partner 601
receiving that event through a query can interpret it either because it correlates it with other 602
events naming the same location, or by looking at master data attributes associated with the 603
location, or both. 604

User Vocabulary elements are primarily defined by individual end user organisations acting 605
independently. The master data associated with User Vocabulary elements are defined by those 606
same organisations, and are usually distributed to trading partners through the EPCIS Query 607
Control Interface or other data exchange / data synchronisation mechanisms. New vocabulary 608
elements within a given User Vocabulary are introduced at the sole discretion of an end user, 609
and trading partners must be prepared to respond accordingly. Usually, however, the rules for 610
constructing new User Vocabulary Elements are established by organisations of multiple end 611
users, and in any case must follow the rules defined in Section 6.4 below. 612

The lines between these two kinds of vocabularies are somewhat subjective. However, the 613
mechanisms defined in the EPCIS specification make absolutely no distinction between the two 614
vocabulary types, and so it is never necessary to identify a particular vocabulary as belonging to one 615
type or the other. The terms “Standard Vocabulary” and “User Vocabulary” are introduced only 616
because they are useful as a hint as to the way a given vocabulary is expected to be defined and 617
extended. 618

The GS1 Core Business Vocabulary (CBV) standard [CBV1.2] provides standardised vocabulary 619
elements for many of the vocabulary types used in EPCIS event types. In particular, the CBV defines 620
vocabulary elements for the following EPCIS Standard Vocabulary types: Business Step, Disposition, 621
Business Transaction Type, and Source/Destination Type. The CBV also defines templates for 622
constructing vocabulary elements for the following EPCIS User Vocabulary types: Object (EPC), 623
Object Class (EPCClass), Location (Read Point and Business Location), Business Transaction ID, 624
Source/Destination ID, and Transformation ID. 625

EPC Information Services (EPCIS) Standard

Release 1.2, Ratified, Sep 2016 © 2016 GS1 AISBL Page 23 of 138

6.3 Extension mechanisms 626

A key feature of EPCIS is its ability to be extended by different organisations to adapt to particular 627
business situations. In all, the Abstract Data Model Layer provides five methods by which the data 628
processed by EPCIS may be extended (the Service Layer, in addition, provides mechanisms for 629
adding additional services), enumerated here from the most invasive type of extension to the least 630
invasive: 631

■ New Event Type: A new Event Type may be added in the Data Definition Layer. Adding a new 632
Event Type requires each of the Data Definition Bindings to be extended, and may also require 633
extension to the Capture and Query Interfaces and their Bindings. 634

■ New Event Field: A new field may be added to an existing Event Type in the Data Definition 635
Layer. The bindings, capture interface, and query interfaces defined in this specification are 636
designed to permit this type of extension without requiring changes to the specification itself. 637
(The same may not be true of other bindings or query languages defined outside this 638
specification.) 639

■ New Vocabulary Type: A new Vocabulary Type may be added to the repertoire of available 640
Vocabulary Types. No change to bindings or interfaces are required. 641

■ New master data attribute: A new attribute name may be defined for an existing Vocabulary. No 642
change to bindings or interfaces are required. 643

■ New Instance/Lot master data (ILMD) Attribute: A new attribute name may be defined for use in 644
Instance/Lot master data (ILMD); see Section 7.3.6. No change to bindings or interfaces are 645
required. 646

■ New Vocabulary Element A new element may be added to an existing Vocabulary. 647

 648

The Abstract Data Model Layer has been designed so that most extensions arising from adoption by 649
different industries or increased understanding within a given industry can be accommodated by the 650
latter methods in the above list, which do not require revision to the specification itself. The more 651
invasive methods at the head of the list are available, however, in case a situation arises that 652
cannot be accommodated by the latter methods. 653

It is expected that there will be several different ways to extend the EPCIS specification, as 654
summarised below: 655

How extension is
dsseminated

Responsible
organisation

Extension method

New
Event
Type

New
Event
Field

New
Vocabulary
Type

New master
data or ILMD
(Section 7.3.6)
Attribute

New
Vocabulary
Element

New Version of
EPCIS standard

GS1 EPCIS Working
Group

Yes Yes Yes Occasionally Rarely

New Version of CBV
standard

GS1 Core Business
Vocabulary Working
Group

No No No Yes Yes
(Standard
Vocabulary,
User
Vocabulary
template)

GS1 Application
Standard for a
specific industry

GS1 Application
Standard Working
Group for a specific
industry

Rarely Rarely Occasionally Yes Yes
(Standard
Vocabulary)

GS1 Member
Organisation Local
Recommendation
Document for a
specific industry
within a specific
geography

GS1 Member
Organisation

Rarely Rarely Occasionally Yes Yes
(Standard
Vocabulary)

EPC Information Services (EPCIS) Standard

Release 1.2, Ratified, Sep 2016 © 2016 GS1 AISBL Page 24 of 138

How extension is
dsseminated

Responsible
organisation

Extension method

New
Event
Type

New
Event
Field

New
Vocabulary
Type

New master
data or ILMD
(Section 7.3.6)
Attribute

New
Vocabulary
Element

Private Group
Interoperability
Specification

Industry Consortium
or Private End User
Group outside GS1

Rarely Rarely Occasionally Yes Yes
(Standard
Vocabulary)

Updated master
data via EPCIS
Query or other data
sync

Individual End User Rarely Rarely Rarely Rarely Yes (User
vocabulary)

 656

6.4 Identifier representation 657

The Abstract Data Model Layer introduces several kinds of identifiers, including Event Type names, 658
Event Field names, Vocabulary names, Vocabulary Elements, and master data Attribute Names. 659
Because all of these namespaces are open to extension, this specification imposes some rules on the 660
construction of these names so that independent organisations may create extensions without fear 661
of name collision. 662

Vocabulary Elements are subject to the following rules. In all cases, a Vocabulary Element is 663
represented as Uniform Resource Identifier (URI) whose general syntax is defined in [RFC2396]. 664
The types of URIs admissible as Vocabulary Elements are those URIs for which there is an owning 665
authority. This includes: 666

■ URI representations for EPC codes [TDS1.9, Section 6]. The owning authority for a particular 667
EPC URI is the organisation to whom the GS1 Company Prefix (or other issuing authority, 668
depending on the EPC scheme) was assigned. 669

■ Absolute Uniform Resource Locators (URLs) [RFC1738]. The owning authority for a particular 670
URL is the organisation that owns the Internet domain name in the authority portion of the URL. 671

■ Uniform Resource Names (URNs) [RFC2141] in the oid namespace that begin with a Private 672
Enterprise Number (PEN). The owning authority for an OID-URN is the organisation to which the 673
PEN was issued. 674

■ Uniform Resource Names (URNs) [RFC2141] in the epc or epcglobal namespace, other than 675
URIs used to represent EPCs [TDS1.9]. The owning authority for these URNs is GS1. 676

Event Type names and Event Field names are represented as namespace-qualified names (qnames), 677
consisting of a namespace URI and a name. This has a straightforward representation in XML 678
bindings that is convenient for extension. 679

6.5 Hierarchical vocabularies 680

Some Vocabularies have a hierarchical or multi-hierarchical structure. For example, a vocabulary of 681
location names may have an element that means “Acme Corp. Retail Store #3” as well others that 682
mean “Acme Corp. Retail Store #3 Backroom” and “Acme Corp. Retail Store #3 Sales Floor.” In this 683
example, there is a natural hierarchical relationship in which the first identifier is the parent and the 684
latter two identifiers are children. 685

Hierarchical relationships between vocabulary elements are represented through master data. 686
Specifically, a parent identifier carries, in addition to its master data attributes, a list of its children 687
identifiers. Each child identifier SHALL belong to the same Vocabulary as the parent. In the example 688
above, the element meaning “Acme Corp. Distribution Centre #3” would have a children list 689
including the element that means “Acme Corp. Distribution Centre #3 Door #5.” 690

Elsewhere in this specification, the term “direct or indirect descendant” is used to refer to the set of 691
vocabulary elements including the children of a given vocabulary element, the children of those 692
children, etc. That is, the “direct or indirect descendants” of a vocabulary element are the set of 693

EPC Information Services (EPCIS) Standard

Release 1.2, Ratified, Sep 2016 © 2016 GS1 AISBL Page 25 of 138

vocabulary elements obtained by taking the transitive closure of the “children” relation starting with 694
the given vocabulary element. 695

A given element MAY be the child of more than one parent. This allows for more than one way of 696
grouping vocabulary elements; for example, locations could be grouped both by geography and by 697
function. An element SHALL NOT, however, be a child of itself, either directly or indirectly. 698

 Non-Normative: Explanation: In the present version of this specification, only one 699
hierarchical relationship is provided for, namely the relationship encoded in the special 700
“children” list. Future versions of this specification may generalise this to allow more than one 701
relationship, perhaps encoding each relationship via a different master data attribute. 702

Hierarchical relationships are given special treatment in queries (Section 8.2), and may play a role 703
in carrying out authorisation policies (Section 8.2.2), but do not otherwise add any additional 704
complexity or mechanism to the Abstract Data Model Layer. 705

7 Data definition layer 706

This section includes normative specifications of modules in the Data Definition Layer. 707

7.1 General rules for specifying data definition layer modules 708

The general rules for specifying modules in the Data Definition Layer are given here. These rules are 709
then applied in Section 7.2 to define the Core Event Types Module. These rules can also be applied 710
by organisations wishing to layer a specification on top of this specification. 711

7.1.1 Content 712

In general, a Data Definition Module specification has these components, which populate the 713
Abstract Data Model framework specified in Section 6: 714

■ Value Types: Definitions of data types that are used to describe the values of Event Fields and 715
of master data attributes. The Core Event Types Module defines the primitive types that are 716
available for use by all Data Definition Modules. Each Vocabulary that is defined is also implicitly 717
a Value Type. 718

■ Event Types: Definitions of Event Types, each definition giving the name of the Event Type 719
(which must be unique across all Event Types) and a list of standard Event Fields for that type. 720
An Event Type may be defined as a subclass of an existing Event Type, meaning that the new 721
Event Type includes all Event Fields of the existing Event Type plus any additional Event Fields 722
provided as part of its specification. 723

■ Event Fields: Definitions of Event Fields within Event Types. Each Event Field definition specifies 724
a name for the field (which must be unique across all fields of the enclosing Event Type) and the 725
data type for values in that field. Event Field definitions within a Data Definition Module may be 726
part of new Event Types introduced by that Module, or may extend Event Types defined in other 727
Modules. 728

■ Vocabulary Types: Definitions of Vocabulary Types, each definition giving the name of the 729
Vocabulary (which must be unique across all Vocabularies), a list of standard master data 730
attributes for elements of that Vocabulary, and rules for constructing new Vocabulary Elements 731
for that Vocabulary. (Any rules specified for constructing Vocabulary Elements in a Vocabulary 732
Type must be consistent with the general rules given in Section 6.4.) 733

■ Master data attributes: Definitions of master data attributes for Vocabulary Types. Each master 734
data attribute definition specifies a name for the Attribute (which must be unique across all 735
attributes of the enclosing Vocabulary Type) and the data type for values of that attribute. 736
Master data definitions within a Data Definition Module may belong to new Vocabulary Types 737
introduced by that Module, or may extend Vocabulary Types defined in other Modules. 738

■ Vocabulary Elements: Definitions of Vocabulary Elements, each definition specifying a name 739
(which must be unique across all elements within the Vocabulary, and conform to the general 740

EPC Information Services (EPCIS) Standard

Release 1.2, Ratified, Sep 2016 © 2016 GS1 AISBL Page 26 of 138

rules for Vocabulary Elements given in Section 6.4 as well as any specific rules specified in the 741
definition of the Vocabulary Type), and optionally specifying master data (specific attribute 742
values) for that element. 743

 Non-Normative: Amplification: As explained in Section 6.3, Data Definition Modules defined 744
in this specification and by companion specifications developed by the EPCIS Working Group 745
will tend to include definitions of Value Types, Event Types, Event Fields, and Vocabulary 746
Types, while modules defined by other groups will tend to include definitions of Event Fields 747
that extend existing Event Types, master data attributes that extend existing Vocabulary 748
Types, and Vocabulary Elements that populate existing Vocabularies. Other groups may also 749
occasionally define Vocabulary Types. 750

The word “Vocabulary” is used informally to refer to a Vocabulary Type and the set of all Vocabulary 751
Elements that populate it. 752

7.1.2 Notation 753

In the sections below, Event Types and Event fields are specified using a restricted form of UML 754
class diagram notation. UML class diagrams used for this purpose may contain classes that have 755
attributes (fields) and associations, but not operations. Here is an example: 756

 757

This diagram shows a data definition for two Event Types, EventType1 and EventType2. These 758
event types make use of four Value Types: Type1, Type2, DataClass3, and DataClass4. Type1 759
and Type2 are primitive types, while DataClass3 and DataClass4 are complex types whose 760
structure is also specified in UML. 761

The Event Type EventType1 in this example has four fields. Field1 and Field2 are of primitive 762
type Type1 and Type2 respectively. EventType1 has another field Field3 whose type is 763
DataClass3. Finally, EventType1 has another field Field4 that contains a list of zero or more 764
instances of type DataClass4 (the “0..*” notation indicates “zero or more”). 765

This diagram also shows a data definition for EventType2. The arrow with the open-triangle 766
arrowhead indicates that EventType2 is a subclass of EventType1. This means that EventType2 767
actually has five fields: four fields inherited from EventType1 plus a fifth field5 of type Type1. 768

Within the UML descriptions, the notation <<extension point>> identifies a place where 769
implementations SHALL provide for extensibility through the addition of new data members. (When 770
one type has an extension point, and another type is defined as a subclass of the first type and also 771
has an extension point, it does not mean the second type has two extension points; rather, it 772
merely emphasises that the second type is also open to extension.) Extensibility mechanisms SHALL 773
provide for both proprietary extensions by vendors of EPCIS-compliant products, and for extensions 774
defined by GS1 through future versions of this specification or through new specifications. 775

EventType1

field1 : Type1
field2 : Type2
<<extension point>>

DataClass3

DataClass4

Field3

Field4

0..*

EventType2

field5 : Type1
<<extension point>>

EPC Information Services (EPCIS) Standard

Release 1.2, Ratified, Sep 2016 © 2016 GS1 AISBL Page 27 of 138

In the case of the standard XML bindings, the extension points are implemented within the XML 776
schema following the methodology described in Section 9.1. 777

All definitions of Event Types SHALL include an extension point, to provide for the extensibility 778
defined in Section 6.3 (“New Event Fields”). Value Types MAY include an extension point. 779

7.1.3 Semantics 780

Each event (an instance of an Event Type) encodes several assertions which collectively define the 781
semantics of the event. Some of these assertions say what was true at the time the event was 782
captured. Other assertions say what is expected to be true following the event, until invalidated by a 783
subsequent event. These are called, respectively, the retrospective semantics and the prospective 784
semantics of the event. For example, if widget #23 enters building #5 through door #6 at 11:23pm, 785
then one retrospective assertion is that “widget #23 was observed at door #6 at 11:23pm,”, while a 786
prospective assertion is that “widget #23 is in building #5.” The key difference is that the 787
retrospective assertion refers to a specific time in the past (“widget #23 was observed…”), while the 788
prospective assertion is a statement about the present condition of the object (“widget #23 is in…”). 789
The prospective assertion presumes that if widget #23 ever leaves building #5, another EPCIS 790
capture event will be recorded to supersede the prior one. 791

In general, retrospective semantics are things that were incontrovertibly known to be true at the 792
time of event capture, and can usually be relied upon by EPCIS Accessing Applications as accurate 793
statements of historical fact. Prospective semantics, since they attempt to say what is true after an 794
event has taken place, must be considered at best to be statements of “what ought to be” rather 795
than of “what is.” A prospective assertion may turn out not to be true if the capturing apparatus 796
does not function perfectly, or if the business process or system architecture were not designed to 797
capture EPCIS events in all circumstances. Moreover, in order to make use of a prospective 798
assertion implicit in an event, an EPCIS Accessing Application must be sure that it has access to any 799
subsequent event that might supersede the event in question. 800

The retrospective/prospective dichotomy plays an important role in EPCIS’s definition of location, in 801
Section 7.3.4. 802

In certain situations, an earlier event is subsequently discovered to be in error (the assertions its 803
semantics makes are discovered to be incorrect), and the error cannot be corrected by recording a 804
new event that adds additional assertions through its own semantics. For these cases, a mechanism 805
is provided to record an event whose semantics assert that the assertions previously made by the 806
erroneous event are in error. See Section 7.4.1.2. 807

7.2 Core event types module – overview 808

The Core Event Types data definition module specifies the Event Types that represent EPCIS data 809
capture events. These events are typically generated by an EPCIS Capturing Application and 810
provided to EPCIS infrastructure using the data capture operations defined in Section 8.1. These 811
events are also returned in response to query operations that retrieve events according to query 812
criteria. 813

The components of this module, following the outline given in Section 7.1.1, are as follows: 814

■ Value Types: Primitive types defined in Sections 7.3.1 and 7.3.2. 815

■ Event Types: Event types as shown in the UML diagram below, and defined in Sections 7.4.1 816
through 7.4.6. 817

■ Event Fields: Included as part of the Event Types definitions. 818

■ Vocabulary Types: Types defined in Sections 7.3.3 through 7.3.5, and summarised in 819
Section 7.2. 820

■ Master data attributes: Included as part of Vocabulary Types definitions. It is expected that 821
industry vertical working groups will define additional master data attributes for the vocabularies 822
defined here. 823

■ Vocabulary Elements: None provided as part of this specification. It is expected that industry 824
vertical working groups will define vocabulary elements for the BusinessStep vocabulary 825

EPC Information Services (EPCIS) Standard

Release 1.2, Ratified, Sep 2016 © 2016 GS1 AISBL Page 28 of 138

(Section 7.3.5), the Disposition vocabulary (Section 7.3.5.2), and the 826
BusinessTransactionType vocabulary (Section 7.3.5.3.1). 827

This module defines six event types, one very generic event and five subclasses (one of which is 828
deprecated as of EPCIS 1.1) that can represent events arising from supply chain activity across a 829
wide variety of industries: 830

■ EPCISEvent (Section 7.4.1) is a generic base class for all event types in this module as well as 831
others. 832

■ ObjectEvent (Section 7.4.1.2) represents an event that happened to one or more physical or 833
digital objects. 834

■ AggregationEvent (Section 7.4.3) represents an event that happened to one or more objects 835
that are physically aggregated together (physically constrained to be in the same place at the 836
same time, as when cases are aggregated to a pallet). 837

■ QuantityEvent (Section 7.4.4) represents an event concerned with a specific quantity of 838
objects sharing a common EPC class, but where the individual identities of the entities are not 839
specified. As of EPCIS 1.1, this event is deprecated; an ObjectEvent (Section 7.4.1.2) with one 840
or more QuantityElements (Section 7.3.3.3) should be used instead. 841

■ TransactionEvent (Section 7.4.5) represents an event in which one or more objects become 842
associated or disassociated with one or more identified business transactions. 843

■ TransformationEvent (Section 7.4.6) represents an event in which input objects are fully or 844
partially consumed and output objects are produced, such that any of the input objects may 845
have contributed to all of the output objects. 846

A UML diagram showing these Event Types is as follows: 847
 848

EPC Information Services (EPCIS) Standard

Release 1.2, Ratified, Sep 2016 © 2016 GS1 AISBL Page 29 of 138

 849

Each of the core event types (not counting the generic EPCISEvent) has fields that represent four 850
key dimensions of any EPCIS event. These four dimensions are: (1) the object(s) or other entities 851

EPCISEvent

eventTime : Time
recordTime : Time

eventTimeZoneOffset : string
eventID : EventID

<<extension point>>

ObjectEvent

epcList : List<EPC>
action : Action

bizStep : BizStepID
disposition : DispositionID
readPoint : ReadPointID

bizLocation : BizLocationID
ilmd: ILMD

 <<extension point>>

QuantityEvent
<<deprecated>>

epcClass : EPCClass
quantity : int

bizStep : BizStepID
disposition : DispositionID
readPoint : ReadPointID

bizLocation :
BizLocationID

 <<extension point>>

AggregationEvent

parentID : URI
childEPCs : List<EPC>

action : Action
bizStep : BizStepID

disposition : DispositionID
readPoint : ReadPointID

bizLocation : BizLocationID
 <<extension point>>

 Note: in this diagram, certain names have been abbreviated owing to
space constraints; e.g., BizLocationID is used in the diagram,
whereas the actual type is called BusinessLocationID. See the text
of the specification for the normative names of fields and their types

TransactionEvent

parentID : URI
epcList : List<EPC>

action : Action
bizStep : BizStepID

disposition : DispositionID
readPoint : ReadPointID

bizLocation : BizLocationID
<extension point>>

BizTransaction

type : BizTransTypeID
bizTrans : BizTransID

0..*

0..*

qList

Red indicates class or attribute
that is new in EPCIS 1.2
0..1 = “zero or one”
0..* = “zero or more”
1..* = “one or more”

TransformationEvent

inputEpcList : List<EPC>
outputEpcList : List<EPC>

xformID : XformID
bizStep : BizStepID

disposition : DispositionID
readPoint : ReadPointID

bizLocation : BizLocationID
ilmd : ILMD

<extension point>>

Source

type : SourceDestTypeID
source : SourceDestID

Destination

type : SourceDestTypeID
dest : SourceDestID

QuantityElement

epcClass EPCClass
quantity : decimal

uom : UOM

0..*

childQList

1..* for TransactionEvent
0..* otherwise

qList

0..*

inputQList
outputQList

0..* 0..* 0..*

ErrorDeclaration

declarationTime : Time
reason : ErrorReasonID

correctiveEventIDs :
List<EventID>

<extension point>>
0..1

error
Declaration

EPC Information Services (EPCIS) Standard

Release 1.2, Ratified, Sep 2016 © 2016 GS1 AISBL Page 30 of 138

that are the subject of the event; (2) the date and time; (3) the location at which the event 852
occurred; (4) the business context. These four dimensions may be conveniently remembered as 853
“what, when, where, and why” (respectively). The “what” dimension varies depending on the event 854
type (e.g., for an ObjectEvent the “what” dimension is one or more EPCs; for an 855
AggregationEvent the “what” dimension is a parent ID and list of child EPCs). The “where” and 856
“why” dimensions have both a retrospective aspect and a prospective aspect (see Section 7.1.3), 857
represented by different fields. 858

The following table summarises the fields of the event types that pertain to the four key 859
dimensions: 860

 Retrospective
(at the time of the event)

Prospective
(true until contradicted by
subsequent event)

What EPC

EPCClass + quantity

When Time

Where ReadPointID BusinessLocationID

Why
(business context)

BusinessStepID DispositionID

BusinessTransactionList

Source/Destination

ILMD

 861

In addition to the fields belonging to the four key dimensions, events may carry additional 862
descriptive information in other fields. It is expected that the majority of additional descriptive 863
information fields will be defined by industry-specific specifications layered on top of this one. 864

The following table summarises the vocabulary types defined in this module. The URI column gives 865
the formal name for the vocabulary used when the vocabulary must be referred to by name across 866
the EPCIS interface. 867

Vocabulary type Section User /
standard

URI

ReadPointID 7.3.4 User urn:epcglobal:epcis:vtype:ReadPoint

BusinessLocati
onID

7.3.4 User urn:epcglobal:epcis:vtype:BusinessLocation

BusinessStepID 7.3.5 Standard urn:epcglobal:epcis:vtype:BusinessStep

DispositionID 7.3.5.2 Standard urn:epcglobal:epcis:vtype:Disposition

BusinessTransa
ction

7.3.5.3.2 User urn:epcglobal:epcis:vtype:BusinessTransaction

BusinessTrasac
tionTypeID

7.3.5.3.1 Standard urn:epcglobal:epcis:vtype:BusinessTransaction
Type

EPCClass 7.3.5.4 User urn:epcglobal:epcis:vtype:EPCClass

SourceDestType
ID

7.3.5.4.1 Standard urn:epcglobal:epcis:vtype:SourceDestType

SourceDestID 7.3.5.4.2 User urn:epcglobal:epcis:vtype:SourceDest

LocationID See below User urn:epcglobal:epcis:vtype:Location

ErrorReasonID 7.4.1.2 Standard urn:epcglobal:epcis:vtype:ErrorReason

 868
The LocationID type is a supertype of ReadPointID, BusinessStepID, and SourceDestID. In an EPCIS 869
master data document (or master data header within an EPCIS document or EPCIS query document), the 870

EPC Information Services (EPCIS) Standard

Release 1.2, Ratified, Sep 2016 © 2016 GS1 AISBL Page 31 of 138

urn:epcglobal:epcis:vtype:Location URI may be used to specify a single vocabulary containing 871
identifiers that may appear in the read point, business step, source, or destination field of associated EPCIS 872
events. 873

7.3 Core event types module – building blocks 874

This section specifies the building blocks for the event types defined in Section 7.3.5.4. 875

7.3.1 Primitive types 876

The following primitive types are used within the Core Event Types Module. 877

Type Description

int An integer. Range restrictions are noted where applicable.

Time A timestamp, giving the date and time in a time zone-independent manner. For bindings in which fields of
this type are represented textually, an ISO-8601 compliant representation SHOULD be used.

EPC An Electronic Product Code, as defined in [TDS1.9]. Unless otherwise noted, EPCs are represented in “pure
identity” URI form as defined in [TDS1.9], Section 7.

 878

The EPC type is defined as a primitive type for use in events when referring to EPCs that are not 879
part of a Vocabulary Type. For example, an SGTIN EPC used to denote an instance of a trade item in 880
the epcList field of an ObjectEvent is an instance of the EPC primitive type. But an SGLN EPC 881
used as a read point identifier (Section 7.3.4) in the ReadPoint field of an ObjectEvent is a 882
Vocabulary Element, not an instance of the EPC primitive type. 883

 Non-Normative: Explanation: This reflects a design decision not to consider individual trade 884
item instances as Vocabulary Elements having master data, owing to the fact that trade item 885
instances are constantly being created and hence new EPCs representing trade items are 886
constantly being commissioned. In part, this design decision reflects consistent treatment of 887
master data as excluding data that grows as more business is transacted (see comment in 888
Section 6.1), and in part reflects the pragmatic reality that data about trade item instances is 889
likely to be managed more like event data than master data when it comes to aging, database 890
design, etc. 891

7.3.2 Action type 892

The Action type says how an event relates to the lifecycle of the entity being described. For 893
example, AggregationEvent (Section 7.4.3) is used to capture events related to aggregations of 894
objects, such as cases aggregated to a pallet. Throughout its life, the pallet load participates in 895
many business process steps, each of which may generate an EPCIS event. The action field of 896
each event says how the aggregation itself has changed during the event: have objects been added 897
to the aggregation, have objects been removed from the aggregation, or has the aggregation simply 898
been observed without change to its membership? The action is independent of the bizStep (of 899
type BusinessStepID) which identifies the specific business process step in which the action took 900
place. 901

The Action type is an enumerated type having three possible values: 902

Action
value

Meaning

ADD The entity in question has been created or added to.

OBSERVE The entity in question has not been changed: it has neither been created, added to, destroyed,
or removed from.

DELETE The entity in question has been removed from or destroyed altogether.

 903

EPC Information Services (EPCIS) Standard

Release 1.2, Ratified, Sep 2016 © 2016 GS1 AISBL Page 32 of 138

The description below for each event type that includes an Action value says more precisely what 904
Action means in the context of that event. 905

Note that the three values above are the only three values possible for Action. Unlike other types 906
defined below, Action is not a vocabulary type, and SHALL NOT be extended by industry groups. 907

7.3.3 The “What” dimension 908

This section defines the data types used in the “What” dimension of the event types specified in 909
Section 7.3.5.4. 910

7.3.3.1 Instance-level vs. Class-level identification 911

The “What” dimension of an EPCIS event specifies what physical or digital objects participated in the 912
event. EPCIS provides for objects to be identified in two ways: 913

■ Instance-level: An identifier is said to be an instance-level identifier if such identifiers are 914
assigned so that each is unique to a single object. That is, no two objects are allowed to carry 915
the same instance-level identifier. 916

■ Class-level: An identifier is said to be a class-level identifier if multiple objects may carry the 917
same identifier. 918

In general, instance-level identifiers allow EPCIS events to convey more information, because it is 919
possible to correlate multiple EPCIS events whose “what” dimension includes the same instance-920
level identifiers. For example, if an EPCIS event contains a given instance-level identifier, and a 921
subsequent EPCIS event contains the same identifier, then it is certain that the very same object 922
participated in both events. In contrast, if both events contained class-level identifiers, then it is not 923
certain that the same object participated in both events, because the second event could have been 924
a different instance of the same class (i.e., a different object carrying the same class-level identifier 925
as the first object). Class-level identifiers are typically used only when it is impractical to assign 926
unique instance-level identifiers to each object. 927

 Non-Normative: Examples: In the GS1 system, examples of instance-level identifiers 928
include GTIN+serial, SSCC, GRAI including serial, GIAI, GSRN, and GDTI including serial. 929
Examples of class-level identifiers include GTIN, GTIN+lot, GRAI without serial, and GDTI 930
without serial. 931

7.3.3.2 EPC 932

An Electronic Product Code (EPC) is an instance-level identifier structure defined in the EPC Tag 933
Data Standard [TDS1.9]. In the “what” dimension of an EPCIS event, the value of an epc element 934
SHALL be a URI [RFC2396] denoting the unique instance-level identity for an object. When the 935
unique identity is an Electronic Product Code, the list element SHALL be the “pure identity” URI for 936
the EPC as specified in [TDS1.9], Section 6. Implementations MAY accept URI-formatted identifiers 937
other than EPCs as the value of an epc element. 938

7.3.3.3 QuantityElement 939

A QuantityElement is a structure that identifies objects identified by a specific class-level 940
identifier, either a specific quantity or an unspecified quantity. It has the following structure: 941

Field Type Description

epcClass EPCClass A class-level identifier for the class to which the specified quantity of objects
belongs.

EPC Information Services (EPCIS) Standard

Release 1.2, Ratified, Sep 2016 © 2016 GS1 AISBL Page 33 of 138

Field Type Description

quantity Decimal (Optional) A number that specifies how many or how much of the specified
EPCClass is denoted by this QuantityElement.

The quantity may be omitted to indicate that the quantity is unknown or not
specified. If quantity is omitted, then uom SHALL be omitted as well.

Otherwise, if quantity is specified:

If the QuantityElement lacks a uom field (below), then the quantity SHALL
have a positive integer value, and denotes a count of the number of instances
of the specified EPCClass that are denoted by this QuantityElement.

If the QuantityElement includes a uom, then the quantity SHALL have a
positive value (but not necessarily an integer value), and denotes the
magnitude of the physical measure that specifies how much of the specified
EPCClass is denoted by this QuantityElement

uom UOM (Optional) If present, specifies a unit of measure by which the specified
quantity is to be interpreted as a physical measure, specifying how much of
the specified EPCClass is denoted by this QuantityElement. The uom
SHALL be omitted if quantity is omitted.

 942

EPCClass is a Vocabulary whose elements denote classes of objects. EPCClass is a User 943
Vocabulary as defined in Section 6.2. Any EPC whose structure incorporates the concept of object 944
class can be referenced as an EPCClass. The standards for SGTIN EPCs are elaborated below. 945

An EPCClass may refer to a class having fixed measure or variable measure. A fixed measure class 946
has instances that may be counted; for example, a GTIN that refers to fixed-size cartons of a 947
product. A variable measure class has instances that cannot be counted and so the quantity is 948
specified as a physical measure; for example, a GTIN that refers to copper wire that is sold by 949
length, carpeting that is sold by area, bulk oil that is sold by volume, or fresh produce that is sold by 950
weight. The following table summarises how the quantity and uom fields are used in each case: 951

EPCClass quantity field uom field Meaning

Fixed
measure

Positive integer Omitted The quantity field specifies the count of the specified
class.

Variable
measure

Positive number, not
necessarily an integer

Present The quantity field specifies the magnitude, and the uom
field the physical unit, of a physical measure describing the
amount of the specified class.

Fixed or
Variable
Measure

Omitted Omitted The quantity is unknown or not specified.

 952

Master data attributes for the EPCClass vocabulary contain whatever master data is defined for the 953
referenced objects independent of EPCIS (for example, product catalogue data); definitions of these 954
are outside the scope of this specification. 955

7.3.3.3.1 UOM 956

As specified above, the uom field of a QuantityElement is present when the QuantityElement 957
uses a physical measure to specify the quantity of the specified EPCClass. When a uom field is 958
present, its value SHALL be the 2- or 3-character code for a physical unit specified in the “Common 959
Code” column of UN/CEFACT Recommendation 20 [CEFACT20]. Moreover, the code SHALL be a code 960
contained in a row of [CEFACT20] meeting all of the following criteria: 961

■ The “Quantity” column contains one of the following quantities: length, area, volume, or mass. 962

■ The “Status” column does not contain “X” (deleted) or “D” (deprecated). 963

For purposes of the first criterion, the quantity must appear as a complete phrase. Example: 964
“metre” (MTR) is allowed, because the quantity includes length (among other quantities such as 965

EPC Information Services (EPCIS) Standard

Release 1.2, Ratified, Sep 2016 © 2016 GS1 AISBL Page 34 of 138

breadth, height, etc.). But “pound-force per foot” (F17) is not allowed, because the quantity is force 966
divided by length, not just length. 967

7.3.3.3.2 EPCClass values for GTIN 968

When a Vocabulary Element in EPCClass represents the class of SGTIN EPCs denoted by a specific 969
GTIN, it SHALL be a URI in the following form, as defined in Version 1.3 and later of the EPC Tag 970
Data Standards: 971

urn:epc:idpat:sgtin:CompanyPrefix.ItemRefAndIndicator.* 972

where CompanyPrefix is the GS1 Company Prefix of the GTIN (including leading zeros) and 973
ItemRefAndIndicator consists of the indicator digit of the GTIN followed by the digits of the item 974
reference of the GTIN. 975

An EPCClass vocabulary element in this form denotes the class of objects whose EPCs are SGTINs 976
(urn:epc:id:sgtin:…) having the same CompanyPrefix and ItemRefAndIndicator fields, 977
and having any serial number whatsoever (or no serial number at all). 978

7.3.3.3.3 EPCClass values for GTIN + Batch/Lot 979

When a Vocabulary Element in EPCClass represents the class of SGTIN EPCs denoted by a specific 980
GTIN and batch/lot, it SHALL be a URI in the following form, as defined in [TDS1.9, Section 6]: 981

urn:epc:class:lgtin:CompanyPrefix.ItemRefAndIndicator.Lot 982

where CompanyPrefix is the GS1 Company Prefix of the GTIN (including leading zeros), 983
ItemRefAndIndicator consists of the indicator digit of the GTIN followed by the digits of the item 984
reference of a GTIN, and Lot is the batch/lot number of the specific batch/lot. 985

An EPCClass vocabulary element in this form denotes the class of objects whose EPCs are SGTINs 986
(urn:epc:id:sgtin:…) having the same CompanyPrefix and ItemRefAndIndicator fields, 987
and belonging to the specified batch/lot, regardless of serial number (if any). 988

7.3.3.4 Summary of identifier types (Non-Normative) 989

This section summarises the identifiers that may be used in the “what” dimension of EPCIS events. 990
The normative specifications of identifiers are in the EPC Tag Data Standard [TDS1.9] and the EPC 991
Core Business Vocabulary [CBV1.2]. 992

Identifier type Instance-level
(EPC)

Class-level
(EPCClass)

URI prefix Normative
reference

GTIN urn:epc:idpat:sgtin: [TDS1.9,
Section 8]

GTIN +
batch/lot

 urn:epc:class:lgtin: [TDS1.9,
Section 6]

GTIN + serial urn:epc:id:sgtin: [TDS1.9,
Section
6.3.1]

SSCC urn:epc:id:sscc: [TDS1.9,
Section
6.3.2]

GRAI (no
serial)

 urn:epc:idpat:grai: [TDS1.9,
Section 8]

GRAI (with
serial)

 urn:epc:id:grai: [TDS 1.9,
Section
6.3.4]

EPC Information Services (EPCIS) Standard

Release 1.2, Ratified, Sep 2016 © 2016 GS1 AISBL Page 35 of 138

Identifier type Instance-level
(EPC)

Class-level
(EPCClass)

URI prefix Normative
reference

GIAI urn:epc:id:giai: [TDS1.9,
Section
6.3.5]

GDTI (no
serial)

 urn:epc:idpat:gdti: [TDS1.9,
Section 8]

GDTI (with
serial)

 urn:epc:id:gdti: [TDS1.9,
Section
6.3.7]

GSRN
(Recipient)

 urn:epc:id:gsrn: [TDS1.9,
Section
6.3.6]

GSRN
(Provider)

 urn:epc:id:gsrnp: [TDS1.9,
Section
6.3.6]

GCN (no
serial)

 urn:epc:idpat:sgcn: [TDS1.9,
Section 8]

GCN (with
serial)

 urn:epc:id:sgcn: [TDS1.9,
Section 6]

CPI urn:epc:idpat:cpi: [TDS1.9,
Section 8]

CPI + serial urn:epc:id:cpi: [TDS1.9,
Section
6.3.11]

GID urn:epc:id:gid: [TDS1.9,
Section
6.3.8]

USDoD urn:epc:id:usdod: [TDS1.9,
Section
6.3.9]

ADI urn:epc:id:adi: [TDS1.9,
Section
6.3.10]

Non-GS1
Identifier

 Any URI – see CBV for
recommendations

[CBV1.2,
Section 8.2]

 993

7.3.4 The “Where” Dimension – read point and business location 994

This section defines four types that all relate to the notion of location information as used in EPCIS. 995
Two of these types are ways of referring to “readers,” or devices that sense the presence of EPC-996
tagged objects using RFID or other means. These are not actually considered to be “location” types 997
at all for the purposes of EPCIS. They are included in this specification mainly to contrast them to 998
the true location types (though some applications may want to use them as extension fields on 999
observations, for auditing purposes). The other two types are true location types, and are defined as 1000
EPCIS Vocabulary Types. 1001

The reader/location types are as follows: 1002

 Type Description

Primitive Reader Types – not location types for EPCIS

EPC Information Services (EPCIS) Standard

Release 1.2, Ratified, Sep 2016 © 2016 GS1 AISBL Page 36 of 138

 Type Description

 PhysicalReaderID This is the unique identity or name of the specific information source (e.g., a physical
RFID Reader) that reports the results of an EPC read event. Physical Reader ID is further
defined in [ALE1.0].

 LogicalReaderID This is the identity or name given to an EPC read event information source independent
of the physical device or devices that are used to perform the read event. Logical Reader
ID is further defined in [ALE1.0]. There are several reasons for introducing the Logical
Reader concept as outlined in [ALE1.0], including allowing physical readers to be
replaced without requiring changes to EPCIS Capturing Applications, allowing multiple
physical readers to be given a single name when they are always used simultaneously to
cover a single location, and (conversely) allowing a single physical reader to map to
multiple logical readers when a physical reader has multiple antennas used independently
to cover different locations.

True Location Types

 ReadPointID A Read Point is a discretely recorded location that is meant to identify the most specific
place at which an EPCIS event took place. Read Points are determined by the EPCIS
Capturing Application, perhaps inferred as a function of logical reader if stationary
readers are used, perhaps determined overtly by reading a location tag if the reader is
mobile, or in general determined by any other means the EPCIS Capturing Application
chooses to use. Conceptually, the Read Point is designed to identify “where objects were
at the time of the EPCIS event.”

 BusinessLocationID A Business Location is a uniquely identified and discretely recorded location that is meant
to designate the specific place where an object is assumed to be following an EPCIS
event until it is reported to be at a different Business Location by a subsequent EPCIS
event. As with the Read Point, the EPCIS Capturing Application determines the Business
Location based on whatever means it chooses. Conceptually, the Business Location is
designed to identify “where objects are following the EPCIS event.”

ReadPointID and BusinessLocationID are User Vocabularies as defined in Section 6.2. Some 1003
industries may wish to use EPCs as vocabulary elements, in which case pure identity URIs as 1004
defined in [TDS1.9] SHALL be used. 1005

 Non-Normative: Illustration: For example, in industries governed by GS1 General 1006
Specifications, readPointID, and businessLocationID may be SGLN-URIs [TDS1.9, 1007
Section 6.3.3], and physicalReaderID may be an SGTIN-URI [TDS1.9, Section 6.3.1]. 1008

But in all cases, location vocabulary elements are not required to be EPCs. 1009

 Non-Normative: Explanation: Allowing non-EPC URIs for locations gives organisations 1010
greater freedom to reuse existing ways of naming locations. 1011

For all of the EPCIS Event Types defined in this Section 7.2, capture events include separate fields 1012
for Read Point and Business Location. In most cases, both are optional, so that it is still possible for 1013
an EPCIS Capturing Application to include partial information if both are not known. 1014

 Non-Normative: Explanation: Logical Reader and Physical Reader are omitted from the 1015
definitions of EPCIS events in this specification. Physical Reader is generally not useful 1016
information for exchange between partners. For example, if a reader malfunctions and is 1017
replaced by another reader of identical make and model, the Physical Reader ID has changed. 1018
This information is of little interest to trading partners. Likewise, the Logical Reader ID may 1019
change if the capturing organisation makes a change in the way a particular business process 1020
is executed; again, not often of interest to a partner. 1021

The distinction between Read Point and Business Location is very much related to the dichotomy 1022
between retrospective semantics and prospective semantics discussed above. In general, Read 1023
Points play a role in retrospective semantics, while Business Locations are involved in prospective 1024
statements. This is made explicit in the way each type of location enters the semantic descriptions 1025
given at the end of each section below that defines an EPCIS capture event. 1026

EPC Information Services (EPCIS) Standard

Release 1.2, Ratified, Sep 2016 © 2016 GS1 AISBL Page 37 of 138

7.3.4.1 Example of the distinction between a read point and a business location 1027
(Non-Normative) 1028

 1029

Tag Time Read Point Business
Location

Comment

#123 7:00 “RP-DC#88-A” DC#88.Receive & Store Product entered DC via DockDoor#R1

#123 9:00 “RP-DC#88-K” DC#88.Shipping Product placed on conveyor for shipping

#123 9:30 “RP-DC#88-N” [omitted] Product shipped via dock door#S2

 1030

The figure above shows a typical use case consisting of rooms with fixed doorways at the 1031
boundaries of the rooms. In such a case, Read Points correspond to the doorways (with RFID 1032
instrumentation) and Business Locations correspond to the rooms. Note that the Read Points and 1033
Business Locations are not in one-to-one correspondence; the only situation where Read Points and 1034
Business Locations could have a 1:1 relationship is the unusual case of a room with a single door, 1035
such a small storeroom. 1036

Still considering the rooms-and-doors example, the Business Location is usually the location type of 1037
most interest to a business application, as it says which room an object is in. Thus it is meaningful 1038
to ask the inventory of a Business Location such as the backroom. In contrast, the Read Point 1039
indicates the doorway through which the object entered the room. It is not meaningful to ask the 1040
inventory of a doorway. While sometimes not as relevant to a business application, the Read Point is 1041
nevertheless of significant interest to higher level software to understand the business process and 1042
the final status of the object, particularly in the presence of less than 100% read rates. Note that 1043
correct designation of the business location requires both that the tagged object be observed at the 1044

Simple Distribution Center

RP:C

Recv Dock#R3

DC#88

RP:B

Recv Dock#R2

RP:A

Recv Dock#R1

RP:M

Shipping Dock#S1

RP:N

Shipping Dock#S2

RP:O

Shipping Dock#S3

Receive & Store Shipping

Read
Point

 K

RP:C

RP:A

RP:B RP:K
RP:O

RP:N

RP:M R&S Shipping

DC#88
Graph
View

Physical
View

1

2

3

EPC Information Services (EPCIS) Standard

Release 1.2, Ratified, Sep 2016 © 2016 GS1 AISBL Page 38 of 138

Read Point and that the direction of movement be correctly determined – again reporting the Read 1045
Point in the event will be very valuable for higher level software. 1046

A supply chain like the rooms-and-doors example may be represented by a graph in which each 1047
node in the graph represents a room in which objects may be found, and each arc represents a 1048
doorway that connects two rooms. Business Locations, therefore, correspond to nodes of this graph, 1049
and Read Points correspond to the arcs. If the graph were a straight, unidirectional chain, the arcs 1050
traversed by a given object could be reconstructed from knowing the nodes; that is, Read Point 1051
information would be redundant given the Business Location information. In more real-world 1052
situations, however, objects can take multiple paths and move “backwards” in the supply chain. In 1053
these real-world situations, providing Read Point information in addition to Business Location 1054
information is valuable for higher level software. 1055

7.3.4.2 Explanation of reader types versus location types (Non-Normative) 1056

In the EPC context, the term location has been used to signify many different things and this has 1057
lead to confusion about the meaning and use of the term, particularly when viewed from a business 1058
perspective. This confusion stems from a number of causes: 1059

1. In situations where EPC Readers are stationary, there’s a natural tendency to equate the reader 1060
with a location, though that may not always be valid if there is more than one reader in a 1061
location; 1062

2. There are situations where stationary Readers are placed between what business people would 1063
consider to be different locations (such as at the door between the backroom and sales floor of a 1064
retail store) and thus do not inherently determine the location without an indication of the 1065
direction in which the tagged object was travelling; 1066

3. A single physical Reader having multiple, independently addressable antennas might be used to 1067
detect tagged objects in multiple locations as viewed by the business people; 1068

4. Conversely, more than one Reader might be used to detect tagged objects in what business 1069
people would consider a single location; 1070

5. With mobile Readers, a given Reader may read tagged objects in multiple locations, perhaps 1071
using “location” tags or other means to determine the specific location associated with a given 1072
read event; 1073

6. And finally, locations of interest to one party (trading partner or application) may not be of 1074
interest to or authorised for viewing by another party, prompting interest in ways to 1075
differentiate locations. 1076

The key to balancing these seemingly conflicting requirements is to define and relate various 1077
location types, and then to rely on the EPCIS Capturing Application to properly record them for a 1078
given capture event. This is why EPCIS events contain both a ReadPointID and a BusinessLocationID 1079
(the two primitive location types). 1080

In addition, there has historically been much confusion around the difference between “location” as 1081
needed by EPCIS-level applications and reader identities. This EPCIS specification defines location as 1082
something quite distinct from reader identity. To help make this clear, the reader identity types are 1083
defined above to provide a contrast to the definitions of the true EPCIS location types. Also, reader 1084
identity types may enter into EPCIS as “observational attributes” when an application desires to 1085
retain a record of what readers played a role in an observation; e.g., for auditing purposes. (Capture 1086
and sharing of “observational attributes” would require use of extension fields not defined in this 1087
specification.) 1088

7.3.5 The “Why” dimension 1089

This section defines the data types used in the “Why” dimension of the event types specified in 1090
Section 7.3.5.4. 1091

EPC Information Services (EPCIS) Standard

Release 1.2, Ratified, Sep 2016 © 2016 GS1 AISBL Page 39 of 138

7.3.5.1 Business step 1092

BusinessStepID is a vocabulary whose elements denote steps in business processes. An example 1093
is an identifier that denotes “shipping.” The business step field of an event specifies the business 1094
context of an event: what business process step was taking place that caused the event to be 1095
captured? BusinessStepID is an example of a Standard Vocabulary as defined in Section 6.2. 1096

 Non-Normative: Explanation: Using an extensible vocabulary for business step identifiers 1097
allows GS1 standards (including and especially the GS1 Core Business Vocabulary) to define 1098
some common terms such as “shipping” or “receiving,” while allowing for industry groups and 1099
individual end-users to define their own terms. Master data provides additional information. 1100

This specification defines no master data attributes for business step identifiers. 1101

7.3.5.2 Disposition 1102

DispositionID is a vocabulary whose elements denote a business state of an object. An example 1103
is an identifier that denotes “recalled.” The disposition field of an event specifies the business 1104
condition of the event’s objects, subsequent to the event. The disposition is assumed to hold true 1105
until another event indicates a change of disposition. Intervening events that do not specify a 1106
disposition field have no effect on the presumed disposition of the object. DispositionID is an 1107
example of a Standard Vocabulary as defined in Section 6.2. 1108

 Non-Normative: Explanation: Using an extensible vocabulary for disposition identifiers 1109
allows GS1 standards (including and especially the GS1 Core Business Vocabulary) to define 1110
some common terms such as “recalled” or “in transit,” while allowing for industry groups and 1111
individual end-users to define their own terms. Master data may provide additional 1112
information. 1113

This specification defines no master data attributes for disposition identifiers. 1114

7.3.5.3 Business transaction 1115

A BusinessTransaction identifies a particular business transaction. An example of a business 1116
transaction is a specific purchase order. Business Transaction information may be included in EPCIS 1117
events to record an event’s participation in particular business transactions. 1118

A business transaction is described in EPCIS by a structured type consisting of a pair of identifiers, 1119
as follows. 1120

Field Type Description

type BusinessTransactionTypeID (Optional) An identifier that indicates what kind of
business transaction this BusinessTransaction
denotes. If omitted, no information is available about
the type of business transaction apart from what is
implied by the value of the bizTransaction field
itself.

bizTransaction BusinessTransactionID An identifier that denotes a specific business
transaction.

The two vocabulary types BusinessTransactionTypeID and BusinessTransactionID are 1121
defined in the sections below. 1122

7.3.5.3.1 Business transaction type 1123

BusinessTransactionTypeID is a vocabulary whose elements denote a specific type of business 1124
transaction. An example is an identifier that denotes “purchase order.” 1125
BusinessTransactionTypeID is an example of a Standard Vocabulary as defined in Section 6.2. 1126

EPC Information Services (EPCIS) Standard

Release 1.2, Ratified, Sep 2016 © 2016 GS1 AISBL Page 40 of 138

 Non-Normative: Explanation: Using an extensible vocabulary for business transaction type 1127
identifiers allows GS1 standards to define some common terms such as “purchase order” 1128
while allowing for industry groups and individual end-users to define their own terms. Master 1129
data may provide additional information. 1130

This specification defines no master data attributes for business transaction type identifiers. 1131

7.3.5.3.2 Business transaction ID 1132

BusinessTransactionID is a vocabulary whose elements denote specific business transactions. 1133
An example is an identifier that denotes “Acme Corp purchase order number 12345678.” 1134
BusinessTransactionID is a User Vocabulary as defined in Section 6.2. 1135

 Non-Normative: Explanation: URIs are used to provide extensibility and a convenient way 1136
for organisations to distinguish one kind of transaction identifier from another. For example, if 1137
Acme Corporation has purchase orders (one kind of business transaction) identified with an 8-1138
digit number as well as shipments (another kind of business transaction) identified by a 6-1139
character string, and furthermore the PostHaste Shipping Company uses 12-digit tracking 1140
IDs, then the following business transaction IDs might be associated with a particular EPC 1141
over time: 1142

 http://transaction.acme.com/po/12345678 1143
http://transaction.acme.com/shipment/34ABC8 1144
urn:posthaste:tracking:123456789012 1145

 (In this example, it is assumed that PostHaste Shipping has registered the URN namespace 1146
“posthaste” with IANA.) An EPCIS Accessing Application might query EPCIS and discover all 1147
three of the transaction IDs; using URIs gives the application a way to understand which ID is 1148
of interest to it. 1149

7.3.5.4 Source and destination 1150

A Source or Destination is used to provide additional business context when an EPCIS event is 1151
part of a business transfer; that is, a process in which there is a transfer of ownership, 1152
responsibility, and/or custody of physical or digital objects. 1153

In many cases, a business transfer requires several individual business steps (and therefore several 1154
EPCIS events) to execute; for example, shipping followed by receiving, or a more complex sequence 1155
such as loading departing transporting arriving unloading accepting. The ReadPoint 1156
and BusinessLocation in the “where” dimension of these EPCIS events indicate the known 1157
physical location at each step of the process. Source and Destination, in contrast, may be used 1158
to indicate the parties and/or location that are the intended endpoints of the business transfer. In a 1159
multi-step business transfer, some or all of the EPCIS events may carry Source and Destination, 1160
and the information would be the same for all events in a given transfer. 1161

Source and Destination provide a standardised way to indicate the parties and/or physical 1162
locations involved in the transfer, complementing the business transaction information (e.g., 1163
purchase orders, invoices, etc.) that may be referred to by BusinssTransaction elements. 1164

A source or destination is described in EPCIS by a structured type consisting of a pair of identifiers, 1165
as follows. 1166

Field Type Description

type SourceDestTypeID An identifier that indicates what kind of source or destination this
Source or Destination (respectively) denotes.

source
or
destination

SourceDestID An identifier that denotes a specific source or destination.

 1167

EPC Information Services (EPCIS) Standard

Release 1.2, Ratified, Sep 2016 © 2016 GS1 AISBL Page 41 of 138

The two vocabulary types SourceDestTypeID, and SourceDestID are defined in the sections 1168
below. 1169

7.3.5.4.1 Source/Destination type 1170

SourceDestTypeID is a vocabulary whose elements denote a specific type of business transfer 1171
source or destination. An example is an identifier that denotes “owning party.” SourceDestTypeID 1172
is an example of a Standard Vocabulary as defined in Section 6.2. 1173

 Non-Normative: Explanation: Using an extensible vocabulary for source/destination type 1174
identifiers allows GS1 standards to define some common terms such as “owning party” while 1175
allowing for industry groups and individual end-users to define their own terms. Master data 1176
may provide additional information. 1177

This specification defines no master data attributes for source/destination type identifiers. 1178

7.3.5.4.2 Source/Destination ID 1179

SourceDestID is a vocabulary whose elements denote specific sources and destinations. An 1180
example is an identifier that denotes “Acme Corporation (an owning party).” SourceDestID is a 1181
User Vocabulary as defined in Section 6.2. 1182

 Non-Normative: Explanation: URIs are used to provide extensibility and a convenient way 1183
for organisations to distinguish one kind of source or destination identifier from another. 1184

7.3.6 Instance/Lot master data (ILMD) 1185

Instance/Lot master data (ILMD) is data that describes a specific instance of a physical or digital 1186
object, or a specific batch/lot of objects that are produced in batches/lots. ILMD consists of a set of 1187
descriptive attributes that provide information about one or more specific objects or lots. It is similar 1188
to ordinary master data, which also consists of a set of descriptive attributes that provide 1189
information about objects. But whereas master data attributes have the same values for a large 1190
class of objects, (e.g., for all objects having a given GTIN), the values of ILMD attributes may be 1191
different for much smaller groupings of objects (e.g., a single batch or lot), and may be different for 1192
each object (i.e., different for each instance). 1193

An example of a master data attribute is the weight and physical dimensions of trade items 1194
identified by a specific GTIN. These values are the same for all items sharing that GTIN. An example 1195
of ILMD is the expiration date of a perishable trade item. Unlike master data, the expiration date is 1196
not the same for all trade items having the same GTIN; in principle, each may have a different 1197
expiration date depending on when it is manufactured. Other examples of ILMD include date of 1198
manufacture, place of manufacture, weight and other physical dimensions of a variable-measure 1199
trade item, harvest information for farm products, and so on. 1200

ILMD, like ordinary master data, is intended to be static over the life of the object. For example, the 1201
expiration date of a perishable trade item or the weight of a variable-measure item does not change 1202
over the life of the trade item, even though different trade items having the same GTIN may have 1203
different values for expiration date and weight. ILMD is not to be used to represent information that 1204
changes over the life of an object, for example, the current temperature of an object as it moves 1205
through the supply chain. 1206

While there exist standards (such as GDSN) for the registration and dissemination of ordinary 1207
master data through the supply chain, standards and systems for dissemination of ILMD do not yet 1208
exist. For this reason, EPCIS allows ILMD to be carried directly in certain EPCIS events. This feature 1209
should only be used when no separate system exists for dissemination of ILMD. 1210

ILMD for a specific object is defined when the object comes into existence. Therefore, ILMD may 1211
only be included in ObjectEvents with action ADD (Section 7.4.1.2), and in 1212
TransformationEvents (Section 7.4.6). In the case of a TransformationEvent, ILMD applies 1213
to the outputs of the transformation, not to the inputs. 1214

EPC Information Services (EPCIS) Standard

Release 1.2, Ratified, Sep 2016 © 2016 GS1 AISBL Page 42 of 138

The structure of ILMD defined in this EPCIS standard consists of a set of named attributes, with 1215
values of any type. In the XML binding (Section 9.5), the XML schema provides for an unbounded 1216
list of XML elements having any element name and content. Other documents layered on top of 1217
EPCIS may define specific ILMD data elements; see Section 6.3. In this way, ILMD is similar to 1218
event-level EPCIS extensions, but is separate in order to emphasise that ILMD applies for the entire 1219
life of objects, whereas an event-level EPCIS extension only applies to that specific event. 1220

7.4 Core event types module – events 1221

7.4.1 EPCISEvent 1222

EPCISEvent is a common base type for all EPCIS events. All of the more specific event types in the 1223
following sections are subclasses of EPCISEvent. 1224

This common base type only has the following fields. 1225

Field Type Description

eventTime Time The date and time at which the EPCIS Capturing Applications
asserts the event occurred.

recordTime Time (Optional) The date and time at which this event was recorded
by an EPCIS Repository. This field SHALL be ignored when an
event is presented to the EPCIS Capture Interface, and SHALL
be present when an event is retrieved through the EPCIS Query
Interfaces. The recordTime does not describe anything about
the real-world event, but is rather a bookkeeping mechanism
that plays a role in the interpretation of standing queries as
specified in Section 8.2.5.2.

eventTimeZoneOffset String The time zone offset in effect at the time and place the event
occurred, expressed as an offset from UTC. The value of this
field SHALL be a string consisting of the character ‘+’ or the
character ‘-’, followed by two digits whose value is within the
range 00 through 14 (inclusive), followed by a colon character
‘:’, followed by two digits whose value is within the range 00
through 59 (inclusive), except that if the value of the first two
digits is 14, the value of the second two digits must be 00.

For example, the value +05:30 specifies that where the event
occurred, local time was five hours and 30 minutes later than
UTC (that is, midnight UTC was 5:30am local time).

eventID EventID (Optional) An identifier for this event as specified by the
capturing application, globally unique across all events other
than error declarations. “Globally unique” means different from
the eventID on any other EPCIS event across any
implementation of EPCIS, not merely across the events captured
by a single capturing application or by a single capture server.
(The Core Business Vocabulary standard [CBV1.2] specifies the
use of a UUID URI for this purpose.)
Note that in the case of an error declaration, the event ID will
be equal to the event ID of the erroneous event (or null if the
event ID of the erroneous event is null), and in that sense is not
unique. See Section 7.4.1.2.

errorDeclaration ErrorDeclaration (Optional) If present, indicates that this event serves to assert
that the assertions made by a prior event are in error. See
Section 7.4.1.2.

7.4.1.1 Explanation of eventTimeZoneOffset (Non-Normative) 1226

The eventTimeZoneOffset field is not necessary to understand at what moment in time an event 1227
occurred. This is because the eventTime field is of type Time, defined in Section 7.3 to be a “date 1228
and time in a time zone-independent manner.” For example, in the XML binding (Section 9.5) the 1229
eventTime field is represented as an element of type xsd:dateTime, and Section 9.5 further 1230

EPC Information Services (EPCIS) Standard

Release 1.2, Ratified, Sep 2016 © 2016 GS1 AISBL Page 43 of 138

stipulates that the XML must include a time zone specifier. Therefore, the XML for eventTime 1231
unambiguously identifies a moment in absolute time, and it is not necessary to consult 1232
eventTimeZoneOffset to understand what moment in time that is. 1233

The purpose of eventTimeZoneOffset is to provide additional business context about the event, 1234
namely to identify what time zone offset was in effect at the time and place the event was captured. 1235
This information may be useful, for example, to determine whether an event took place during 1236
business hours, to present the event to a human in a format consistent with local time, and so on. 1237
The local time zone offset information is not necessarily available from eventTime, because there is 1238
no requirement that the time zone specifier in the XML representation of eventTime be the local 1239
time zone offset where the event was captured. For example, an event taking place at 8:00am US 1240
Eastern Standard Time could have an XML eventTime field that is written 08:00-05:00 (using US 1241
Eastern Standard Time), or 13:00Z (using UTC), or even 07:00-06:00 (using US Central Standard 1242
Time). Moreover, XML processors are not required by [XSD2] to retain and present to applications 1243
the time zone specifier that was part of the xsd:dateTime field, and so the time zone specifier in 1244
the eventTime field might not be available to applications at all. Similar considerations would apply 1245
for other (non-XML) bindings of the Core Event Types module. For example, a hypothetical binary 1246
binding might represent Time values as a millisecond offset relative to midnight UTC on January 1, 1247
1970 – again, unambiguously identifying a moment in absolute time, but not providing any 1248
information about the local time zone. For these reasons, eventTimeZoneOffset is provided as an 1249
additional event field. 1250

7.4.1.2 ErrorDeclaration 1251

When an event contains an ErrorDeclaration element, it indicates that this event has special 1252
semantics: instead of the normal semantics which assert that various things happened and that 1253
various things are true following the event, the semantics of this event assert that those prior 1254
assertions are in error. An event containing an ErrorDeclaration element SHALL be otherwise 1255
identical to a prior event, “otherwise identical” meaning that all fields of the event other than the 1256
ErrorDeclaration element and the value of recordTime are exactly equal to the prior event. (Note 1257
that includes the eventID field: the eventID of the error declaration will be equal to the eventID 1258
of the prior event or null if the eventID of the prior event is null. This is the sole case where the 1259
same non-null eventID may appear in two events.) The semantics of an event containing the 1260
ErrorDeclaration element are that all assertions implied by the prior event are considered to be 1261
erroneous, as of the specified declarationTime. The prior event is not modified in any way, and 1262
subsequent queries will return both the prior event and the error declaration. 1263

An ErrorDeclaration element contains the following fields: 1264

Field Type Description

declarationTime Timestamp The date and time at which the declaration of error is made.
(Note that the eventTime of this event must match the
eventTime of the prior event being declared erroneous, so the
declarationTime field is required to indicate the time at
which this event is asserted.)

reason ErrorReasonID (Optional) An element from a standard vocabulary that
specifies the reason the prior event is considered erroneous.

correctiveEventIDs List<EventID> (Optional) If present, indicates that the events having the
specified URIs as the value of their eventID fields are to be
considered as “corrections” to the event declared erroneous
by this event. This provides a means to link an error
declaration event to one or more events that are intended to
replace the erroneous event.

 1265

An ErrorDeclaration element SHOULD NOT be used if there is a way to model the real-world 1266
situation as an ordinary event (that is, using an event that does not contain an ErrorDeclaration 1267
element). 1268

EPC Information Services (EPCIS) Standard

Release 1.2, Ratified, Sep 2016 © 2016 GS1 AISBL Page 44 of 138

7.4.1.3 Use of error declarations (Non-Normative) 1269

An EPCIS event records the completion of a step of a business process. A business process is 1270
modeled by breaking it down into a series of steps, and modeling each as an EPCIS event. The net 1271
effect is that the collection of all events pertaining to a specific object (often referred to as a “trace”) 1272
should correctly indicate the history and current state of that object, by interpreting the events 1273
according to the semantics specified in this standard and relevant vocabulary standards. 1274

Sometimes, it is discovered that an event recorded earlier does not accurately reflect what 1275
happened in the real world. In such cases, as noted in Section 6.1, earlier events are never deleted 1276
or modified. Instead, additional events are recorded whose effect is that the complete trace 1277
(including the new events and all prior events including the incorrect event) accurately reflects the 1278
history and current state, as stated in the above principle. 1279

The preferred way to arrive at the additional events is to recognise that the discovery of an 1280
erroneous event and its remediation is itself a business process which can be modeled by creating 1281
suitable EPCIS events. In most situations, this is done using EPCIS events from the Core Event 1282
Types Module as specified in Sections 7.4.1 through 7.4.6, using suitable vocabulary. 1283

Example 1: Company X records an EPCIS event asserting that serial numbers 101, 102, and 103 of 1284
some product were shipped to Company Y. Company Y receives the shipment and finds serial 1285
number 104 in addition to serial numbers 101, 102, 103. In discussion with Company X, it is agreed 1286
that serial 104 was indeed shipped and that the shipping event was in error. Remediation: Company 1287
X records a new EPCIS event asserting that serial number 104 was shipped, with similar contextual 1288
information as the original event. 1289

Example 2: Company X records an EPCIS event asserting that serial numbers 101, 102, and 103 of 1290
some product were shipped to Company Y. Company Y receives the shipment and finds only serial 1291
numbers 101, 102. In discussion with Company X, it is agreed that serial 103 was not shipped but 1292
remains in Company X's inventory. They agree to reverse the billing for the third product. 1293
Remediation: Company X records a new EPCIS event asserting that the shipment of serial 103 is 1294
voided. 1295

In the first example, the additional event uses the same business vocabulary as the first. In the 1296
second example, vocabulary specifically associated with the process of voiding a shipment is used, 1297
but it is still “ordinary” EPCIS semantics in the sense that it models the completion of a well-defined 1298
business process step. This reflects the reality that the act remediation is itself a business process, 1299
and so may be modelled as an EPCIS event. 1300

In some situations, it either is not possible (or is highly undesirable) to remediate the history of an 1301
object by creating a new EPCIS event with ordinary semantics (that is, with the semantics specified 1302
in Sections 7.4.1 through 7.4.6). 1303

Example 3: Company X records an EPCIS event to assert that serial number 101 of product X was 1304
destroyed. This event is an Object Event as specified in Section 7.4.2 with action = DELETE. Later it 1305
is discovered that serial 101 is still in storage, not destroyed. An ordinary event cannot be used to 1306
amend the history, because the semantics of action DELETE for an Object Event specify that “the 1307
objects … should not appear in subsequent events.” 1308

Example 4: Company X records an EPCIS event asserting that several products have been shipped, 1309
indicating Purchase Order 123 as a business transaction in the “why” dimension. Company Y 1310
receives the products and records a receiving event. Only then it is discovered that the purchase 1311
order reference in the shipping event is wrong: it says PO 456 instead of 123. This could be 1312
remediated using ordinary EPCIS events by Company X recording a “cancel shipment” event 1313
followed by a “shipping” event with the correct PO #. But this is rather undesirable from the 1314
perspective of the overall trace, especially given that there is already a receiving event. 1315

To accommodate such situations, the Core Event Types Module provides a mechanism to assert that 1316
the assertions made by a prior event are in error. These semantics may only be used when an event 1317
specifies exactly the same conditions as a prior ordinary event, so that the assertion of error can be 1318
correlated to the prior event. Such an event is termed an “error declaration event.” 1319

In Example 3 above, the error declaration event would imply that serial number 101 of product X 1320
was not destroyed. In Example 4 above, the error declaration event would imply that a shipment 1321
with PO 123 as the context did not occur, and an additional event (the “corrective event”) would say 1322
that a shipment with PO 456 did occur. This is rather similar to modeling Example 4 using a “cancel 1323

EPC Information Services (EPCIS) Standard

Release 1.2, Ratified, Sep 2016 © 2016 GS1 AISBL Page 45 of 138

shipment” event, except that instead of asserting a shipment was carried out under PO 123 then 1324
cancelled, the error declaration event simply asserts that the PO 123 assertion was erroneous. 1325

An error declaration event is constructed by including an ErrorDeclaration section. Specifically, 1326
given Event E1, an error declaration event E2 whose effect is to declare the assertions of E1 to be in 1327
error is an event structure whose content is identical to E1, but with the ErrorDeclaration element 1328
included. For example, the error declaration for the "destroying" event in Example 3 is also an 1329
Object Event with action = DELETE, but with the ErrorDeclaration element included. In general, 1330
to declare event E to be in error, a new event is recorded that is identical to event E except that the 1331
ErrorDeclaration element is also included (and the record time will be different). 1332

There are three reasons why error declaration events in EPCIS are expressed this way. One, an 1333
event ID is not required to indicate the erroneous event, which in turn implies it is not necessary to 1334
include an event ID on every event to provide for possible error declaration in the future. Event IDs 1335
are available to link an error declaration event to a corrective event, but it is never necessary to use 1336
event IDs. Two, any EPCIS query that matches an event will also match an error declaration for that 1337
event, if it exists. This means that EPCIS Accessing Applications require no special logic to become 1338
aware of error declarations, if they exist. Three, if an EPCIS Accessing Application receives an error 1339
declaration event and for some reason does not have a copy of the original (erroneous) event, it is 1340
not necessary to retrieve the original event as every bit of information in that event is also present 1341
in the error declaration event. 1342

7.4.1.4 Matching an error declaration to the original event (non-normative) 1343

As discussed in Section 7.4.1.2, an error declaration event has identical content to the original 1344
(erroneous) event, with the exception of the ErrorDeclaration element itself and the record 1345
time. One of the benefits of this approach is that when an EPCIS Accessing Application encounters 1346
an error declaration, it is not necessary to retrieve the original (erroneous) event, as all of the 1347
information in that event is also present in the error declaration event which the EPCIS Accessing 1348
Application already has. 1349

Nevertheless, there may be situations in which an EPCIS Accessing Application or EPCIS Capturing 1350
Application wishes to confirm the existence of the original (erroneous) event by querying for it. The 1351
only way to recognise that an event is the original event matching an error declaration is to confirm 1352
that all data elements in the events (save the ErrorDeclaration element and record time) 1353
match. See [EPCISGuideline] for suggested approaches for querying in this situation. 1354

7.4.2 ObjectEvent (subclass of EPCISEvent) 1355

An ObjectEvent captures information about an event pertaining to one or more physical or digital 1356
objects identified by instance-level (EPC) or class-level (EPC Class) identifiers. Most ObjectEvents 1357
are envisioned to represent actual observations of objects, but strictly speaking it can be used for 1358
any event a Capturing Application wants to assert about objects, including for example capturing the 1359
fact that an expected observation failed to occur. 1360

While more than one EPC and/or EPC Class may appear in an ObjectEvent, no relationship or 1361
association between those objects is implied other than the coincidence of having experienced 1362
identical events in the real world. 1363

The Action field of an ObjectEvent describes the event’s relationship to the lifecycle of the 1364
objects and their identifiers named in the event. Specifically: 1365

Action value Meaning

ADD The objects identified in the event have been commissioned as part of this event. For objects identified
by EPCs (instance-level identifiers), the EPC(s) have been issued and associated with an object (s) for
the first time. For objects identified by EPC Classes (class-level identifiers), the specified quantities of
EPC Classes identified in the event have been created (though other instances of those same classes
may have existed prior this event, and additional instances may be created subsequent to this event).

OBSERVE The event represents a simple observation of the objects identified in the event, not their
commissioning or decommissioning.

EPC Information Services (EPCIS) Standard

Release 1.2, Ratified, Sep 2016 © 2016 GS1 AISBL Page 46 of 138

Action value Meaning

DELETE The objects identified in the event have been decommissioned as part of this event. For objects
identified by EPCs (instance-level identifiers), the EPC(s) do not exist subsequent to the event and
should not be observed again. For objects identified by EPC Classes (class-level identifiers), the
specified quantities of EPC Classes identified in the event have ceased to exist (though other instances
of those same classes may continue to exist subsequent to this event, and additional instances may be
have ceased to exist prior this event).

 1366
Fields: 1367
Field Type Description

eventTime
recordTime
eventTimeZoneOffset

(Inherited from EPCISEvent; see Section 7.4.1)

epcList List<EPC> (Optional) An unordered list of one or more EPCs
naming specific objects to which the event pertained.
See Section 7.3.3.2.
An ObjectEvent SHALL contain either a non-empty
epcList, a non-empty quantityList, or both.

quantityList List<QuantityElement> (Optional) An unordered list of one or more
QuantityElements identifying (at the class level)
objects to which the event pertained.
An ObjectEvent SHALL contain either a non-empty
epcList, a non-empty quantityList, or both.

action Action How this event relates to the lifecycle of the EPCs
named in this event. See above for more detail.

bizStep BusinessStepID (Optional) The business step of which this event was
a part.

disposition DispositionID (Optional) The business condition of the objects
associated with the EPCs, presumed to hold true until
contradicted by a subsequent event.

readPoint ReadPointID (Optional) The read point at which the event took
place.

bizLocation BusinessLocationID (Optional) The business location where the objects
associated with the EPCs may be found, until
contradicted by a subsequent event.

bizTransactionList Unordered list of zero or more
BusinessTransaction
instances

(Optional) An unordered list of business transactions
that define the context of this event.

sourceList List<Source> (Optional) An unordered list of Source elements
(Section 7.3.5.4) that provide context about the
originating endpoint of a business transfer of which
this event is a part.

destinationList List<Destination> (Optional) An unordered list of Destination
elements (Section 7.3.5.4) that provide context about
the terminating endpoint of a business transfer of
which this event is a part.

ilmd ILMD (Optional) Instance/Lot master data (Section 7.3.6)
that describes the objects created during this event.
An ObjectEvent SHALL NOT contain ilmd if
action is OBSERVE or DELETE.

Note that in the XML binding (Section 9.3), quantityList, sourceList, destinationList, 1368
and ilmd appear in the standard extension area, to maintain forward-compatibility with EPCIS 1.0. 1369

Retrospective semantics: 1370

EPC Information Services (EPCIS) Standard

Release 1.2, Ratified, Sep 2016 © 2016 GS1 AISBL Page 47 of 138

■ An event described by bizStep (and any other fields) took place with respect to the objects 1371
identified by epcList and quantityList at eventTime at location readPoint. 1372

■ (If action is ADD) The EPCs in epcList were commissioned (issued for the first time). 1373

■ (If action is ADD) The specified quantities of EPC Class instances in quantityList were 1374
created (or an unknown quantity, for each QuantityElement in which the quantity value is 1375
omitted). 1376

■ (If action is DELETE) The EPCs in epcList were decommissioned (retired from future use). 1377

■ (If action is DELETE) The specified quantities of EPC Class instances in quantityList ceased 1378
to exist (or an unknown quantity, for each QuantityElement in which the quantity value is 1379
omitted). 1380

■ (If action is ADD and a non-empty bizTransactionList is specified) An association exists 1381
between the business transactions enumerated in bizTransactionList and the objects 1382
identified in epcList and quantityList. 1383

■ (If action is OBSERVE and a non-empty bizTransactionList is specified) This event took 1384
place within the context of the business transactions enumerated in bizTransactionList. 1385

■ (If action is DELETE and a non-empty bizTransactionList is specified) This event took 1386
place within the context of the business transactions enumerated in bizTransactionList. 1387

■ (If sourceList is non-empty) This event took place within the context of a business transfer 1388
whose originating endpoint is described by the sources enumerated in sourceList. 1389

■ (If destinationList is non-empty) This event took place within the context of a business 1390
transfer whose terminating endpoint is described by the destinations enumerated in 1391
destinationList. 1392

Prospective semantics: 1393

■ (If action is ADD) The objects identified by the instance-level identifiers in epcList may 1394
appear in subsequent events. 1395

■ (If action is ADD) The objects identified by the class-level identifiers in quantityList may 1396
appear in subsequent events. 1397

■ (If action is DELETE) The objects identified by the instance-level identifiers in epcList should 1398
not appear in subsequent events. 1399

■ (If action is DELETE) The total population of objects identified by the class-level identifiers in 1400
quantityList that may appear in subsequent events has been reduced by the quantities 1401
specified in quantityList (or by an unknown quantity, for each QuantityElement in which 1402
the quantity value is omitted). 1403

■ (If disposition is specified) The business condition of the objects identified by epcList and 1404
quantityList is as described by disposition. 1405

■ (If disposition is omitted) The business condition of the objects associated with identified by 1406
epcList and quantityList is unchanged. 1407

■ (If bizLocation is specified) The objects identified by epcList and quantityList are at 1408
business location bizLocation. 1409

■ (If bizLocation is omitted) The business location of the objects identified by epcList and 1410
quantityList is unknown. 1411

■ (If action is ADD and ilmd is non-empty) The objects identified by epcList and 1412
quantityList are described by the attributes in ilmd. 1413

■ (If action is ADD and a non-empty bizTransactionList is specified) An association exists 1414
between the business transactions enumerated in bizTransactionList and the objects 1415
identified in epcListand quantityList. 1416

EPC Information Services (EPCIS) Standard

Release 1.2, Ratified, Sep 2016 © 2016 GS1 AISBL Page 48 of 138

 Non-Normative: Explanation: In the case where action is ADD and a non-empty 1417
bizTransactionList is specified, the semantic effect is equivalent to having an 1418
ObjectEvent with no bizTransactionList together with a TransactionEvent having the 1419
bizTransactionList and all the same field values as the ObjectEvent. Note, however, that 1420
an ObjectEvent with a non-empty bizTransactionList does not cause a TransactionEvent 1421
to be returned from a query. 1422

7.4.3 AggregationEvent (subclass of EPCISEvent) 1423

The event type AggregationEvent describes events that apply to objects that have been 1424
aggregated to one another. In such an event, there is a set of “contained” objects that have been 1425
aggregated within a “containing” entity that’s meant to identify the aggregation itself. 1426

This event type is intended to be used for “aggregations,” meaning an association where there is a 1427
strong physical relationship between the containing and the contained objects such that they will all 1428
occupy the same location at the same time, until such time as they are disaggregated. An example 1429
of an aggregation is where cases are loaded onto a pallet and carried as a unit. The 1430
AggregationEvent type is not intended for weaker associations such as two pallets that are part 1431
of the same shipment, but where the pallets might not always be in exactly the same place at the 1432
same time. (The TransactionEvent may be appropriate for such circumstances.) More specific 1433
semantics may be specified depending on the Business Step. 1434

The Action field of an AggregationEvent describes the event’s relationship to the lifecycle of the 1435
aggregation. Specifically: 1436

Action value Meaning

ADD The objects identified in the child list have been aggregated to the parent during this event. This
includes situations where the aggregation is created for the first time, as well as when new children are
added to an existing aggregate.

OBSERVE The event represents neither adding nor removing children from the aggregation. The observation may
be incomplete: there may be children that are part of the aggregation but not observed during this
event and therefore not included in the childEPCs or childQuantityList field of the
AggregationEvent; likewise, the parent identity may not be observed or known during this event
and therefore the parentID field be omitted from the AggregationEvent.

DELETE The objects identified in the child list have been disaggregated from the parent during this event. This
includes situations where a subset of children are removed from the aggregation, as well as when the
entire aggregation is dismantled. Both childEPCs and childQuantityList field may be omitted
from the AggregationEvent, which means that all children have been disaggregated. (This permits
disaggregation when the event capture software does not know the identities of all the children.)

 1437

The AggregationEvent type includes fields that refer to a single “parent” (often a “containing” 1438
entity) and one or more “children” (often “contained” objects). A parent identifier is required when 1439
action is ADD or DELETE, but optional when action is OBSERVE. 1440

 Non-Normative: Explanation: A parent identifier is used when action is ADD so that there 1441
is a way of referring to the association in subsequent events when action is DELETE. The 1442
parent identifier is optional when action is OBSERVE because the parent is not always 1443
known during an intermediate observation. For example, a pallet receiving process may rely 1444
on RFID tags to determine the EPCs of cases on the pallet, but there might not be an RFID 1445
tag for the pallet (or if there is one, it may be unreadable). 1446

The AggregationEvent is intended to indicate aggregations among objects, and so the children are 1447
identified by EPCs and/or EPC classes. The parent entity, however, is not necessarily a physical or 1448
digital object separate from the aggregation itself, and so the parent is identified by an arbitrary 1449
URI, which MAY be an EPC, but MAY be another identifier drawn from a suitable private vocabulary. 1450

 Non-Normative: Explanation: In many manufacturing operations, for example, it is common 1451
to create a load several steps before an EPC for the load is assigned. In such situations, an 1452

EPC Information Services (EPCIS) Standard

Release 1.2, Ratified, Sep 2016 © 2016 GS1 AISBL Page 49 of 138

internal tracking number (often referred to as a “license plate number,” or LPN) is assigned at 1453
the time the load is created, and this is used up to the point of shipment. At the point of 1454
shipment, an SSCC code (which is an EPC) is assigned. In EPCIS, this would be modelled by 1455
(a) an AggregateEvent with action equal to ADD at the time the load is created, and (b) a 1456
second AggregationEvent with action equal to ADD at the time the SSCC is assigned (the 1457
first association may also be invalidated via a AggregationEvent with action equal to 1458
DELETE at this time). The first AggregationEvent would use the LPN as the parent 1459
identifier (expressed in a suitable URI representation; see Section 6.4), while the second 1460
AggregationEvent would use the SSCC (which is a type of EPC) as the parent identifier, 1461
thereby changing the parentID. 1462

An AggregationEvent has the following fields: 1463

Field Type Description

eventTime
recordTime
eventTimeZoneOffset

(Inherited from EPCISEvent; see Section 7.4.1)

parentID URI (Optional when action is OBSERVE, required
otherwise) The identifier of the parent of the
association. When the parent identifier is an EPC,
this field SHALL contain the “pure identity” URI for
the EPC as specified in [TDS1.9], Section 7.

childEPCs List<EPC> (Optional) An unordered list of the EPCs of
contained objects identified by instance-level
identifiers. See Section 7.3.3.2.
An AggregationEvent SHALL contain either a non-
empty childEPCs, a non-empty
childQuantityList, or both, except that both
childEPCs and childQuantityList MAY be
empty if action is DELETE, indicating that all
children are disaggregated from the parent.

childQuantityList List<QuantityElement> (Optional) An unordered list of one or more
QuantityElements identifying (at the class level)
contained objects. See Section 7.3.3.2.
An AggregationEvent SHALL contain either a non-
empty childEPCs, a non-empty
childQuantityList, or both, except that both
childEPCs and childQuantityList MAY be
empty if action is DELETE, indicating that all
children are disaggregated from the parent.

action Action How this event relates to the lifecycle of the
aggregation named in this event. See above for
more detail.

bizStep BusinessStepID (Optional) The business step of which this event was
a part.

disposition DispositionID (Optional) The business condition of the objects
associated with the EPCs, presumed to hold true
until contradicted by a subsequent event.

readPoint ReadPointID (Optional) The read point at which the event took
place.

bizLocation BusinessLocationID (Optional) The business location where the objects
associated with the containing and contained EPCs
may be found, until contradicted by a subsequent
event.

bizTransactionList Unordered list of zero or more
BusinessTransaction
instances

(Optional) An unordered list of business transactions
that define the context of this event.

EPC Information Services (EPCIS) Standard

Release 1.2, Ratified, Sep 2016 © 2016 GS1 AISBL Page 50 of 138

Field Type Description

sourceList List<Source> (Optional) An unordered list of Source elements
(Section 7.3.5.4) that provide context about the
originating endpoint of a business transfer of which
this event is a part.

destinationList List<Destination> (Optional) An unordered list of Destination
elements (Section 7.3.5.4) that provide context
about the terminating endpoint of a business
transfer of which this event is a part.

Note that in the XML binding (Section 9.3), childQuantityList, sourceList, and 1464
destinationList appear in the standard extension area, to maintain forward-compatibility with 1465
EPCIS 1.0. 1466

Retrospective semantics: 1467

■ An event described by bizStep (and any other fields) took place involving containing entity 1468
parentID and the contained objects in childEPCs and childQuantityList, at eventTime 1469
and location readPoint. 1470

■ (If action is ADD) The objects identified in childEPCs and childQuantityList were 1471
aggregated to containing entity parentID. 1472

■ (If action is DELETE and childEPCs or childQuantityList is non-empty) The objects 1473
identified in childEPCs and childQuantityList were disaggregated from parentID. 1474

■ (If action is DELETE and both childEPCs and childQuantityList are empty) All contained 1475
objects have been disaggregated from containing entity parentID. 1476

■ (If action is ADD and a non-empty bizTransactionList is specified) An association exists 1477
between the business transactions enumerated in bizTransactionList, the objects identified 1478
in childEPCs and childQuantityList, and containing entity parentID. 1479

■ (If action is OBSERVE and a non-empty bizTransactionList is specified) This event took 1480
place within the context of the business transactions enumerated in bizTransactionList. 1481

■ (If action is DELETE and a non-empty bizTransactionList is specified) This event took 1482
place within the context of the business transactions enumerated in bizTransactionList. 1483

■ (If sourceList is non-empty) This event took place within the context of a business transfer 1484
whose originating endpoint is described by the sources enumerated in sourceList. 1485

■ (If destinationList is non-empty) This event took place within the context of a business 1486
transfer whose terminating endpoint is described by the destinations enumerated in 1487
destinationList. 1488

Prospective semantics: 1489

■ (If action is ADD) An aggregation exists between containing entity parentID and the 1490
contained objects in childEPCs and childQuantityList. 1491

■ (If action is DELETE and childEPCs or childQuantityList is non-empty) An aggregation 1492
no longer exists between containing entity parentID and the contained objects identified in 1493
childEPCs and childQuantityList. 1494

■ (If action is DELETE and both childEPCs and childQuantityList are empty) An 1495
aggregation no longer exists between containing entity parentID and any contained objects. 1496

■ (If disposition is specified) The business condition of the objects associated with the objects 1497
identified in parentID, childEPCs, and childQuantityList is as described by 1498
disposition. 1499

■ (If disposition is omitted) The business condition of the objects associated with the objects 1500
in parentID, childEPCs, and childQuantityList is unchanged. 1501

EPC Information Services (EPCIS) Standard

Release 1.2, Ratified, Sep 2016 © 2016 GS1 AISBL Page 51 of 138

■ (If bizLocation is specified) The objects associated with the objects in parentID, 1502
childEPCs, and childQuantityList are at business location bizLocation. 1503

■ (If bizLocation is omitted) The business location of the objects associated with the objects in 1504
parentID, childEPCs, and childQuantityList is unknown. 1505

(If action is ADD and a non-empty bizTransactionList is specified) An association exists 1506
between the business transactions enumerated in bizTransactionList, the objects in 1507
childEPCs and childQuantityList, and containing entity parentID (if specified). 1508

 Non-Normative: Explanation: In the case where action is ADD and a non-empty 1509
bizTransactionList is specified, the semantic effect is equivalent to having an 1510
AggregationEvent with no bizTransactionList together with a TransactionEvent having 1511
the bizTransactionList and all same field values as the AggregationEvent. Note, 1512
however, that an AggregationEvent with a non-empty bizTransactionList does not cause 1513
a TransactionEvent to be returned from a query. 1514

 Non-Normative: Note: Many semantically invalid situations can be expressed with incorrect 1515
use of aggregation. For example, the same objects may be given multiple parents during the 1516
same time period by distinct ADD operations without an intervening Delete. Similarly an 1517
object can be specified to be a child of its grand-parent or even of itself. A non-existent 1518
aggregation may be DELETED. These situations cannot be detected syntactically and in 1519
general an individual EPCIS repository may not have sufficient information to detect them. 1520
Thus this specification does not address these error conditions. 1521

7.4.4 QuantityEvent (subclass of EPCISEvent) – DEPRECATED 1522

A QuantityEvent captures an event that takes place with respect to a specified quantity of an 1523
object class. This Event Type may be used, for example, to report inventory levels of a product. 1524

As of EPCIS 1.1, the QuantityEvent is deprecated. Applications should instead use an 1525
ObjectEvent containing one or more QuantityListElements. A QuantityEvent is equivalent 1526
to an ObjectEvent containing an empty EPCList and a single QuantityListElement containing a 1527
quantity and without a uom. 1528

Field Type Description

eventTime
recordTime
eventTimeZoneOffset

(Inherited from EPCISEvent; see Section 7.4.1)

epcClass EPCClass The identifier specifying the object class to which the
event pertains.

quantity Int The quantity of object within the class described by
this event.

bizStep BusinessStepID (Optional) The business step of which this event was a
part.

disposition DispositionID (Optional) The business condition of the objects
associated with the EPCs, presumed to hold true until
contradicted by a subsequent event.

readPoint ReadPointID (Optional) The read point at which the event took
place.

bizLocation BusinessLocationID (Optional) The business location where the objects may
be found, until contradicted by a subsequent event.

bizTransactionList Unordered list of zero or more
BusinessTransaction
instances

(Optional) An unordered list of business transactions
that define the context of this event.

 1529

EPC Information Services (EPCIS) Standard

Release 1.2, Ratified, Sep 2016 © 2016 GS1 AISBL Page 52 of 138

Note that because an EPCClass always denotes a specific packaging unit (e.g., a 12-item case), 1530
there is no need for an explicit “unit of measure” field. The unit of measure is always the object 1531
class denoted by epcClass as defined in master data for that object class. 1532

Retrospective semantics: 1533

■ An event described by bizStep (and any other fields) took place with respect to quantity 1534
objects of EPC class epcClass at eventTime at location readPoint. 1535

■ (If a non-empty bizTransactionList is specified) This event took place within the context of 1536
the business transactions enumerated in bizTransactionList. 1537

Prospective semantics: . 1538

■ (If disposition is specified) The business condition of the objects is as described by 1539
disposition. 1540

■ (If disposition is omitted) The business condition of the objects is unchanged. 1541

■ (If bizLocation is specified) The objects are at business location bizLocation. 1542

■ (If bizLocation is omitted) The business location of the objects is unknown. 1543

7.4.5 TransactionEvent (subclass of EPCISEvent) 1544

The event type TransactionEvent describes the association or disassociation of physical or digital 1545
objects to one or more business transactions. While other event types have an optional 1546
bizTransactionList field that may be used to provide context for an event, the 1547
TransactionEvent is used to declare in an unequivocal way that certain objects have been 1548
associated or disassociated with one or more business transactions as part of the event. 1549

The action field of a TransactionEvent describes the event’s relationship to the lifecycle of the 1550
transaction. Specifically: 1551

Action value Meaning

ADD The objects identified in the event have been associated to the business transaction(s) during this event.
This includes situations where the transaction(s) is created for the first time, as well as when new objects
are added to an existing transaction(s).

OBSERVE The objects named in the event have been confirmed as continuing to be associated to the business
transaction(s) during this event.

 Explanation (non-normative): A TransactionEvent with action OBSERVE is quite similar to an
ObjectEvent that includes a non-empty bizTransactionList field. When an end user group agrees
to use both kinds of events, the group should clearly define when each should be used. An example where
a TransactionEvent with action OBSERVE might be appropriate is an international shipment with
transaction ID xxx moving through a port, and there’s a desire to record the EPCs that were observed at
that point in handling that transaction. Subsequent queries will concentrate on querying the transaction ID
to find the EPCs, not on the EPCs to find the transaction ID.

DELETE The objects named in the event have been disassociated from the business transaction(s) during this
event. This includes situations where a subset of objects are disassociated from the business
transaction(s), as well as when the entire business transaction(s) has ended. As a convenience, both the
list of EPCs and QuantityElements may be omitted from the TransactionEvent, which means that all
objects have been disassociated.

 1552

A TransactionEvent has the following fields: 1553

Field Type Description

eventTime
recordTime
eventTimeZoneOffset

(Inherited from EPCISEvent; see Section 7.4.1)

bizTransactionList Unordered list of one or more
BusinessTransaction
instances

The business transaction(s).

EPC Information Services (EPCIS) Standard

Release 1.2, Ratified, Sep 2016 © 2016 GS1 AISBL Page 53 of 138

Field Type Description

parentID URI (Optional) The identifier of the parent of the objects
given in epcList and quantityList. When the
parent identifier is an EPC, this field SHALL contain
the “pure identity” URI for the EPC as specified in
[TDS1.9], Section 7. See also the note following the
table.

epcList List<EPC> (Optional) An unordered list of the EPCs of the
objects identified by instance-level identifiers
associated with the business transaction. See
Section 7.3.3.2.
A TransactionEvent SHALL contain either a non-empty
epcList, a non-empty quantityList, or both,
except that both epcList and quantityList MAY
be empty if action is DELETE, indicating that all the
objects are disassociated from the business
transaction(s).

quantityList List<QuantityElement> (Optional) An unordered list of one or more
QuantityElements identifying objects (at the class
level) to which the event pertained.
A TransactionEvent SHALL contain either a non-empty
epcList, a non-empty quantityList, or both,
except that both epcList and quantityList MAY
be empty if action is DELETE, indicating that all the
objects are disassociated from the business
transaction(s).

action Action How this event relates to the lifecycle of the business
transaction named in this event. See above for more
detail.

bizStep BusinessStepID (Optional) The business step of which this event was
a part.

disposition DispositionID (Optional) The business condition of the objects
associated with the objects, presumed to hold true
until contradicted by a subsequent event.

readPoint ReadPointID (Optional) The read point at which the event took
place.

bizLocation BusinessLocationID (Optional) The business location where the objects
associated with the containing and contained objects
may be found, until contradicted by a subsequent
event.

sourceList List<Source> (Optional) An unordered list of Source elements
(Section 7.3.5.4) that provide context about the
originating endpoint of a business transfer of which
this event is a part.

destinationList List<Destination> (Optional) An unordered list of Destination
elements (Section 7.3.5.4) that provide context about
the terminating endpoint of a business transfer of
which this event is a part.

Note that in the XML binding (Section 9.3), quantityList, sourceList, and destinationList 1554
appear in the standard extension area, to maintain forward-compatibility with EPCIS 1.0. 1555

 Non-Normative: Explanation: The use of the field name parentID in both 1556
TransactionEvent and AggregationEvent (Section 7.2.10) does not indicate a similarity 1557
in function or semantics. In general a TransactionEvent carries the same object 1558
identification information as an ObjectEvent, that is, a list of EPCs and/or 1559
QuantityElements. All the other information fields (bizTransactionList, bizStep, 1560
bizLocation, etc) apply equally and uniformly to all objects specified, whether or not the 1561

EPC Information Services (EPCIS) Standard

Release 1.2, Ratified, Sep 2016 © 2016 GS1 AISBL Page 54 of 138

objects are specified in just the epcList and quantityList field or if the optional 1562
parentID field is also supplied. 1563

 Non-Normative: The TransactionEvent provides a way to describe the association or 1564
disassociation of business transactions to objects. The parentID field in the 1565
TransactionEvent highlights a specific EPC or other identifier as the preferred or primary 1566
object but does not imply a physical relationship of any kind, nor is any kind of nesting or 1567
inheritance implied by the TransactionEvent itself. Only AggregationEvent instances 1568
describe actual parent-child relationships and nestable parent-child relationships. This can be 1569
seen by comparing the semantics of AggregationEvent in Section 7.2.10 with the 1570
semantics of TransactionEvent below. 1571

Retrospective semantics: 1572

■ An event described by bizStep (and any other fields) took place involving the business 1573
transactions enumerated in bizTransactionList, the objects in epcList and 1574
quantityList, and containing entity parentID (if specified), at eventTime and location 1575
readPoint. 1576

■ (If action is ADD) The objects in epcList and quantityList and containing entity parentID 1577
(if specified) were associated to the business transactions enumerated in 1578
bizTransactionList. 1579

■ (If action is DELETE and epcList or quantityList is non-empty) The objects in epcList, 1580
quantityList, and containing entity parentID (if specified) were disassociated from the 1581
business transactions enumerated in bizTransactionList. 1582

■ (If action is DELETE, both epcList and quantityList are empty, and parentID is 1583
omitted) All objects have been disassociated from the business transactions enumerated in 1584
bizTransactionList. 1585

■ (If sourceList is non-empty) This event took place within the context of a business transfer 1586
whose originating endpoint is described by the sources enumerated in sourceList. 1587

■ (If destinationList is non-empty) This event took place within the context of a business 1588
transfer whose terminating endpoint is described by the destinations enumerated in 1589
destinationList. 1590

Prospective semantics: 1591

■ (If action is ADD) An association exists between the business transactions enumerated in 1592
bizTransactionList, the objects in epcList and quantityList, and containing entity 1593
parentID (if specified). 1594

■ (If action is DELETE and epcList or quantityList is non-empty) An association no longer 1595
exists between the business transactions enumerated in bizTransactionList, the objects in 1596
epcList and quantityList, and containing entity parentID (if specified). 1597

■ (If action is DELETE, both epcList and quantityList are empty, and parentID is 1598
omitted) An association no longer exists between the business transactions enumerated in 1599
bizTransactionList and any objects. 1600

■ (If disposition is specified) The business condition of the objects associated with the objects 1601
in epcList and quantityList and containing entity parentID (if specified) is as described 1602
by disposition. 1603

■ (If disposition is omitted) The business condition of the objects associated with the objects 1604
in epcList and quantityList and containing entity parentID (if specified) is unchanged. 1605

■ (If bizLocation is specified) The objects associated with the objects in epcList, 1606
quantityList, and containing entity parentID (if specified) are at business location 1607
bizLocation. 1608

EPC Information Services (EPCIS) Standard

Release 1.2, Ratified, Sep 2016 © 2016 GS1 AISBL Page 55 of 138

■ (If bizLocation is omitted) The business location of the objects associated with the objects in 1609
epcList and quantityList and containing entity parentID (if specified) is unknown. 1610

7.4.6 TransformationEvent (subclass of EPCISEvent) 1611

A TransformationEvent captures information about an event in which one or more physical or 1612
digital objects identified by instance-level (EPC) or class-level (EPC Class) identifiers are fully or 1613
partially consumed as inputs and one or more objects identified by instance-level (EPC) or class-1614
level (EPC Class) identifiers are produced as outputs. The TransformationEvent captures the 1615
relationship between the inputs and the outputs, such that any of the inputs may have contributed 1616
in some way to each of the outputs. 1617

Some transformation business processes take place over a long period of time, and so it is more 1618
appropriate to represent them as a series of EPCIS events. A TransfomationID may be included 1619
in two or more TransformationEvents to link them together. When events share an identical 1620
TransformationID, the meaning is that the inputs to any of those events may have contributed in 1621
some way to each of the outputs in any of those same events. 1622

Fields: 1623

Field Type Description

eventTime
recordTime
eventTimeZoneOffset

(Inherited from EPCISEvent; see Section 7.4.1)

inputEPCList List<EPC> (Optional) An unordered list of one or more EPCs
identifying (at the instance level) objects that
were inputs to the transformation. See
Section 7.3.3.2.
See below for constraints on when
inputEPCList may be omitted.

inputQuantityList List<QuantityElement> (Optional) An unordered list of one or more
QuantityElements identifying (at the class
level) objects that were inputs to the
transformation.
See below for constraints on when
inputQuantityList may be omitted.

outputEPCList List<EPC> (Optional) An unordered list of one or more EPCs
naming (at the instance level) objects that were
outputs from the transformation. See
Section 7.3.3.2.
See below for constraints on when
outputEPCList may be omitted.

outputQuantityList List<QuantityElement> (Optional) An unordered list of one or more
QuantityElements identifying (at the class
level) objects that were outputs from the
transformation.
See below for constraints on when
outputQuantityList may be omitted.

transformationID TransformationID (Optional) A unique identifier that links this event
to other TransformationEvents having an identical
value of transformationID. When specified,
all inputs to all events sharing the same value of
the transformationID may contribute to all
outputs of all events sharing that value of
transformationID. If transformationID is
omitted, then the inputs of this event may
contribute to the outputs of this event, but the
inputs and outputs of other events are not
connected to this one.

EPC Information Services (EPCIS) Standard

Release 1.2, Ratified, Sep 2016 © 2016 GS1 AISBL Page 56 of 138

Field Type Description

bizStep BusinessStepID (Optional) The business step of which this event
was a part.

disposition DispositionID (Optional) The business condition of the objects
associated with the output objects, presumed to
hold true until contradicted by a subsequent
event.

readPoint ReadPointID (Optional) The read point at which the event took
place.

bizLocation BusinessLocationID (Optional) The business location where the
output objects of this event may be found, until
contradicted by a subsequent event.

bizTransactionList Unordered list of zero or more
BusinessTransaction
instances

(Optional) An unordered list of business
transactions that define the context of this event.

sourceList List<Source> (Optional) An unordered list of Source elements
(Section 7.3.5.4) that provide context about the
originating endpoint of a business transfer of
which this event is a part.

destinationList List<Destination> (Optional) An unordered list of Destination
elements (Section 7.3.5.4) that provide context
about the terminating endpoint of a business
transfer of which this event is a part.

ilmd ILMD (Optional) Instance/Lot master data
(Section 7.3.6) that describes the output objects
created during this event.

 1624

If transformationID is omitted, then a TransformationEvent SHALL include at least one input 1625
(i.e., at least one of inputEPCList and inputQuantityList are non-empty) AND at least one 1626
output (i.e., at least one of outputEPCList and outputQuantityList are non-empty). If 1627
transformationID is included, then a TransformationEvent SHALL include at least one input 1628
OR at least one output (or both). The latter provides for the possibility that in a transformation 1629
described by several events linked by a common transformationID, any one event might only 1630
add inputs or extract outputs. 1631

Retrospective semantics: 1632

■ A transformation described by bizStep (and any other fields) took place with input objects 1633
identified by inputEPCList and inputQuantityList and output objects identified by 1634
outputEPCList and outputQuantityList, at eventTime at location readPoint. 1635

■ This event took place within the context of the business transactions enumerated in 1636
bizTransactionList. 1637

■ (If transformationID is omitted) Any of the input objects identified by inputEPCList and 1638
inputQuantityList of this event may have contributed to each of the output objects 1639
identified by outputEPCList and outputQuantityList of this event. 1640

■ (If transformationID is included) Any of the input objects identified by inputEPCList and 1641
inputQuantityList of this event, together with the input objects identified by 1642
inputEPCList and inputQuantityList of other events having the same value of 1643
transformationID, may have contributed to each of the output objects identified by 1644
outputEPCList and outputQuantityList of this event, as well as to each of the output 1645
objects identified by outputEPCList and outputQuantityList of other events having the 1646
same value of transformationID. 1647

■ (If sourceList is non-empty) This event took place within the context of a business transfer 1648
whose originating endpoint is described by the sources enumerated in sourceList. 1649

EPC Information Services (EPCIS) Standard

Release 1.2, Ratified, Sep 2016 © 2016 GS1 AISBL Page 57 of 138

■ (If destinationList is non-empty) This event took place within the context of a business 1650
transfer whose terminating endpoint is described by the destinations enumerated in 1651
destinationList. 1652

Prospective semantics: 1653

■ The objects identified by the instance-level identifiers in outputEPCList may appear in 1654
subsequent events. 1655

■ The objects identified by the class-level identifiers in outputQuantityList may appear in 1656
subsequent events. 1657

■ (If disposition is specified) The business condition of the objects identified by 1658
outputEPCList and outputQuantityList is as described by disposition. 1659

■ (If disposition is omitted) The business condition of the objects associated with identified by 1660
outputEPCList and outputQuantityList is unknown. 1661

■ (If bizLocation is specified) The objects identified by outputEPCList and 1662
outputQuantityList are at business location bizLocation. 1663

■ (If bizLocation is omitted) The business location of the objects identified by outputEPCList 1664
and outputQuantityList is unknown. 1665

■ (If ilmd is non-empty) The objects identified by outputEPCList and outputQuantityList 1666
are described by the attributes in ilmd. 1667

8 Service layer 1668

This Section includes normative specifications of modules in the Service Layer. Together, these 1669
modules define three interfaces: the EPCIS Capture Interface, the EPCIS Query Control Interface, 1670
and the EPCIS Query Callback Interface. (The latter two interfaces are referred to collectively as the 1671
EPCIS Query Interfaces.) The diagram below illustrates the relationship between these interfaces, 1672
expanding upon the diagram in Section 2 (this diagram is non-normative): 1673

EPC Information Services (EPCIS) Standard

Release 1.2, Ratified, Sep 2016 © 2016 GS1 AISBL Page 58 of 138

 1674
In the subsections below, services are specified using UML class diagram notation. UML class 1675
diagrams used for this purpose may contain interfaces having operations, but not fields or 1676
associations. Here is an example: 1677

 1678

This diagram shows a service definition for Service1, which provides three operations. 1679
Operation1 takes two arguments, arg11 and arg12, having types ArgType11 and ArgType12, 1680
respectively, and returns a value of type ReturnType1. Operation2 takes one argument but does 1681
not return a result. Operation3 does not take any arguments but returns a value of type 1682
ReturnType3. 1683

Within the UML descriptions, the notation <<extension point>> identifies a place where 1684
implementations SHALL provide for extensibility through the addition of new operations. 1685
Extensibility mechanisms SHALL provide for both proprietary extensions by vendors of EPCIS-1686
compliant products, and for extensions defined by GS1 through future versions of this specification 1687
or through new specifications. 1688

EPCIS Capture Interface

EPCIS
Repository

EPCIS Capturing Application

EPCIS Query
Callback Interface

 Control
(Manage subscriptions
to scheduled queries)

Possible
bypass for
real-time

“push”

EPCIS Query Control
Interface

Consume Immediate Data
(Accept immediate data
response & exceptions)

Consume Scheduled Data
(Accept callback data

response & exceptions)

EPCIS
Accessing Application

EPCIS
Accessing Application

Request/response
(Synchronous in web
services binding, two

coupled one-way

One-way

One-way

<<interface>>
Service1

operation1(arg11 : ArgType11, arg12 : ArgType12) : ReturnType1
operation2(arg21 : ArgType21) : void
operation3() : ReturnType3

EPC Information Services (EPCIS) Standard

Release 1.2, Ratified, Sep 2016 © 2016 GS1 AISBL Page 59 of 138

In the case of the standard WSDL bindings, the extension points are implemented simply by 1689
permitting the addition of additional operations. 1690

8.1 Core capture operations module 1691

The Core Capture Operations Module provides operations by which core events may be delivered 1692
from an EPCIS Capture Application. Within this section, the word “client” refers to an EPCIS Capture 1693
Application and “EPCIS Service” refers to a system that implements the EPCIS Capture Interface. 1694

8.1.1 Authentication and authorisation 1695

Some bindings of the EPCIS Capture Interface provide a means for the EPCIS Service to 1696
authenticate the client’s identity, for the client to authenticate the EPCIS Service’s identity, or both. 1697
The specification of the means to authenticate is included in the specification of each binding. If the 1698
EPCIS Service authenticates the identity of the client, an implementation MAY use the client identity 1699
to make authorisation decisions as described below. Moreover, an implementation MAY record the 1700
client identity with the captured data, for use in subsequent authorisation decisions by the system 1701
implementing the EPCIS Query Interfaces, as described in Section 8.2.2. 1702

Because of the simplicity of the EPCIS Capture Interface, the authorisation provisions are very 1703
simple to state: namely, an implementation MAY use the authenticated client identity to decide 1704
whether a capture operation is permitted or not. 1705

 Non-Normative: Explanation: It is expected that trading partners will always use bindings 1706
that provide for client identity authentication or mutual authentication when using EPCIS 1707
interfaces to share data across organisational boundaries. The bindings that do not offer 1708
authentication are expected to be used only within a single organisation in situations where 1709
authentication is not required to meet internal security requirements. 1710

8.1.2 Capture service 1711

 1712

The capture interface contains only a single method, capture, which takes a single argument and 1713
returns no results. Implementations of the EPCIS Capture Interface SHALL accept each element of 1714
the argument list that is a valid EPCISEvent or subtype thereof according to this specification. 1715
Implementations MAY accept other types of events through vendor extension. The simplicity of this 1716
interface admits a wide variety of bindings, including simple message-queue type bindings. 1717

 Non-Normative: Explanation: “Message-queue type bindings” means the following. 1718
Enterprises commonly use “message bus” technology for interconnection of different 1719
distributed system components. A message bus provides a reliable channel for in-order 1720
delivery of messages from a sender to a receiver. (The relationship between sender and 1721
receiver may be point-to-point (a message “queue”) or one-to-many via a publish/subscribe 1722
mechanism (a message “topic”).) A “message-queue type binding” of the EPCIS Capture 1723
Interface would simply be the designation of a particular message bus channel for the 1724
purpose of delivering EPCIS events from an EPCIS Capture Application to an EPCIS 1725
Repository, or to an EPCIS Accessing Application by way of the EPCIS Query Callback 1726
Interface. Each message would have a payload containing one or more EPCIS events 1727
(serialised through some binding at the Data Definition Layer; e.g., an XML binding). In such 1728
a binding, therefore, each transmission/delivery of a message corresponds to a single 1729
“capture” operation. 1730

The capture operation records one or more EPCIS events, of any type. 1731

<<interface>>
CoreCaptureService

capture(event : List<EPCISEvent>) : void
<<extension point>>

EPC Information Services (EPCIS) Standard

Release 1.2, Ratified, Sep 2016 © 2016 GS1 AISBL Page 60 of 138

Arguments: 1732

Argument Type Description

event List of EPCISEvent The event(s) to capture. All relevant information such as the event time, EPCs,
etc., are contained within each event. Exception: the recordTime MAY be
omitted. Whether the recordTime is omitted or not in the input, following the
capture operation the recordTime of the event as recorded by the EPCIS
Repository or EPCIS Accessing Application is the time of capture. Note that the
optional eventID is not treated like recordTime; like any other EPCIS field,
eventID shall be captured without modification by the capture interface.

 Explanation (non-normative): this treatment of recordTime is necessary in
order for standing queries to be processed properly. See Section 8.2.5.2.

 1733

Return value: 1734

(none) 1735

The concrete bindings of the EPCIS Capture Interface in Section 10 use the EPCIS document 1736
structure defined in Section 9.5 to carry the list of EPCIS events to be captured. An EPCIS document 1737
may contain master data in the document header. An implementation of the EPCIS Capture 1738
Interface conforming to this standard MAY choose to record that master data or MAY choose to 1739
ignore it – the disposition of master data received through the EPCIS Capture Interface is not 1740
specified by the EPCIS standard. Likewise, a system that implements the EPCIS Capture Interface 1741
may provide a means to capture master data by receiving an EPCIS master data document 1742
(Section 9.7) but the EPCIS standard does not require this to be supported. 1743

On the other hand, any instance/lot master data carried in the ILMD section of an event SHALL be 1744
captured as part of the event, as is true for any data element within an EPCIS event. Such master 1745
data SHALL be queryable by using the query parameters of the SimpleEventQuery specified in 1746
Section 8.2.7.1, but there is no requirement for an implementation to make master data in the ILMD 1747
section of an event available for query using the SimpleMasterDataQuery specified in 1748
Section 8.2.7.2. 1749

An implementation of the capture interface SHALL either capture all events specified in a given 1750
capture operation or fail to capture all events in that operation. That is, an implementation SHALL 1751
NOT have the possibility of partial success where some events in the list are captured and others 1752
are not. 1753

The reasons why a capture operation fails are implementation-specific. Examples of possible reasons 1754
a failure may occur include: 1755

■ The input to the capture operation is not well formed or does not conform to the syntactic 1756
requirements of the concrete binding being used, including schema-validity for concrete bindings 1757
that use the XML schemas defined in Section 9. 1758

■ The client is not authorized to perform the capture operation. 1759

■ Implementation-specific limits regarding the number of events in a single capture operation, the 1760
total number of events stored, the frequency of capture, etc., are exceeded. 1761

■ Implementation-specific rules regarding the content of events, either in isolation or with 1762
reference to previously captured events, are violated. Note that such rules may be appropriate 1763
in a closed system where the use of EPCIS is governed by a specific application standard, but 1764
may not be appropriate in an open system designed to handle any EPCIS data. Rules of this kind 1765
may limit interoperability if they are too narrow. 1766

■ A temporary failure, such as the temporary unavailability of a server or network. 1767

8.2 Core Query operations module 1768

The Core Query Operations Module provides two interfaces, called the EPCIS Query Control 1769
Interface and the EPCIS Query Callback Interface, by which EPCIS data can be retrieved by an 1770
EPCIS Accessing Application. The EPCIS Query Control Interface defines a means for EPCIS 1771
Accessing Applications and trading partners to obtain EPCIS data subsequent to capture from any 1772
source, typically by interacting with an EPCIS Repository. It provides a means for an EPCIS 1773

EPC Information Services (EPCIS) Standard

Release 1.2, Ratified, Sep 2016 © 2016 GS1 AISBL Page 61 of 138

Accessing Application to retrieve data on-demand, and also enter subscriptions for standing queries. 1774
Results of standing queries are delivered to EPCIS Accessing Applications via the EPCIS Query 1775
Callback Interface. Within this section, the word “client” refers to an EPCIS Accessing Application 1776
and “EPCIS Service” refers to a system that implements the EPCIS Query Control Interface, and in 1777
addition delivers information to a client via the EPCIS Query Callback Interface. 1778

8.2.1 Authentication 1779

Some bindings of the EPCIS Query Control Interface provide a means for the EPCIS Service to 1780
authenticate the client’s identity, for the client to authenticate the EPCIS Service’s identity, or both. 1781
The specification of the means to authenticate is included in the specification of each binding. If the 1782
EPCIS Service authenticates the identity of the client, an implementation MAY use the client identity 1783
to make authorisation decisions as described in the next section. 1784

 Non-Normative: Explanation: It is expected that trading partners will always use bindings 1785
that provide for client identity authentication or mutual authentication when using EPCIS 1786
interfaces to share data across organisational boundaries. The bindings that do not offer 1787
authentication are expected to be used only within a single organisation in situations where 1788
authentication is not required to meet internal security requirements. 1789

8.2.2 Authorisation 1790

An EPCIS service may wish to provide access to only a subset of information, depending on the 1791
identity of the requesting client. This situation commonly arises in cross-enterprise scenarios where 1792
the requesting client belongs to a different organisation than the operator of an EPCIS service, but 1793
may also arise in intra-enterprise scenarios. 1794

Given an EPCIS query, an EPCIS service MAY take any of the following actions in processing the 1795
query, based on the authenticated identity of the client: 1796

■ The service MAY refuse to honour the request altogether, by responding with a 1797
SecurityException as defined below. 1798

■ The service MAY respond with less data than requested. For example, if a client presents a 1799
query requesting all ObjectEvent instances within a specified time interval, the service knows 1800
of 100 matching events, the service may choose to respond with fewer than 100 events (e.g., 1801
returning only those events whose EPCs are SGTINs with a company prefix known to be 1802
assigned to the client). 1803

■ The service MAY respond with coarser grained information. In particular, when the response to a 1804
query includes a location type (as defined in Section 7.3.4), the service may substitute an 1805
aggregate location in place of a primitive location. 1806

■ The service MAY hide information. For example, if a client presents a query requesting 1807
ObjectEvent instances, the service may choose to delete the bizTransactionList fields in 1808
its response. The information returned, however, SHALL be well-formed EPCIS events consistent 1809
with this specification and industry guidelines. In addition, if hiding information would otherwise 1810
result in ambiguous, or misleading information, then the entire event SHOULD be withheld. This 1811
applies whether the original information was captured through the EPCIS Capture Interface or 1812
provided by some other means. For example, given an AggregationEvent with action equal to 1813
ADD, an attempt to hide the parentID field would result in a non-well-formed event, because 1814
parentID is required when the action is ADD; in this instance, therefore, the entire event 1815
would have to be withheld. 1816

■ The service MAY limit the scope of the query to data that was originally captured by a particular 1817
client identity. This allows a single EPCIS service to be “partitioned” for use by groups of 1818
unrelated users whose data should be kept separate. 1819

An EPCIS implementation is free to determine which if any of these actions to take in processing any 1820
query, using any means it chooses. The specification of authorisation rules is outside the scope of 1821
this specification. 1822

EPC Information Services (EPCIS) Standard

Release 1.2, Ratified, Sep 2016 © 2016 GS1 AISBL Page 62 of 138

 Non-Normative: Explanation: Because the EPCIS specification is concerned with the query 1823
interfaces as opposed to any particular implementation, the EPCIS specification does not take 1824
a position as to how authorisation decisions are taken. Particular implementations of EPCIS 1825
may have arbitrarily complex business rules for authorisation. That said, the EPCIS 1826
specification may contain standard data that is needed for authorisation, whether exclusively 1827
for that purpose or not. 1828

8.2.3 Queries for large amounts of data 1829

Many of the query operations defined below allow a client to make a request for a potentially 1830
unlimited amount of data. For example, the response to a query that asks for all ObjectEvent 1831
instances within a given interval of time could conceivably return one, a thousand, a million, or a 1832
billion events depending on the time interval and how many events had been captured. This may 1833
present performance problems for service implementations. 1834

To mitigate this problem, an EPCIS service MAY reject any request by raising a QueryTooLarge 1835
exception. This exception indicates that the amount of data being requested is larger than the 1836
service is willing to provide to the client. The QueryTooLarge exception is a hint to the client that 1837
the client might succeed by narrowing the scope of the original query, or by presenting the query at 1838
a different time (e.g., if the service accepts or rejects queries based on the current computational 1839
load on the service). 1840

 Non-Normative: Roadmap: It is expected that future versions of this specification will 1841
provide more sophisticated ways to deal with the large query problem, such as paging, 1842
cursoring, etc. Nothing more complicated was agreed to in this version for the sake of 1843
expedience. 1844

8.2.4 Overly complex queries 1845

EPCIS service implementations may wish to restrict the kinds of queries that can be processed, to 1846
avoid processing queries that will consume more resources than the service is willing to expend. For 1847
example, a query that is looking for events having a specific value in a particular event field may 1848
require more or fewer resources to process depending on whether the implementation anticipated 1849
searching on that field (e.g., depending on whether or not a database column corresponding to that 1850
field is indexed). As with queries for too much data (Section 8.2.3), this may present performance 1851
problems for service implementations. 1852

To mitigate this problem, an EPCIS service MAY reject any request by raising a QueryTooComplex 1853
exception. This exception indicates that structure of the query is such that the service is unwilling to 1854
carry it out for the client. Unlike the QueryTooLarge exception (Section 8.2.3), the 1855
QueryTooComplex indicates that merely narrowing the scope of the query (e.g., by asking for one 1856
week’s worth of events instead of one month’s) is unlikely to make the query succeed. 1857

A particular query language may specify conditions under which an EPCIS service is not permitted to 1858
reject a query with a QueryTooComplex exception. This provides a minimum level of 1859
interoperability. 1860

8.2.5 Query framework (EPCIS query control interface) 1861

The EPCIS Query Control Interface provides a general framework by which client applications may 1862
query EPCIS data. The interface provides both on-demand queries, in which an explicit request from 1863
a client causes a query to be executed and results returned in response, and standing queries, in 1864
which a client registers ongoing interest in a query and thereafter receives periodic delivery of 1865
results via the EPCIS Query Callback Interface without making further requests. These two modes 1866
are informally referred to as “pull” and “push,” respectively. 1867

The EPCIS Query Control Interface is defined below. An implementation of the Query Control 1868
Interface SHALL implement all of the methods defined below. 1869

EPC Information Services (EPCIS) Standard

Release 1.2, Ratified, Sep 2016 © 2016 GS1 AISBL Page 63 of 138

<<interface>> 1870

EPCISQueryControlInterface 1871

--- 1872

subscribe(queryName : String, params : QueryParams, dest : URI, controls : 1873
SubscriptionControls, subscriptionID : String) 1874

unsubscribe(subscriptionID : String) 1875

poll(queryName : String, params : QueryParams) : QueryResults 1876

getQueryNames() : List // of names 1877

getSubscriptionIDs(queryName : String) : List // of Strings 1878

getStandardVersion() : string 1879

getVendorVersion() : string 1880

<<extension point>> 1881

Standing queries are made by making one or more subscriptions to a previously defined query using 1882
the subscribe method. Results will be delivered periodically via the Query Callback Interface to a 1883
specified destination, until the subscription is cancelled using the unsubscribe method. On-1884
demand queries are made by executing a previously defined query using the poll method. Each 1885
invocation of the poll method returns a result directly to the caller. In either case, if the query is 1886
parameterised, specific settings for the parameters may be provided as arguments to subscribe or 1887
poll. 1888

An implementation MAY provide one or more “pre-defined” queries. A pre-defined query is available 1889
for use by subscribe or poll, and is returned in the list of query names returned by 1890
getQueryNames, without the client having previously taken any action to define the query. In 1891
particular, EPCIS 1.0 does not support any mechanism by which a client can define a new query, 1892
and so pre-defined queries are the only queries available. See Section 8.2.7 for specific pre-defined 1893
queries that SHALL be provided by an implementation of the EPCIS 1.0 Query Interface. 1894

An implementation MAY permit a given query to be used with poll but not with subscribe. 1895
Generally, queries for event data may be used with both poll and subscribe, but queries for 1896
master data may be used only with poll. This is because subscribe establishes a periodic 1897
schedule for running a query multiple times, each time restricting attention to new events recorded 1898
since the last time the query was run. This mechanism cannot apply to queries for master data, 1899
because master data is presumed to be quasi-static and does not have anything corresponding to a 1900
record time. 1901

The specification of these methods is as follows: 1902

Method Description

subscribe Registers a subscriber for a previously defined query having the specified name. The params
argument provides the values to be used for any named parameters defined by the query.
The dest parameter specifies a destination where results from the query are to be
delivered, via the Query Callback Interface. The dest parameter is a URI that both identifies
a specific binding of the Query Callback Interface to use and specifies addressing
information. The controls parameter controls how the subscription is to be processed; in
particular, it specifies the conditions under which the query is to be invoked (e.g., specifying
a periodic schedule). The subscriptionID is an arbitrary string that is copied into every
response delivered to the specified destination, and otherwise not interpreted by the EPCIS
service. The client may use the subscriptionID to identify from which subscription a
given result was generated, especially when several subscriptions are made to the same
destination.
The dest argument may be null or empty, in which case the EPCIS implementation SHALL
deliver results to a pre-arranged destination based on the authenticated identity of the
caller; however, if the implementation does not have a destination pre-arranged for the
caller, or does not permit this usage, it SHALL raise an InvalidURIException instead.

unsubscribe Removes a previously registered subscription having the specified subscriptionID.

EPC Information Services (EPCIS) Standard

Release 1.2, Ratified, Sep 2016 © 2016 GS1 AISBL Page 64 of 138

Method Description

poll Invokes a previously defined query having the specified name, returning the results. The
params argument provides the values to be used for any named parameters defined by the
query.

getQueryNames Returns a list of all query names available for use with the subscribe and poll methods.
This includes all pre-defined queries provided by the implementation, including those
specified in Section 8.2.7.

getSubscriptionIDs Returns a list of all subscriptionIDs currently subscribed to the specified named query.

getStandardVersion Returns a string that identifies what version of the specification this implementation
complies with. The possible values for this string are defined by GS1. An implementation
SHALL return a string corresponding to a version of this specification to which the
implementation fully complies, and SHOULD return the string corresponding to the latest
version to which it complies. To indicate compliance with this Version 1.2 of the EPCIS
specification, the implementation SHALL return the string 1.2.

getVendorVersion Returns a string that identifies what vendor extensions this implementation provides. The
possible values of this string and their meanings are vendor-defined, except that the empty
string SHALL indicate that the implementation implements only standard functionality with
no vendor extensions. When an implementation chooses to return a non-empty string, the
value returned SHALL be a URI where the vendor is the owning authority. For example, this
may be an HTTP URL whose authority portion is a domain name owned by the vendor, a
URN having a URN namespace identifier issued to the vendor by IANA, an OID URN whose
initial path is a Private Enterprise Number assigned to the vendor, etc.

 1903

This framework applies regardless of the content of a query. The detailed contents of a query, and 1904
the results as returned from poll or delivered to a subscriber via the Query Callback Interface, are 1905
defined in later sections of this document. This structure is designed to facilitate extensibility, as 1906
new types of queries may be specified and fit into this general framework. 1907

An implementation MAY restrict the behaviour of any method according to authorisation decisions 1908
based on the authenticated client identity of the client making the request. For example, an 1909
implementation may limit the IDs returned by getSubscriptionIDs and recognised by 1910
unsubscribe to just those subscribers that were previously subscribed by the same client identity. 1911
This allows a single EPCIS service to be “partitioned” for use by groups of unrelated users whose 1912
data should be kept separate. 1913

If a pre-defined query defines named parameters, values for those parameters may be supplied 1914
when the query is subsequently referred to using poll or subscribe. A QueryParams instance is 1915
simply a set of name/value pairs, where the names correspond to parameter names defined by the 1916
query, and the values are the specific values to be used for that invocation of (poll) or subscription 1917
to (subscribe) the query. If a QueryParams instance includes a name/value pair where the value 1918
is empty, it SHALL be interpreted as though that query parameter were omitted altogether. 1919

The poll or subscribe method SHALL raise a QueryParameterException under any of the 1920
following circumstances: 1921

■ A parameter required by the specified query was omitted or was supplied with an empty value 1922

■ A parameter was supplied whose name does not correspond to any parameter name defined by 1923
the specified query 1924

■ Two parameters are supplied having the same name 1925

■ Any other constraint imposed by the specified query is violated. Such constraints may include 1926
restrictions on the range of values permitted for a given parameter, requirements that two or 1927
more parameters be mutually exclusive or must be supplied together, and so on. The specific 1928
constraints imposed by a given query are specified in the documentation for that query. 1929

8.2.5.1 Subscription controls 1930

Standing queries are subscribed to via the subscribe method. For each subscription, a 1931
SubscriptionControls instance defines how the query is to be processed. 1932

EPC Information Services (EPCIS) Standard

Release 1.2, Ratified, Sep 2016 © 2016 GS1 AISBL Page 65 of 138

SubscriptionControls 1933

--- 1934

schedule : QuerySchedule // see Section 8.2.5.3 1935

trigger : URI // specifies a trigger event known by the service 1936

initialRecordTime : Time // see Section 8.2.5.2 1937

reportIfEmpty : boolean 1938

<<extension point>> 1939

The fields of a SubscriptionControls instance are defined below. 1940

Argument Type Description

schedule QuerySchedule (Optional) Defines the periodic schedule on which the query is to be
executed. See Section 8.2.5.3. Exactly one of schedule or trigger is
required; if both are specified or both are omitted, the implementation
SHALL raise a SubscriptionControlsException.

trigger URI (Optional) Specifies a triggering event known to the EPCIS service that
will serve to trigger execution of this query. The available trigger
URIs are service-dependent. Exactly one of schedule or trigger is
required; if both are specified or both are omitted, the implementation
SHALL raise a SubscriptionControlsException.

initialRecordTime Time (Optional) Specifies a time used to constrain what events are
considered when processing the query when it is executed for the first
time. See Section 8.2.5.2. If omitted, defaults to the time at which the
subscription is created.

reportIfEmpty boolean If true, a QueryResults instance is always sent to the subscriber
when the query is executed. If false, a QueryResults instance is sent
to the subscriber only when the results are non-empty.

 1941

8.2.5.2 Automatic limitation based on event record time 1942

Each subscription to a query results in the query being executed many times in succession, the 1943
timing of each execution being controlled by the specified schedule or being triggered by a 1944
triggering condition specified by trigger. Having multiple executions of the same query is only 1945
sensible if each execution is limited in scope to new event data generated since the last execution – 1946
otherwise, the same events would be returned more than once. However, the time constraints 1947
cannot be specified explicitly in the query or query parameters, because these do not change from 1948
one execution to the next. 1949

For this reason, an EPCIS service SHALL constrain the scope of each query execution for a 1950
subscribed query in the following manner. The first time the query is executed for a given 1951
subscription, the only events considered are those whose recordTime field is greater than or equal 1952
to initialRecordTime specified when the subscription was created. For each execution of the 1953
query following the first, the only events considered are those whose recordTime field is greater 1954
than or equal to the time when the query was last executed. It is implementation dependent as to 1955
the extent that failure to deliver query results to the subscriber affects this calculation; 1956
implementations SHOULD make best efforts to insure reliable delivery of query results so that a 1957
subscriber does not miss any data. The query or query parameters may specify additional 1958
constraints upon record time; these are applied after restricting the universe of events as described 1959
above. 1960

 Non-Normative: Explanation: one possible implementation of this requirement is that the 1961
EPCIS service maintains a minRecordTime value for each subscription that exists. The 1962
minRecordTime for a given subscription is initially set to initialRecordTime, and 1963
updated to the current time each time the query is executed for that subscription. Each time 1964

EPC Information Services (EPCIS) Standard

Release 1.2, Ratified, Sep 2016 © 2016 GS1 AISBL Page 66 of 138

the query is executed, the only events considered are those whose recordTime is greater 1965
than or equal to minRecordTime for that subscription. 1966

8.2.5.3 Query schedule 1967

A QuerySchedule may be specified to specify a periodic schedule for query execution for a specific 1968
subscription. Each field of QuerySchedule is a string that specifies a pattern for matching some 1969
part of the current time. The query will be executed each time the current date and time matches 1970
the specification in the QuerySchedule. 1971

Each QuerySchedule field is a string, whose value must conform to the following grammar: 1972

QueryScheduleField ::= Element (“,” Element)* 1973
 1974
Element ::= Number | Range 1975
 1976
Range ::= “[“ Number “-“ Number “]” 1977
 1978
Number ::= Digit+ 1979
 1980
Digit ::= “0” | “1” | “2” | “3” | “4” 1981
 | “5” | “6” | “7” | “8” | “9” 1982

Each Number that is part of the query schedule field value must fall within the legal range for that 1983
field as specified in the table below. An EPCIS implementation SHALL raise a 1984
SubscriptionControlsException if any query schedule field value does not conform to the 1985
grammar above, or contains a Number that falls outside the legal range, or includes a Range where 1986
the first Number is greater than the second Number. 1987

The QuerySchedule specifies a periodic sequence of time values (the “query times”). A query time 1988
is any time value that matches the QuerySchedule, according to the following rule: 1989

■ Given a time value, extract the second, minute, hour (0 through 23, inclusive), dayOfMonth (1 1990
through 31, inclusive), and dayOfWeek (1 through 7, inclusive, denoting Monday through 1991
Sunday). This calculation is to be performed relative to a time zone chosen by the EPCIS 1992
Service. 1993

■ The time value matches the QuerySchedule if each of the values extracted above matches (as 1994
defined below) the corresponding field of the QuerySchedule, for all QuerySchedule fields 1995
that are not omitted. 1996

■ A value extracted from the time value matches a field of the QuerySchedule if it matches any 1997
of the comma-separated Elements of the query schedule field. 1998

■ A value extracted from the time value matches an Element of a query schedule field if 1999

■ the Element is a Number and the value extracted from the time value is equal to the Number; 2000
or 2001

■ the Element is a Range and the value extracted from the time value is greater than or equal to 2002
the first Number in the Range and less than or equal to the second Number in the Range. 2003

See examples following the table below. 2004

An EPCIS implementation SHALL interpret the QuerySchedule as a client’s statement of when it 2005
would like the query to be executed, and SHOULD make reasonable efforts to adhere to that 2006
schedule. An EPCIS implementation MAY, however, deviate from the requested schedule according 2007
to its own policies regarding server load, authorisation, or any other reason. If an EPCIS 2008
implementation knows, at the time the subscribe method is called, that it will not be able to 2009
honour the specified QuerySchedule without deviating widely from the request, the EPCIS 2010
implementation SHOULD raise a SubscriptionControlsException instead. 2011

 Non-Normative: Explanation: The QuerySchedule, taken literally, specifies the exact 2012
timing of query execution down to the second. In practice, an implementation may not wish 2013
to or may not be able to honour that request precisely, but can honour the general intent. For 2014

EPC Information Services (EPCIS) Standard

Release 1.2, Ratified, Sep 2016 © 2016 GS1 AISBL Page 67 of 138

example, a QuerySchedule may specify that a query be executed every hour on the hour, 2015
while an implementation may choose to execute the query every hour plus or minus five 2016
minutes from the top of the hour. The paragraph above is intended to give implementations 2017
latitude for this kind of deviation. 2018

In any case, the automatic handling of recordTime as specified earlier SHALL be based on the 2019
actual time the query is executed, whether or not that exactly matches the QuerySchedule. 2020

The field of a QuerySchedule instance are as follows. 2021

Argument Type Description

second String (Optional) Specifies that the query time must have a matching seconds value. The
range for this parameter is 0 through 59, inclusive.

minute String (Optional) Specifies that the query time must have a matching minute value. The range
for this parameter is 0 through 59, inclusive.

hour String (Optional) Specifies that the query time must have a matching hour value. The range
for this parameter is 0 through 23, inclusive, with 0 denoting the hour that begins at
midnight, and 23 denoting the hour that ends at midnight.

dayOfMonth String (Optional) Specifies that the query time must have a matching day of month value. The
range for this parameter is 1 through 31, inclusive. (Values of 29, 30, and 31 will only
match during months that have at least that many days.)

month String (Optional) Specifies that the query time must have a matching month value. The range
for this parameter is 1 through 12, inclusive.

dayOfWeek String (Optional) Specifies that the query time must have a matching day of week value. The
range for this parameter is 1 through 7, inclusive, with 1 denoting Monday, 2 denoting
Tuesday, and so forth, up to 7 denoting Sunday.

 Explanation (non-normative): this numbering scheme is consistent with ISO-8601.

 2022

8.2.5.3.1 Query schedule examples (Non-Normative) 2023

Here are some examples of QuerySchedule and what they mean. 2024

Example 1 2025

QuerySchedule 2026
 second = “0” 2027
 minute = “0” 2028
 all other fields omitted 2029

This means “run the query once per hour, at the top of the hour.” If the reportIfEmpty argument to 2030
subscribe is false, then this does not necessarily cause a report to be sent each hour – a report 2031
would be sent within an hour of any new event data becoming available that matches the query. 2032

Example 2 2033

QuerySchedule 2034
 second = “0” 2035
 minute = “30” 2036
 hour = “2” 2037
 all other fields omitted 2038

This means “run the query once per day, at 2:30 am.” 2039

Example 3 2040

QuerySchedule 2041
 second = “0” 2042
 minute = “0” 2043
 dayOfWeek = “[1-5]” 2044

EPC Information Services (EPCIS) Standard

Release 1.2, Ratified, Sep 2016 © 2016 GS1 AISBL Page 68 of 138

This means “run the query once per hour at the top of the hour, but only on weekdays.” 2045

Example 4 2046

QuerySchedule 2047
 hour = “2” 2048
 all other fields omitted 2049

This means “run the query once per second between 2:00:00 and 2:59:59 each day.” This example 2050
illustrates that it usually not desirable to omit a field of finer granularity than the fields that are 2051
specified. 2052

8.2.5.4 QueryResults 2053

A QueryResults instance is returned synchronously from the poll method of the EPCIS Query 2054
Control Interface, and also delivered asynchronously to a subscriber of a standing query via the 2055
EPCIS Query Callback Interface. 2056

QueryResults 2057

--- 2058

queryName : string 2059

subscriptionID : string 2060

resultsBody : QueryResultsBody 2061

<<extension point>> 2062

The fields of a QueryResults instance are defined below. 2063

Field Type Description

queryName String This field SHALL contain the name of the query (the queryName
argument that was specified in the call to poll or subscribe).

subscriptionID string (Conditional) When a QueryResults instance is delivered to a
subscriber as the result of a standing query, subscriptionID SHALL
contain the same string provided as the subscriptionID argument
the call to subscribe.

When a QueryResults instance is returned as the result of a poll
method, this field SHALL be omitted.

resultsBody QueryResultsBody The information returned as the result of a query. The exact type of this
field depends on which query is executed. Each of the predefined
queries in Section 8.2.7 specifies the corresponding type for this field.

8.2.6 Error conditions 2064

Methods of the EPCIS Query Control API signal error conditions to the client by means of exceptions. 2065
The following exceptions are defined. All the exception types in the following table are extensions of 2066
a common EPCISException base type, which contains one required string element giving the 2067
reason for the exception. 2068

Exception Name Meaning

SecurityException The operation was not permitted due to an access control violation or
other security concern. This includes the case where the service wishes to
deny authorisation to execute a particular operation based on the
authenticated client identity. The specific circumstances that may cause
this exception are implementation-specific, and outside the scope of this
specification.

DuplicateNameException (Not implemented in EPCIS 1.2)
The specified query name already exists.

EPC Information Services (EPCIS) Standard

Release 1.2, Ratified, Sep 2016 © 2016 GS1 AISBL Page 69 of 138

Exception Name Meaning

QueryValidationException (Not implemented in EPCIS 1.2)
The specified query is invalid; e.g., it contains a syntax error.

QueryParameterException One or more query parameters are invalid, including any of the following
situations:
 the parameter name is not a recognised parameter for the specified

query
 the value of a parameter is of the wrong type or out of range
 two or more query parameters have the same parameter name

QueryTooLargeException An attempt to execute a query resulted in more data than the service was
willing to provide.

QueryTooComplexException The specified query parameters, while otherwise valid, implied a query
that was more complex than the service was willing to execute.

InvalidURIException The URI specified for a subscriber cannot be parsed, does not name a
scheme recognised by the implementation, or violates rules imposed by a
particular scheme.

SubscriptionControlsException The specified subscription controls was invalid; e.g., the schedule
parameters were out of range, the trigger URI could not be parsed or did
not name a recognised trigger, etc.

NoSuchNameException The specified query name does not exist.

NoSuchSubscriptionException The specified subscriptionID does not exist.

DuplicateSubscriptionException The specified subscriptionID is identical to a previous subscription that
was created and not yet unsubscribed.

SubscribeNotPermittedException The specified query name may not be used with subscribe, only with
poll.

ValidationException The input to the operation was not syntactically valid according to the
syntax defined by the binding. Each binding specifies the particular
circumstances under which this exception is raised.

ImplementationException A generic exception thrown by the implementation for reasons that are
implementation-specific. This exception contains one additional element: a
severity member whose values are either ERROR or SEVERE. ERROR
indicates that the EPCIS implementation is left in the same state it had
before the operation was attempted. SEVERE indicates that the EPCIS
implementation is left in an indeterminate state.

 2069

The exceptions that may be thrown by each method of the EPCIS Query Control Interface are 2070
indicated in the table below: 2071

EPCIS Method Exceptions

getQueryNames SecurityException
ValidationException
ImplementationException

subscribe NoSuchNameException
InvalidURIException
DuplicateSubscriptionException
QueryParameterException
QueryTooComplexException
SubscriptionControlsException
SubscribeNotPermittedException
SecurityException
ValidationException
ImplementationException

EPC Information Services (EPCIS) Standard

Release 1.2, Ratified, Sep 2016 © 2016 GS1 AISBL Page 70 of 138

EPCIS Method Exceptions

unsubscribe NoSuchSubscriptionException
SecurityException
ValidationException
ImplementationException

poll NoSuchNameException
QueryParameterException
QueryTooComplexException
QueryTooLargeException
SecurityException
ValidationException
ImplementationException

getSubscriptionIDs NoSuchNameException
SecurityException
ValidationException
ImplementationException

getStandardVersion SecurityException
ValidationException
ImplementationException

getVendorVersion SecurityException
ValidationException
ImplementationException

 2072

In addition to exceptions thrown from methods of the EPCIS Query Control Interface as enumerated 2073
above, an attempt to execute a standing query may result in a QueryTooLargeException or an 2074
ImplementationException being sent to a subscriber via the EPCIS Query Callback Interface 2075
instead of a normal query result. In this case, the QueryTooLargeException or 2076
ImplementationException SHALL include, in addition to the reason string, the query name and 2077
the subscriptionID as specified in the subscribe call that created the standing query. 2078

8.2.7 Predefined queries for EPCIS 2079

In EPCIS, no query language is provided by which a client may express an arbitrary query for data. 2080
Instead, an EPCIS implementation SHALL provide the following predefined queries, which a client 2081
may invoke using the poll and subscribe methods of the EPCIS Query Control Interface. Each 2082
poll or subscribe call may include parameters via the params argument. The predefined queries 2083
defined in this section each have a large number of optional parameters; by appropriate choice of 2084
parameters a client can achieve a variety of effects. 2085

The parameters for each predefined query and what results it returns are specified in this section. 2086
An implementation of EPCIS is free to use any internal representation for data it wishes, and 2087
implement these predefined queries using any database or query technology it chooses, so long as 2088
the results seen by a client are consistent with this specification. 2089

8.2.7.1 SimpleEventQuery 2090

This query is invoked by specifying the string SimpleEventQuery as the queryName argument to 2091
poll or subscribe. The result is a QueryResults instance whose body contains a (possibly 2092
empty) list of EPCISEvent instances. Unless constrained by the eventType parameter, each 2093
element of the result list could be of any event type; i.e., ObjectEvent, AggregationEvent, 2094
QuantityEvent, TransactionEvent, or any extension event type that is a subclass of 2095
EPCISEvent. 2096

The SimpleEventQuery SHALL be available via both poll and subscribe; that is, an 2097
implementation SHALL NOT raise SubscribeNotPermittedException when 2098
SimpleEventQuery is specified as the queryName argument to subscribe. 2099

EPC Information Services (EPCIS) Standard

Release 1.2, Ratified, Sep 2016 © 2016 GS1 AISBL Page 71 of 138

The SimpleEventQuery is defined to return a set of events that matches the criteria specified in 2100
the query parameters (as specified below). When returning events that were captured via the EPCIS 2101
Capture Interface, each event that is selected to be returned SHALL be identical to the originally 2102
captured event, subject to the provisions of authorisation (Section 8.2.2), the inclusion of the 2103
recordTime field, and any necessary conversions to and from an abstract internal representation. 2104
For any event field defined to hold an unordered list, however, an EPCIS implementation NEED NOT 2105
preserve the order. 2106

The parameters for this query are as follows. None of these parameters is required (though in most 2107
cases, a query will include at least one query parameter). 2108

Parameter name Parameter
value type

Meaning

eventType List of String If specified, the result will only include events whose type matches one
of the types specified in the parameter value. Each element of the
parameter value may be one of the following strings: ObjectEvent,
AggregationEvent, QuantityEvent, TransactionEvent, or
TransformationEvent. An element of the parameter value may also
be the name of an extension event type.
If omitted, all event types will be considered for inclusion in the result.

GE_eventTime Time If specified, only events with eventTime greater than or equal to the
specified value will be included in the result.
If omitted, events are included regardless of their eventTime (unless
constrained by the LT_eventTime parameter).

LT_eventTime Time If specified, only events with eventTime less than the specified value
will be included in the result.
If omitted, events are included regardless of their eventTime (unless
constrained by the GE_eventTime parameter).

GE_recordTime Time If provided, only events with recordTime greater than or equal to the
specified value will be returned. The automatic limitation based on
event record time (Section 8.2.5.2) may implicitly provide a constraint
similar to this parameter.
If omitted, events are included regardless of their recordTime, other
than automatic limitation based on event record time (Section 8.2.5.2).

LT_recordTime Time If provided, only events with recordTime less than the specified value
will be returned.
If omitted, events are included regardless of their recordTime (unless
constrained by the GE_recordTime parameter or the automatic
limitation based on event record time).

EQ_action List of String If specified, the result will only include events that (a) have an action
field; and where (b) the value of the action field matches one of the
specified values. The elements of the value of this parameter each must
be one of the strings ADD, OBSERVE, or DELETE; if not, the
implementation SHALL raise a QueryParameterException.

If omitted, events are included regardless of their action field.

EQ_bizStep List of String If specified, the result will only include events that (a) have a non-null
bizStep field; and where (b) the value of the bizStep field matches
one of the specified values.
If this parameter is omitted, events are returned regardless of the
value of the bizStep field or whether the bizStep field exists at all.

EQ_disposition List of String Like the EQ_bizStep parameter, but for the disposition field.

EQ_readPoint List of String If specified, the result will only include events that (a) have a non-null
readPoint field; and where (b) the value of the readPoint field
matches one of the specified values.
If this parameter and WD_readPoint are both omitted, events are
returned regardless of the value of the readPoint field or whether the
readPoint field exists at all.

EPC Information Services (EPCIS) Standard

Release 1.2, Ratified, Sep 2016 © 2016 GS1 AISBL Page 72 of 138

Parameter name Parameter
value type

Meaning

WD_readPoint List of String If specified, the result will only include events that (a) have a non-null
readPoint field; and where (b) the value of the readPoint field
matches one of the specified values, or is a direct or indirect
descendant of one of the specified values. The meaning of “direct or
indirect descendant” is specified by master data, as described in
Section 6.5. (WD is an abbreviation for “with descendants.”)

If this parameter and EQ_readPoint are both omitted, events are
returned regardless of the value of the readPoint field or whether the
readPoint field exists at all.

EQ_bizLocation List of String Like the EQ_readPoint parameter, but for the bizLocation field.

WD_bizLocation List of String Like the WD_readPoint parameter, but for the bizLocation field.

EQ_bizTransaction_
type

List of String This is not a single parameter, but a family of parameters.
If a parameter of this form is specified, the result will only include
events that (a) include a bizTransactionList; (b) where the
business transaction list includes an entry whose type subfield is equal
to type extracted from the name of this parameter; and (c) where the
bizTransaction subfield of that entry is equal to one of the values
specified in this parameter.

EQ_source_type List of String This is not a single parameter, but a family of parameters.
If a parameter of this form is specified, the result will only include
events that (a) include a sourceList; (b) where the source list
includes an entry whose type subfield is equal to type extracted from
the name of this parameter; and (c) where the source subfield of that
entry is equal to one of the values specified in this parameter.

EQ_destination_type List of String This is not a single parameter, but a family of parameters.
If a parameter of this form is specified, the result will only include
events that (a) include a destinationList; (b) where the
destination list includes an entry whose type subfield is equal to type
extracted from the name of this parameter; and (c) where the
destination subfield of that entry is equal to one of the values
specified in this parameter.

EQ_transformationID List of String If this parameter is specified, the result will only include events that (a)
have a transformationID field (that is, TransformationEvents
or extension event type that extend TransformationEvent); and
where (b) the transformationID field is equal to one of the values
specified in this parameter.

MATCH_epc List of String If this parameter is specified, the result will only include events that (a)
have an epcList or a childEPCs field (that is, ObjectEvent,
AggregationEvent, TransactionEvent or extension event types
that extend one of those three); and where (b) one of the EPCs listed in
the epcList or childEPCs field (depending on event type) matches
one of the EPC patterns or URIs specified in this parameter, where the
meaning of “matches” is as specified in Section 8.2.7.1.1.
If this parameter is omitted, events are included regardless of their
epcList or childEPCs field or whether the epcList or childEPCs
field exists.

MATCH_parentID List of String Like MATCH_epc, but matches the parentID field of
AggregationEvent, the parentID field of TransactionEvent, and
extension event types that extend either AggregationEvent or
TransactionEvent. The meaning of “matches” is as specified in
Section 8.2.7.1.1.

EPC Information Services (EPCIS) Standard

Release 1.2, Ratified, Sep 2016 © 2016 GS1 AISBL Page 73 of 138

Parameter name Parameter
value type

Meaning

MATCH_inputEPC List of String If this parameter is specified, the result will only include events that (a)
have an inputEPCList (that is, TransformationEvent or an
extension event type that extends TransformationEvent); and
where (b) one of the EPCs listed in the inputEPCList field matches
one of the EPC patterns or URIs specified in this parameter. The
meaning of “matches” is as specified in Section 8.2.7.1.1.
If this parameter is omitted, events are included regardless of their
inputEPCList field or whether the inputEPCList field exists.

MATCH_outputEPC List of String If this parameter is specified, the result will only include events that (a)
have an outputEPCList (that is, TransformationEvent or an
extension event type that extends TransformationEvent); and
where (b) one of the EPCs listed in the outputEPCList field matches
one of the EPC patterns or URIs specified in this parameter. The
meaning of “matches” is as specified in Section 8.2.7.1.1.
If this parameter is omitted, events are included regardless of their
outputEPCList field or whether the outputEPCList field exists.

MATCH_anyEPC List of String If this parameter is specified, the result will only include events that (a)
have an epcList field, a childEPCs field, a parentID field, an
inputEPCList field, or an outputEPCList field (that is,
ObjectEvent, AggregationEvent, TransactionEvent,
TransformationEvent, or extension event types that extend one of
those four); and where (b) the parentID field or one of the EPCs listed
in the epcList, childEPCs, inputEPCList, or outputEPCList
field (depending on event type) matches one of the EPC patterns or
URIs specified in this parameter. The meaning of “matches” is as
specified in Section 8.2.7.1.1.

MATCH_epcClass List of String If this parameter is specified, the result will only include events that (a)
have a quantityList or a childQuantityList field (that is,
ObjectEvent, AggregationEvent, TransactionEvent or
extension event types that extend one of those three); and where (b)
one of the EPC classes listed in the quantityList or
childQuantityList field (depending on event type) matches one of
the EPC patterns or URIs specified in this parameter. The result will also
include QuantityEvents whose epcClass field matches one of the
EPC patterns or URIs specified in this parameter. The meaning of
“matches” is as specified in Section 8.2.7.1.1.

MATCH_inputEPCClass List of String If this parameter is specified, the result will only include events that (a)
have an inputQuantityList field (that is, TransformationEvent
or extension event types that extend it); and where (b) one of the EPC
classes listed in the inputQuantityList field (depending on event
type) matches one of the EPC patterns or URIs specified in this
parameter. The meaning of “matches” is as specified in
Section 8.2.7.1.1.

MATCH_outputEPCClass List of String If this parameter is specified, the result will only include events that (a)
have an outputQuantityList field (that is,
TransformationEvent or extension event types that extend it); and
where (b) one of the EPC classes listed in the outputQuantityList
field (depending on event type) matches one of the EPC patterns or
URIs specified in this parameter. The meaning of “matches” is as
specified in Section 8.2.7.1.1.

EPC Information Services (EPCIS) Standard

Release 1.2, Ratified, Sep 2016 © 2016 GS1 AISBL Page 74 of 138

Parameter name Parameter
value type

Meaning

MATCH_anyEPCClass List of String If this parameter is specified, the result will only include events that (a)
have a quantityList, childQuantityList,
inputQuantityList, or outputQuantityList field (that is,
ObjectEvent, AggregationEvent, TransactionEvent,
TransformationEvent, or extension event types that extend one of
those four); and where (b) one of the EPC classes listed in any of those
fields matches one of the EPC patterns or URIs specified in this
parameter. The result will also include QuantityEvents whose
epcClass field matches one of the EPC patterns or URIs specified in this
parameter. The meaning of “matches” is as specified in
Section 8.2.7.1.1.

EQ_quantity Int (DEPCRECATED in EPCIS 1.1) If this parameter is specified, the result
will only include events that (a) have a quantity field (that is,
QuantityEvents or extension event type that extend
QuantityEvent); and where (b) the quantity field is equal to the
specified parameter.

GT_quantity Int (DEPCRECATED in EPCIS 1.1) Like EQ_quantity, but includes events
whose quantity field is greater than the specified parameter.

GE_quantity Int (DEPCRECATED in EPCIS 1.1) Like EQ_quantity, but includes events
whose quantity field is greater than or equal to the specified
parameter.

LT_quantity Int (DEPCRECATED in EPCIS 1.1) Like EQ_quantity, but includes events
whose quantity field is less than the specified parameter.

LE_quantity Int (DEPCRECATED in EPCIS 1.1) Like EQ_quantity, but includes events
whose quantity field is less than or equal to the specified parameter.

EQ_fieldname List of String This is not a single parameter, but a family of parameters.
If a parameter of this form is specified, the result will only include
events that (a) have a top-level extension field named fieldname
whose type is either String or a vocabulary type; and where (b) the
value of that field matches one of the values specified in this
parameter.
Fieldname is the fully qualified name of a top-level extension field. The
name of an extension field is an XML qname; that is, a pair consisting
of an XML namespace URI and a name. The name of the corresponding
query parameter is constructed by concatenating the following: the
string EQ_, the namespace URI for the extension field, a pound sign (#),
and the name of the extension field. “Top level” means that the
matching extension element must be an immediate child of the
containing EPCIS event, not an element nested within a top-level event
extension element. See EQ_INNER_fieldname for querying inner
extension elements.

EQ_fieldname Int
Float
Time

Like EQ_fieldname as described above, but may be applied to a field
of type Int, Float, or Time. The result will include events that (a) have a
field named fieldname; and where (b) the type of the field matches
the type of this parameter (Int, Float, or Time); and where (c) the
value of the field is equal to the specified value.

Fieldname is constructed as for EQ_fieldname.

GT_fieldname Int
Float
Time

Like EQ_fieldname as described above, but may be applied to a field
of type Int, Float, or Time. The result will include events that (a) have a
field named fieldname; and where (b) the type of the field matches
the type of this parameter (Int, Float, or Time); and where (c) the
value of the field is greater than the specified value.

Fieldname is constructed as for EQ_fieldname.

EPC Information Services (EPCIS) Standard

Release 1.2, Ratified, Sep 2016 © 2016 GS1 AISBL Page 75 of 138

Parameter name Parameter
value type

Meaning

GE_fieldname
LT_fieldname
LE_fieldname

Int
Float
Time

Analogous to GT_fieldname

EQ_ILMD_fieldname List of String Analogous to EQ_fieldname, but matches events whose ILMD area
(Section 7.3.6) contains a top-level field having the specified
fieldname whose value matches one of the specified values. “Top
level” means that the matching ILMD element must be an immediate
child of the <ilmd> element, not an element nested within such an
element. See EQ_INNER_ILMD_fieldname for querying inner extension
elements.

EQ_ILMD_fieldname

GT_ILMD_fieldname

GE_ILMD_fieldname

LT_ILMD_fieldname

LE_ILMD_fieldname

Int
Float
Time

Analogous to EQ_fieldname, GT_fieldname, GE_fieldname,
GE_fieldname, LT_fieldname, and LE_fieldname, respectively,
but matches events whose ILMD area (Section 7.3.6) contains a field
having the specified fieldname whose integer, float, or time value
matches the specified value according to the specified relational
operator.

EQ_INNER_fieldname List of String Analogous to EQ_fieldname, but matches inner extension elements;
that is, any XML element nested at any level within a top-level
extension element. Note that a matching inner element may exist
within more than one top-level element or may occur more than once
within a single top-level element; this parameter matches if at least
one matching occurrence is found anywhere in the event (except at
top-level).
Note that unlike a top-level extension element, an inner extension
element may have a null XML namespace. To match such an inner
element, the empty string is used in place of the XML namespace when
constructing the query parameter name. For example, to match inner
element <elt1> with no XML namespace, the query parameter would
be EQ_INNER_#elt1.

EQ_INNER_fieldname

GT_INNER_fieldname

GE_INNER_fieldname

LT_INNER_fieldname

LE_INNER_fieldname

Int
Float
Time

Like EQ_INNER_fieldname as described above, but may be applied to
a field of type Int, Float, or Time.

EQ_INNER_ILMD_
fieldname

List of String Analogous to EQ_ILMD_fieldname, but matches inner ILMD
elements; that is, any XML element nested at any level within a top-
level ILMD element. Note that a matching inner element may exist
within more than one top-level element or may occur more than once
within a single top-level element; this parameter matches if at least
one matching occurrence is found anywhere in the ILMD section
(except at top-level).

EQ_INNER_ILMD_
fieldname
GT_INNER_
ILMD_fieldname

GE_INNER_
ILMD_fieldname

LT_INNER_
ILMD_fieldname

LE_INNER_
ILMD_fieldname

Int
Float
Time

Like EQ_INNER_ILMD_fieldname as described above, but may be
applied to a field of type Int, Float, or Time.

EPC Information Services (EPCIS) Standard

Release 1.2, Ratified, Sep 2016 © 2016 GS1 AISBL Page 76 of 138

Parameter name Parameter
value type

Meaning

EXISTS_fieldname Void Like EQ_fieldname as described above, but may be applied to a field
of any type (including complex types). The result will include events
that have a non-empty field named fieldname.

Fieldname is constructed as for EQ_fieldname.

Note that the value for this query parameter is ignored.

EXISTS_INNER_fieldna
me

Void Like EXISTS_fieldname as described above, but includes events that
have a non-empty inner extension field named fieldname.

Note that the value for this query parameter is ignored.

EXISTS_
ILMD_fieldname

Void Like EXISTS_fieldname as described above, but events that have a
non-empty field named fieldname in the ILMD area (Section 7.3.6).

Fieldname is constructed as for EQ_ILMD_fieldname.

Note that the value for this query parameter is ignored.

EXISTS_INNER_ILMD_fi
eldname

Void Like EXISTS_ILMD_fieldname as described above, but includes
events that have a non-empty inner extension field named fieldname
within the ILMD area.
Note that the value for this query parameter is ignored.

HASATTR_fieldname List of String This is not a single parameter, but a family of parameters.
If a parameter of this form is specified, the result will only include
events that (a) have a field named fieldname whose type is a
vocabulary type; and (b) where the value of that field is a vocabulary
element for which master data is available; and (c) the master data has
a non-null attribute whose name matches one of the values specified in
this parameter.
Fieldname is the fully qualified name of a field. For a standard field,
this is simply the field name; e.g., bizLocation. For an extension
field, the name of an extension field is an XML qname; that is, a pair
consisting of an XML namespace URI and a name. The name of the
corresponding query parameter is constructed by concatenating the
following: the string HASATTR_, the namespace URI for the extension
field, a pound sign (#), and the name of the extension field.

EQATTR_fieldname
_attrname

List of String This is not a single parameter, but a family of parameters.
If a parameter of this form is specified, the result will only include
events that (a) have a field named fieldname whose type is a
vocabulary type; and (b) where the value of that field is a vocabulary
element for which master data is available; and (c) the master data has
a non-null attribute named attrname; and (d) where the value of that
attribute matches one of the values specified in this parameter.
Fieldname is constructed as for HASATTR_fieldname.

The implementation MAY raise a QueryParameterException if
fieldname or attrname includes an underscore character.

 Explanation (non-normative): because the presence of an
underscore in fieldname or attrname presents an ambiguity as to where
the division between fieldname and attrname lies, an implementation is
free to reject the query parameter if it cannot disambiguate.

EQ_eventID List of String If this parameter is specified, the result will only include events that (a)
have a non-null eventID field; and where (b) the eventID field is
equal to one of the values specified in this parameter.
If this parameter is omitted, events are returned regardless of the
value of the eventID field or whether the eventID field exists at all.

EXISTS_
errorDeclaration

Void If this parameter is specified, the result will only include events that
contain an ErrorDeclaration.

If this parameter is omitted, events are returned regardless of whether
they contain an ErrorDeclaration.

EPC Information Services (EPCIS) Standard

Release 1.2, Ratified, Sep 2016 © 2016 GS1 AISBL Page 77 of 138

Parameter name Parameter
value type

Meaning

GE_errorDeclaration
Time

Time If this parameter is specified, the result will only include events that (a)
contain an ErrorDeclaration; and where (b) the value of the
errorDeclarationTime field is greater than or equal to the specified
value.
If this parameter is omitted, events are returned regardless of whether
they contain an ErrorDeclaration or what the value of the
errorDeclarationTime field is.

LT_errorDeclaration
Time

Time If this parameter is specified, the result will only include events that (a)
contain an ErrorDeclaration; and where (b) the value of the
errorDeclarationTime field is less than to the specified value.

If this parameter is omitted, events are returned regardless of whether
they contain an ErrorDeclaration or what the value of the
errorDeclarationTime field is.

EQ_errorReason List of String If this parameter is specified, the result will only include events that (a)
contain an ErrorDeclaration; and where (b) the error declaration
contains a non-null reason field; and where (c) the reason field is
equal to one of the values specified in this parameter.
If this parameter is omitted, events are returned regardless of whether
they contain an ErrorDeclaration or what the value of the reason
field is.

EQ_correctiveEventID List of String If this parameter is specified, the result will only include events that (a)
contain an ErrorDeclaration; and where (b) one of the elements of
the correctiveEventIDs list is equal to one of the values specified
in this parameter.
If this parameter is omitted, events are returned regardless of whether
they contain an ErrorDeclaration or the contents of the
correctiveEventIDs list.

EQ_ERROR_DECLARATION
_fieldname

List of String Analogous to EQ_fieldname, but matches events containing an
ErrorDeclaration and where the ErrorDeclaration contains a
field having the specified fieldname whose value matches one of the
specified values.

EQ_ERROR_DECLARATION
_fieldname

GT_ERROR_DECLARATION
_fieldname

GE_ERROR_DECLARATION
_fieldname

LT_ERROR_DECLARATION
_fieldname

LE_ERROR_DECLARATION
_fieldname

Int
Float
Time

Analogous to EQ_fieldname, GT_fieldname, GE_fieldname,
GE_fieldname, LT_fieldname, and LE_fieldname, respectively,
but matches events containing an ErrorDeclaration and where the
ErrorDeclaration contains a field having the specified fieldname
whose integer, float, or time value matches the specified value
according to the specified relational operator.

EQ_INNER_ERROR_DECLA
RATION_fieldname

List of String Analogous to EQ_ERROR_DECLARATION_fieldname, but matches
inner extension elements; that is, any XML element nested within a
top-level extension element. Note that a matching inner element may
exist within more than one top-level element or may occur more than
once within a single top-level element; this parameter matches if at
least one matching occurrence is found anywhere in the event (except
at top-level)..

EPC Information Services (EPCIS) Standard

Release 1.2, Ratified, Sep 2016 © 2016 GS1 AISBL Page 78 of 138

Parameter name Parameter
value type

Meaning

EQ_INNER
_ERROR_DECLARATION_f
ieldname
GT_INNER
_ERROR_DECLARATION_f
ieldname

GE_INNER
_ERROR_DECLARATION_f
ieldname
LT_INNER
_ERROR_DECLARATION_f
ieldname
LE_INNER
_ERROR_DECLARATION_f
ieldname

Int
Float
Time

Like EQ_INNER_ERROR_DECLARATION_fieldname as described
above, but may be applied to a field of type Int, Float, or Time.

EXISTS_ERROR_DECLARA
TION_fieldname

Void Like EXISTS_fieldname as described above, but events that have an
error declaration containing a non-empty extension field named
fieldname.

Fieldname is constructed as for EQ_ERROR_DECLARATION_fieldname.

Note that the value for this query parameter is ignored

EXISTS_INNER_ERROR_D
ECLARATION_fieldname

Void Like EXISTS_ERROR_DECLARATION_fieldname as described above,
but includes events that have an error declaration containing a non-
empty inner extension field named fieldname.

Note that the value for this query parameter is ignored.

orderBy String If specified, names a single field that will be used to order the results.
The orderDirection field specifies whether the ordering is in
ascending sequence or descending sequence. Events included in the
result that lack the specified field altogether may occur in any position
within the result event list.
The value of this parameter SHALL be one of: eventTime,
recordTime, or the fully qualified name of an extension field whose
type is Int, Float, Time, or String. A fully qualified fieldname is
constructed as for the EQ_fieldname parameter. In the case of a field
of type String, the ordering SHOULD be in lexicographic order based on
the Unicode encoding of the strings, or in some other collating
sequence appropriate to the locale.
If omitted, no order is specified. The implementation MAY order the
results in any order it chooses, and that order MAY differ even when the
same query is executed twice on the same data.
(In EPCIS 1.0, the value quantity was also permitted, but its use is
deprecated in EPCIS 1.1.)

orderDirection String If specified and orderBy is also specified, specifies whether the results
are ordered in ascending or descending sequence according to the key
specified by orderBy. The value of this parameter must be one of ASC
(for ascending order) or DESC (for descending order); if not, the
implementation SHALL raise a QueryParameterException.

If omitted, defaults to DESC.

EPC Information Services (EPCIS) Standard

Release 1.2, Ratified, Sep 2016 © 2016 GS1 AISBL Page 79 of 138

Parameter name Parameter
value type

Meaning

eventCountLimit Int If specified, the results will only include the first N events that match
the other criteria, where N is the value of this parameter. The ordering
specified by the orderBy and orderDirection parameters determine
the meaning of “first” for this purpose.
If omitted, all events matching the specified criteria will be included in
the results.
This parameter and maxEventCount are mutually exclusive; if both
are specified, a QueryParameterException SHALL be raised.

This parameter may only be used when orderBy is specified; if
orderBy is omitted and eventCountLimit is specified, a
QueryParameterException SHALL be raised.

This parameter differs from maxEventCount in that this parameter
limits the amount of data returned, whereas maxEventCount causes
an exception to be thrown if the limit is exceeded.

 Explanation (non-normative): A common use of the orderBy,
orderDirection, and eventCountLimit parameters is for extremal
queries. For example, to select the most recent event matching some
criteria, the query would include parameters that select events
matching the desired criteria, and set orderBy to eventTime,
orderDirection to DESC, and eventCountLimit to one.

maxEventCount Int If specified, at most this many events will be included in the query
result. If the query would otherwise return more than this number of
events, a QueryTooLargeException SHALL be raised instead of a
normal query result.

This parameter and eventCountLimit are mutually exclusive; if both
are specified, a QueryParameterException SHALL be raised.

If this parameter is omitted, any number of events may be included in
the query result. Note, however, that the EPCIS implementation is free
to raise a QueryTooLargeException regardless of the setting of this
parameter (see Section 8.2.3).

 2109

As the descriptions above suggest, if multiple parameters are specified an event must satisfy all 2110
criteria in order to be included in the result set. In other words, if each parameter is considered to 2111
be a predicate, all such predicates are implicitly conjoined as though by an AND operator. For 2112
example, if a given call to poll specifies a value for both the EQ_bizStep and EQ_disposition 2113
parameters, then an event must match one of the specified bizStep values AND match one of the 2114
specified disposition values in order to be included in the result. 2115

On the other hand, for those parameters whose value is a list, an event must match at least one of 2116
the elements of the list in order to be included in the result set. In other words, if each element of 2117
the list is considered to be a predicate, all such predicates for a given list are implicitly disjoined as 2118
though by an OR operator. For example, if the value of the EQ_bizStep parameter is a two 2119
element list (“bs1”, “bs2”), then an event is included if its bizStep field contains the value bs1 OR 2120
its bizStep field contains the value bs2. 2121

As another example, if the value of the EQ_bizStep parameter is a two element list (“bs1”, “bs2”) 2122
and the EQ_disposition parameter is a two element list (“d1”, “d2”), then the effect is to include 2123
events satisfying the following predicate: 2124

((bizStep = “bs1” OR bizStep = “bs2”) 2125
 AND (disposition = “d1” OR disposition = “d2”)) 2126

8.2.7.1.1 Processing of MATCH query parameters 2127

The parameter list for MATCH_epc, MATCH_parentID, MATCH_inputEPC, MATCH_outputEPC, 2128
and MATCH_anyEPC SHALL be processed as follows. Each element of the parameter list may be a 2129
pure identity pattern as specified in [TDS1.9], or any other URI. If the element is a pure identity 2130

EPC Information Services (EPCIS) Standard

Release 1.2, Ratified, Sep 2016 © 2016 GS1 AISBL Page 80 of 138

pattern, it is matched against event field values using the procedure for matching identity patterns 2131
specified in [TDS1.9, Section 8]. If the element is any other URI, it is matched against event field 2132
values by testing string equality. 2133

The parameter list for MATCH_epcClass, MATCH_inputEPCClass, MATCH_outputEPCClass, and 2134
MATCH_anyEPCClass SHALL be processed as follows. Let P be one of the patterns specified in the 2135
value for this parameter, and let C be the value of an epcClass field in the appropriate quantity list 2136
of an event being considered for inclusion in the result. Then the event is included if each 2137
component Pi of P matches the corresponding component Ci of C, where “matches” is as defined in 2138
[TDS1.9, Section 8]. 2139

 Non-Normative: Explanation: The difference between MATCH_epcClass and MATCH_epc, 2140
and similar parameters, is that for MATCH_epcClass the value in the event (the epcClass field 2141
in a quantity list) may itself be a pattern, as specified in Section 7.3.3.3). This means that the 2142
value in the event may contain a ‘*’ component. The above specification says that a ‘*’ in the 2143
EPCClass field of an event is only matched by a ‘*’ in the query parameter. For example, if the 2144
epcClass field within an event is urn:epc:idpat:sgtin:0614141.112345.*, then this event 2145
would be matched by the query parameter urn:epc:idpat:sgtin:0614141.*.* or by 2146
urn:epc:idpat:sgtin:0614141.112345.*, but not by urn:epc:idpat:sgtin:0614141.112345.400. 2147

8.2.7.2 SimpleMasterDataQuery 2148

This query is invoked by specifying the string SimpleMasterDataQuery as the queryName 2149
argument to poll. The result is a QueryResults instance whose body contains a (possibly empty) 2150
list of vocabulary elements together with selected attributes. 2151

The SimpleMasterDataQuery SHALL be available via poll but not via subscribe; that is, an 2152
implementation SHALL raise SubscribeNotPermittedException when 2153
SimpleMasterDataQuery is specified as the queryName argument to subscribe. 2154

The parameters for this query are as follows: 2155

Parameter Name Parameter
Value Type

Required Meaning

vocabularyName List of String No If specified, only vocabulary elements drawn from one of the
specified vocabularies will be included in the results. Each
element of the specified list is the formal URI name for a
vocabulary; e.g., one of the URIs specified in the table at the
end of Section 7.2.
If omitted, all vocabularies are considered.

includeAttributes Boolean Yes If true, the results will include attribute names and values for
matching vocabulary elements. If false, attribute names and
values will not be included in the result.

includeChildren Boolean Yes If true, the results will include the children list for matching
vocabulary elements. If false, children lists will not be included in
the result.

attributeNames List of String No If specified, only those attributes whose names match one of the
specified names will be included in the results.
If omitted, all attributes for each matching vocabulary element
will be included. (To obtain a list of vocabulary element names
with no attributes, specify false for includeAttributes.)

The value of this parameter SHALL be ignored if
includeAttributes is false.

Note that this parameter does not affect which vocabulary
elements are included in the result; it only limits which attributes
will be included with each vocabulary element.

EQ_name List of String No If specified, the result will only include vocabulary elements
whose names are equal to one of the specified values.
If this parameter and WD_name are both omitted, vocabulary
elements are included regardless of their names.

EPC Information Services (EPCIS) Standard

Release 1.2, Ratified, Sep 2016 © 2016 GS1 AISBL Page 81 of 138

Parameter Name Parameter
Value Type

Required Meaning

WD_name List of String No If specified, the result will only include vocabulary elements that
either match one of the specified names, or are direct or indirect
descendants of a vocabulary element that matches one of the
specified names. The meaning of “direct or indirect descendant”
is described in Section 6.5. (WD is an abbreviation for “with
descendants.”)
If this parameter and EQ_name are both omitted, vocabulary
elements are included regardless of their names.

HASATTR List of String No If specified, the result will only include vocabulary elements that
have a non-null attribute whose name matches one of the values
specified in this parameter.

EQATTR_attrname List of String No This is not a single parameter, but a family of parameters.
If a parameter of this form is specified, the result will only
include vocabulary elements that have a non-null attribute
named attrname, and where the value of that attribute
matches one of the values specified in this parameter.

maxElementCount Int No If specified, at most this many vocabulary elements will be
included in the query result. If the query would otherwise return
more than this number of vocabulary elements, a
QueryTooLargeException SHALL be raised instead of a
normal query result.
If this parameter is omitted, any number of vocabulary elements
may be included in the query result. Note, however, that the
EPCIS implementation is free to raise a
QueryTooLargeException regardless of the setting of this
parameter (see Section 8.2.3).

 2156

As the descriptions above suggest, if multiple parameters are specified a vocabulary element must 2157
satisfy all criteria in order to be included in the result set. In other words, if each parameter is 2158
considered to be a predicate, all such predicates are implicitly conjoined as though by an AND 2159
operator. For example, if a given call to poll specifies a value for both the WD_name and HASATTR 2160
parameters, then a vocabulary element must be a descendant of the specified element AND possess 2161
one of the specified attributes in order to be included in the result. 2162

On the other hand, for those parameters whose value is a list, a vocabulary element must match at 2163
least one of the elements of the list in order to be included in the result set. In other words, if each 2164
element of the list is considered to be a predicate, all such predicates for a given list are implicitly 2165
disjoined as though by an OR operator. For example, if the value of the EQATTR_sample parameter 2166
is a two element list (“s1”, “s2”), then a vocabulary element is included if it has a sample attribute 2167
whose value is equal to s1 OR equal to s2. 2168

As another example, if the value of the EQ_name parameter is a two element list (“ve1”, “ve2”) 2169
and the EQATTR_sample parameter is a two element list (“s1”, “s2”), then the effect is to include 2170
events satisfying the following predicate: 2171

((name = “ve1” OR name = “ve2”) 2172
 AND (sample = “s1” OR sample = “s2”)) 2173

where name informally refers to the name of the vocabulary element and sample informally refers 2174
to the value of the sample attribute. 2175

8.2.8 Query callback interface 2176

The Query Callback Interface is the path by which an EPCIS service delivers standing query results 2177
to a client. 2178

EPC Information Services (EPCIS) Standard

Release 1.2, Ratified, Sep 2016 © 2016 GS1 AISBL Page 82 of 138

<<interface>> 2179

EPCISQueryCallbackInterface 2180

--- 2181

callbackResults(resultData : QueryResults) : void 2182

callbackQueryTooLargeException(e : QueryTooLargeException) : void 2183

callbackImplementationException(e : ImplementationException) : void 2184

Each time the EPCIS service executes a standing query according to the QuerySchedule, it SHALL 2185
attempt to deliver results to the subscriber by invoking one of the three methods of the Query 2186
Callback Interface. If the query executed normally, the EPCIS service SHALL invoke the 2187
callbackResults method. If the query resulted in a QueryTooLargeException or 2188
ImplementationException, the EPCIS service SHALL invoke the corresponding method of the 2189
Query Callback Interface. 2190

Note that “exceptions” in the Query Callback Interface are not exceptions in the usual sense of an 2191
API exception, because they are not raised as a consequence of a client invoking a method. Instead, 2192
the exception is delivered to the recipient in a similar manner to a normal result, as an argument to 2193
an interface method. 2194

9 XML bindings for data definition modules 2195

This section specifies a standard XML binding for the Core Event Types data definition module, using 2196
the W3C XML Schema language [XSD1, XSD2]. Samples are also shown. 2197

The schema below conforms to GS1 standard schema design rules. The schema below imports the 2198
EPCglobal standard base schema, as mandated by the design rules [XMLDR]. 2199

9.1 Extensibility mechanism 2200

The XML schema in this section implements the <<extension point>> given in the UML of 2201
Section 6 using a methodology described in [XMLVersioning]. This methodology provides for both 2202
vendor/user extension, and for extension by GS1 in future versions of this specification or in 2203
supplemental specifications. Extensions introduced through this mechanism will be backward 2204
compatible, in that documents conforming to older versions of the schema will also conform to 2205
newer versions of the standard schema and to schema containing vendor-specific extensions. 2206
Extensions will also be forward compatible, in that documents that contain vendor/user extensions 2207
or that conform to newer versions of the standard schema will also conform to older versions of the 2208
schema. 2209

When a document contains extensions (vendor/user-specific or standardised in newer versions of 2210
schema), it may conform to more than one schema. For example, a document containing vendor 2211
extensions to the GS1 Version 1.0 schema will conform both to the GS1 Version 1.0 schema and to 2212
a vendor-specific schema that includes the vendor extensions. In this example, when the document 2213
is parsed using the standard schema there will be no validation of the extension elements and 2214
attributes, but when the document is parsed using the vendor-specific schema the extensions will be 2215
validated. Similarly, a document containing new features introduced in the GS1 Version 1.2 schema 2216
will conform to the GS1 Version 1.0 schema, the GS1 Version 1.1 schema, and the GS1 Version 1.2 2217
schema, but validation of the new features will only be available using the Version 1.2 schema. 2218

The design rules for this extensibility pattern are given in [XMLVersioning]. In summary, it amounts 2219
to the following rules: 2220

■ For each type in which <<extension point>> occurs, include an xsd:anyAttribute declaration. 2221
This declaration provides for the addition of new XML attributes, either in subsequent versions of 2222
the standard schema or in vendor/user-specific schema. 2223

■ For each type in which <<extension point>> occurs, include an optional (minOccurs = 0) 2224
element named extension. The type declared for the extension element will always be as 2225
follows: 2226

EPC Information Services (EPCIS) Standard

Release 1.2, Ratified, Sep 2016 © 2016 GS1 AISBL Page 83 of 138

 <xsd:sequence> 2227
 <xsd:any processContents="lax" minOccurs="1" maxOccurs="unbounded" 2228
 namespace="##local"/> 2229
 </xsd:sequence> 2230
 <xsd:anyAttribute processContents="lax"/> 2231

This declaration provides for forward-compatibility with new elements introduced into 2232
subsequent versions of the standard schema. 2233

■ For each type in which <<extension point>> occurs, include at the end of the element list a 2234
declaration 2235

 <xsd:any processContents="lax" minOccurs="0" maxOccurs="unbounded" 2236
 namespace="##other"/> 2237

This declaration provides for forward-compatibility with new elements introduced in 2238
vendor/user-specific schema. 2239

The rules for adding vendor/user-specific extensions to the schema are as follows: 2240

■ Vendor/user-specific attributes may be added to any type in which <<extension point>> 2241
occurs. Vendor/user-specific attributes SHALL NOT be in the EPCglobal EPCIS namespace 2242
(urn:epcglobal:epcis:xsd:1) nor in the empty namespace. Vendor/user-specific 2243
attributes SHALL be in a namespace whose namespace URI has the vendor as the owning 2244
authority. (In schema parlance, this means that all vendor/user-specific attributes must have 2245
qualified as their form.) For example, the namespace URI may be an HTTP URL whose 2246
authority portion is a domain name owned by the vendor/user, a URN having a URN namespace 2247
identifier issued to the vendor/user by IANA, an OID URN whose initial path is a Private 2248
Enterprise Number assigned to the vendor/user, etc. Declarations of vendor/user-specific 2249
attributes SHALL specify use="optional". 2250

■ Vendor/user-specific elements may be added to any type in which <<extension point>> 2251
occurs. Vendor/user-specific elements SHALL NOT be in the EPCglobal EPCIS namespace 2252
(urn:epcglobal:epcis:xsd:1) nor in the empty namespace. Vendor/user-specific elements 2253
SHALL be in a namespace whose namespace URI has the vendor/user as the owning authority 2254
(as described above). (In schema parlance, this means that all vendor/user-specific elements 2255
must have qualified as their form.) 2256

To create a schema that contains vendor/user extensions, replace the <xsd:any … 2257
namespace=”##other”/> declaration with a content group reference to a group defined in the 2258
vendor/user namespace; e.g., <xsd:group ref="vendor:VendorExtension">. In the schema 2259
file defining elements for the vendor/user namespace, define a content group using a declaration of 2260
the following form: 2261

 <xsd:group name="VendorExtension"> 2262
 <xsd:sequence> 2263
 <!-- 2264
 Definitions or references to vendor elements 2265
 go here. Each SHALL specify minOccurs="0". 2266
 --> 2267
 <xsd:any processContents="lax" 2268
 minOccurs="0" maxOccurs="unbounded" 2269
 namespace="##other"/> 2270
 </xsd:sequence> 2271
</xsd:group> 2272

(In the foregoing illustrations, vendor and VendorExtension may be any strings the vendor/user 2273
chooses.) 2274

 Non-Normative: Explanation: Because vendor/user-specific elements must be optional, 2275
including references to their definitions directly into the EPCIS schema would violate the XML 2276
Schema Unique Particle Attribution constraint, because the <xsd:any …> element in the 2277
EPCIS schema can also match vendor/user-specific elements. Moving the <xsd:any …> into 2278
the vendor/user’s schema avoids this problem, because ##other in that schema means 2279

EPC Information Services (EPCIS) Standard

Release 1.2, Ratified, Sep 2016 © 2016 GS1 AISBL Page 84 of 138

“match an element that has a namespace other than the vendor/user’s namespace.” This 2280
does not conflict with standard elements, because the element form default for the standard 2281
EPCIS schema is unqualified, and hence the ##other in the vendor/user’s schema does not 2282
match standard EPCIS elements, either. 2283

The rules for adding attributes or elements to future versions of the GS1 standard schema are as 2284
follows: 2285

■ Standard attributes may be added to any type in which <<extension point>> occurs. 2286
Standard attributes SHALL NOT be in any namespace (i.e., SHALL be in the empty namespace), 2287
and SHALL NOT conflict with any existing standard attribute name. 2288

■ Standard elements may be added to any type in which <<extension point>> occurs. New 2289
elements are added using the following rules: 2290

□ Find the innermost extension element type. 2291

□ Replace the <xsd:any … namespace="##local"/> declaration with (a) new elements 2292
(which SHALL NOT be in any namespace; equivalently, which SHALL be in the empty 2293
namespace); followed by (b) a new extension element whose type is constructed as 2294
described before. In subsequent revisions of the standard schema, new standard elements 2295
will be added within this new extension element rather than within this one. 2296

 Non-Normative: Explanation: the reason that new standard attributes and elements are 2297
specified above not to be in any namespace is to be consistent with the EPCIS schema’s 2298
attribute and element form default of unqualified. 2299

As applied to the EPCIS 1.2 XML schema for core events (Section 9.5), this results in the following: 2300

Event types defined in EPCIS 1.0 appear within the <EventList> element. 2301

Event types defined in EPCIS 1.1 (i.e., TransformationEvent) each appear within an <extension> 2302
element within the <EventList> element. 2303

For event types defined in EPCIS 1.0, new fields added in EPCIS 1.1 appear within the 2304
<extension> element that follows the EPCIS 1.0 fields. If additional fields are added in the same 2305
place in a future version of EPCIS, they will appear within a second <extension> element that is 2306
nested within the first <extension> element, following the EPCIS 1.1 fields. New fields added in 2307
EPCIS 1.2 at a place where no new fields were added in EPCIS 1.1 (i.e., errorDeclaration) appear 2308
within the <extension> element that follows the EPCIS 1.0 fields. 2309

For event types defined in EPCIS 1.1, there is no <extension> element as the entire event type is 2310
new in EPCIS 1.1. If additional fields are added in a future version of EPCIS, they will appear within 2311
an <extension> element following the fields defined in EPCIS 1.1. 2312

Vendor/user event-level extensions always appear just before the closing tag for the event (i.e., 2313
after any standard fields and any <extension> element), and are always in a non-empty XML 2314
namespace. Under no circumstances do vendor/user extensions appear within an <extension> 2315
element; the <extension> element is reserved for fields defined in the EPCIS standard itself. 2316

See Section 9.6 for examples. 2317

9.2 Standard business document header 2318

The XML binding for the Core Event Types data definition module includes an optional EPCISHeader 2319
element, which may be used by industry groups to incorporate additional information required for 2320
processing within that industry. The core schema includes a “Standard Business Document Header” 2321
(SBDH) as defined in [SBDH] as a required component of the EPCISHeader element. Industry 2322
groups MAY also require some other kind of header within the EPCISHeader element in addition to 2323
the SBDH. 2324

The XSD schema for the Standard Business Document Header may be obtained from the 2325
UN/CEFACT website; see [SBDH]. This schema is incorporated herein by reference. 2326

EPC Information Services (EPCIS) Standard

Release 1.2, Ratified, Sep 2016 © 2016 GS1 AISBL Page 85 of 138

When the Standard Business Document Header is included, the following values SHALL be used for 2327
those elements of the SBDH schema specified below. 2328

SBDH Field (XPath) Value

HeaderVersion 1.0

DocumentIdentification/Standard EPCglobal

DocumentIdentification/TypeVersion 1.0

DocumentIdentification/Type As specified below.

 2329

The value for DocumentIdentification/Type SHALL be set according to the following table, 2330
which specifies a value for this field based on the kind of EPCIS document and the context in which 2331
it is used. 2332

Document Type and Context Value for DocumentIdentification/Type

EPCISDocument used in any context Events

EPCISMasterData used in any context MasterData

EPCISQueryDocument used as the request side of the binding
in Section 11.3

QueryControl-Request

EPCISQueryDocument used as the response side of the
binding in Section 11.3

QueryControl-Response

EPCISQueryDocument used in any XML binding of the Query
Callback interface (Sections 11.4.2 – 11.4.4)

QueryCallback

EPCISQueryDocument used in any other context Query

 2333

The AS2 binding for the Query Control Interface (Section 11.3) also specifies additional Standard 2334
Business Document Header fields that must be present in an EPCISQueryDocument instance used as 2335
a Query Control Interface response message. See Section 11.3 for details. 2336

In addition to the fields specified above, the Standard Business Document Header SHALL include all 2337
other fields that are required by the SBDH schema, and MAY include additional SBDH fields. In all 2338
cases, the values for those fields SHALL be set in accordance with [SBDH]. An industry group MAY 2339
specify additional constraints on SBDH contents to be used within that industry group, but such 2340
constraints SHALL be consistent with the specifications herein. 2341

9.3 EPCglobal Base schema 2342

The XML binding for the Core Event Types data definition module, as well as other XML bindings in 2343
this specification, make reference to the EPCglobal Base Schema. This schema is reproduced below. 2344

<xsd:schema targetNamespace="urn:epcglobal:xsd:1" 2345
 xmlns:epcglobal="urn:epcglobal:xsd:1" 2346
 xmlns:xsd="http://www.w3.org/2001/XMLSchema" 2347
 elementFormDefault="unqualified" 2348
 attributeFormDefault="unqualified" 2349
 version="1.0"> 2350
 <xsd:annotation> 2351
 <xsd:documentation> 2352
 <epcglobal:copyright>Copyright (C) 2004 Epcglobal Inc., All Rights 2353
Reserved.</epcglobal:copyright> 2354
 <epcglobal:disclaimer>EPCglobal Inc., its members, officers, directors, 2355
employees, or agents shall not be liable for any injury, loss, damages, financial or 2356
otherwise, arising from, related to, or caused by the use of this document. The use 2357
of said document shall constitute your express consent to the foregoing 2358
exculpation.</epcglobal:disclaimer> 2359
 <epcglobal:specification>EPCglobal common components Version 2360
1.0</epcglobal:specification> 2361
 </xsd:documentation> 2362

EPC Information Services (EPCIS) Standard

Release 1.2, Ratified, Sep 2016 © 2016 GS1 AISBL Page 86 of 138

 </xsd:annotation> 2363
 <xsd:complexType name="Document" abstract="true"> 2364
 <xsd:annotation> 2365
 <xsd:documentation xml:lang="en"> 2366
 EPCglobal document properties for all messages. 2367
 </xsd:documentation> 2368
 </xsd:annotation> 2369
 <xsd:attribute name="schemaVersion" type="xsd:decimal" use="required"> 2370
 <xsd:annotation> 2371
 <xsd:documentation xml:lang="en"> 2372
 The version of the schema corresponding to which the instance conforms. 2373
 </xsd:documentation> 2374
 </xsd:annotation> 2375
 </xsd:attribute> 2376
 <xsd:attribute name="creationDate" type="xsd:dateTime" use="required"> 2377
 <xsd:annotation> 2378
 <xsd:documentation xml:lang="en"> 2379
 The date the message was created. Used for auditing and logging. 2380
 </xsd:documentation> 2381
 </xsd:annotation> 2382
 </xsd:attribute> 2383
 </xsd:complexType> 2384
 <xsd:complexType name="EPC"> 2385
 <xsd:annotation> 2386
 <xsd:documentation xml:lang="en"> 2387
 EPC represents the Electronic Product Code. 2388
 </xsd:documentation> 2389
 </xsd:annotation> 2390
 <xsd:simpleContent> 2391
 <xsd:extension base="xsd:string"/> 2392
 </xsd:simpleContent> 2393
 </xsd:complexType> 2394
</xsd:schema> 2395

9.4 Master data in the XML binding 2396

As noted in Section 6.1.1, EPCIS provides four ways to transmit master data. These four ways are 2397
supported by different parts of the XML schema specified in the remainder of this section, as 2398
summarised in the following table: 2399

Mechanism Schema Support

Master data query VocabularyElement within VocabularyList, as contained within
epcisq:QueryResults

ILMD XML element contained within ILMD element

Header of EPCIS document VocabularyElement within VocabularyList, as contained within
EPCISHeader

EPCIS master data document VocabularyElement within VocabularyList, as contained within
EPCISBody within epcismd:EPCISMasterDataDocument

Each master data attribute is a name/value pair, where the name part is a qualified name consisting 2400
of a namespace URI and a local name, and the value is any data type expressible in XML. 2401
Regardless of which of the four mechanisms above are used to transmit master data, the data 2402
transmitted SHALL always use the same namespace URI and local name for a given attribute. The 2403
way the namespace URI and local name are encoded into XML, however, differs depending on the 2404
mechanism: 2405

■ For ILMD elements, the master data attribute SHALL be an XML element whose element name is 2406
a qualified name, where the prefix of the qualified name is bound to the namespace URI of the 2407
master data attribute and the local name of the qualified name is the local name of the master 2408
data attribute. The content of the element SHALL be the value of the master data attribute. 2409

■ For the mechanisms that use VocabularyElement, the id attribute of the 2410
VocabularyElement element SHALL be a string consisting of the namespace URI, a pound 2411

EPC Information Services (EPCIS) Standard

Release 1.2, Ratified, Sep 2016 © 2016 GS1 AISBL Page 87 of 138

sign (#) character, and the local name. The content of the VocabularyElement element 2412
SHALL be the value of the master data attribute. 2413

 Non-Normative: Example: Consider a master data attribute whose namespace URI is 2414
http://epcis.example.com/ns/md, whose local name is myAttrName, and whose value is 2415
the string myAttrValue. Here is how that attribute would appear in an ILMD section: 2416

<epcis:EPCISDocument 2417
 xmlns:epcis="urn:epcglobal:epcis:xsd:1" 2418
 xmlns:example="http://epcis.example.com/ns/md" ...> 2419
 ... 2420
 <ObjectEvent> 2421
 ... 2422
 <ILMD> 2423
 <example:myAttrName>myAttrValue</example:myAttrName> 2424
 ... 2425
 </ObjectEvent> 2426
 ... 2427
</epcis:EPCISDocument> 2428

And here is how that attribute would appear in a VocabularyElement: 2429

<VocabularyElement 2430
 id="http://epcis.example.com/ns/md#myAttrName"> 2431
 myAttrValue 2432
</VocabularyElement> 2433

(Newlines and whitespace have been added on either side of myAttrValue for clarity, but 2434
they would not be present in actual XML.) 2435

DEPRECATED: The XML binding for the Core Event Types data definition module includes a facility 2436
for the inclusion of additional information in the readPoint and bizLocation fields of all event 2437
types by including additional subelements within those fields following the required id subelement. 2438
This facility was originally conceived as a means to communicate master data for location identifiers. 2439
However, this facility is DEPRECATED as of EPCIS 1.2, and SHOULD NOT be used in EPCIS data 2440
conforming to EPCIS 1.2 or later. One or more of the other mechanisms for communicating master 2441
data should be used instead. 2442

9.5 Schema for core event types 2443

The following is an XML Schema (XSD) for the Core Event Types data definition module. This 2444
schema imports additional schemas as shown in the following table: 2445

Namespace Location Reference Source

urn:epcglobal:xsd:1 EPCglobal.xsd Section 9.3

http://www.unece.org/cefact/
namespaces/StandardBusinessD
ocumentHeader

StandardBusinessDocumentHeader.xsd UN/CEFACT web site; see
Section 9.2

 2446

In addition to the constraints implied by the schema, any value of type xsd:dateTime in an 2447
instance document SHALL include a time zone specifier (either “Z” for UTC or an explicit offset from 2448
UTC). 2449

For any XML element that specifies minOccurs="0" of type xsd:anyURI, xsd:string, or a type 2450
derived from one of those, an EPCIS implementation SHALL treat an instance having the empty 2451
string as its value in exactly the same way as it would if the element were omitted altogether. The 2452
same is true for any XML attribute of similar type that specifies use="optional". 2453

EPC Information Services (EPCIS) Standard

Release 1.2, Ratified, Sep 2016 © 2016 GS1 AISBL Page 88 of 138

This schema also includes the XML binding of master data for the Core Event Types data definition 2454
module. The master data portions of the schema are used (a) for returning results from the 2455
SimpleMasterDataQuery query type (Section 8.2.7.2); (b) to provide the body of a master data 2456
document as defined in Section 9.7; and (c) to provide for an optional master data section of the 2457
EPCIS header which may be used in an EPCIS document or EPCIS query document. 2458

The EPCISDocument top-level element defined in the schema is used by the concrete bindings of 2459
the EPCIS Capture Interface specified in Section 10. In addition, trading partners may by mutual 2460
agreement use an EPCIS Document as a means to transport a collection of EPCIS events, optionally 2461
accompanied by relevant master data, as a single electronic document. 2462

An EPCIS document MAY include master data in its header. This is intended to allow the creator of 2463
an EPCIS document to include master data that the recipient of the document might otherwise need 2464
to query using the EPCIS Query Interface. It is not required that an EPCIS document include master 2465
data in the header, nor is it required that master data in the header include master data for every 2466
identifier used in the body of the EPCIS document, or that master data in the header be limited to 2467
identifiers used in the body of the EPCIS document. If master data in the header does pertain to an 2468
identifier in the body, however, it SHALL be current master data for that identifier at the time the 2469
EPCIS document is created. The receiver of an EPCIS document, including an implementation of the 2470
EPCIS capture interface, may use or ignore such master data as it sees fit. Master data in the 2471
header of an EPCIS document SHALL NOT specify attribute values that conflict with the ILMD section 2472
of any event contained within the EPCIS document body. 2473

The XML Schema (XSD) for the Core Event Types data definition module is given below. 2474

<?xml version="1.0" encoding="UTF-8"?> 2475
<xsd:schema xmlns:epcis="urn:epcglobal:epcis:xsd:1" 2476
xmlns:sbdh="http://www.unece.org/cefact/namespaces/StandardBusinessDocumentHeader" 2477
xmlns:epcglobal="urn:epcglobal:xsd:1" xmlns:xsd="http://www.w3.org/2001/XMLSchema" 2478
targetNamespace="urn:epcglobal:epcis:xsd:1" elementFormDefault="unqualified" 2479
attributeFormDefault="unqualified" version="1.2"> 2480
 <xsd:annotation> 2481
 <xsd:documentation xml:lang="en"> 2482
 <epcglobal:copyright>Copyright (C) 2006-2016 GS1 AISBL, All Rights 2483
Reserved.</epcglobal:copyright> 2484
 <epcglobal:disclaimer> 2485
THIS DOCUMENT IS PROVIDED “AS IS” WITH NO WARRANTIES WHATSOEVER, INCLUDING ANY 2486
WARRANTY OF MERCHANTABILITY, NONINFRINGMENT, FITNESS FOR PARTICULAR PURPOSE, OR ANY 2487
WARRANTY OTHER WISE ARISING OUT OF THIS SPECIFICATION. GS1 disclaims all liability 2488
for any damages arising from use or misuse of this Standard, whether special, 2489
indirect, consequential, or compensatory damages, and including liability for 2490
infringement of any intellectual property rights, relating to use of information in 2491
or reliance upon this document. 2492
 2493
GS1 retains the right to make changes to this document at any time, without notice. 2494
GS1 makes no warranty for the use of this document and assumes no responsibility for 2495
any errors which may appear in the document, nor does it make a commitment to update 2496
the information contained herein. 2497
 </epcglobal:disclaimer> 2498
 <epcglobal:specification>EPC INFORMATION SERVICE (EPCIS) Version 2499
1.2</epcglobal:specification> 2500
 </xsd:documentation> 2501
 </xsd:annotation> 2502
 <xsd:import namespace="urn:epcglobal:xsd:1" schemaLocation="./EPCglobal.xsd"/> 2503
 <xsd:import 2504
namespace="http://www.unece.org/cefact/namespaces/StandardBusinessDocumentHeader" 2505
schemaLocation="./StandardBusinessDocumentHeader.xsd"/> 2506
 <!-- EPCIS CORE ELEMENTS --> 2507
 <xsd:element name="EPCISDocument" type="epcis:EPCISDocumentType"/> 2508
 <xsd:complexType name="EPCISDocumentType"> 2509
 <xsd:annotation> 2510
 <xsd:documentation xml:lang="en"> 2511
 document that contains a Header and a Body. 2512
 </xsd:documentation> 2513
 </xsd:annotation> 2514
 <xsd:complexContent> 2515

EPC Information Services (EPCIS) Standard

Release 1.2, Ratified, Sep 2016 © 2016 GS1 AISBL Page 89 of 138

 <xsd:extension base="epcglobal:Document"> 2516
 <xsd:sequence> 2517
 <xsd:element name="EPCISHeader" type="epcis:EPCISHeaderType" 2518
minOccurs="0"/> 2519
 <xsd:element name="EPCISBody" type="epcis:EPCISBodyType"/> 2520
 <xsd:element name="extension" type="epcis:EPCISDocumentExtensionType" 2521
minOccurs="0"/> 2522
 <xsd:any namespace="##other" processContents="lax" minOccurs="0" 2523
maxOccurs="unbounded"/> 2524
 </xsd:sequence> 2525
 <xsd:anyAttribute processContents="lax"/> 2526
 </xsd:extension> 2527
 </xsd:complexContent> 2528
 </xsd:complexType> 2529
 <xsd:complexType name="EPCISDocumentExtensionType"> 2530
 <xsd:sequence> 2531
 <xsd:any namespace="##local" processContents="lax" maxOccurs="unbounded"/> 2532
 </xsd:sequence> 2533
 <xsd:anyAttribute processContents="lax"/> 2534
 </xsd:complexType> 2535
 2536
 <xsd:complexType name="EPCISHeaderType"> 2537
 <xsd:annotation> 2538
 <xsd:documentation xml:lang="en"> 2539
 specific header(s) including the Standard Business Document Header. 2540
 </xsd:documentation> 2541
 </xsd:annotation> 2542
 <xsd:sequence> 2543
 <xsd:element ref="sbdh:StandardBusinessDocumentHeader"/> 2544
 <xsd:element name="extension" type="epcis:EPCISHeaderExtensionType" 2545
minOccurs="0"/> 2546
 <xsd:any namespace="##other" processContents="lax" minOccurs="0" 2547
maxOccurs="unbounded"/> 2548
 </xsd:sequence> 2549
 <xsd:anyAttribute processContents="lax"/> 2550
 </xsd:complexType> 2551
 <xsd:complexType name="EPCISHeaderExtensionType"> 2552
 <xsd:sequence> 2553
 <xsd:element name="EPCISMasterData" type="epcis:EPCISMasterDataType" 2554
minOccurs="0"/> 2555
 <xsd:element name="extension" type="epcis:EPCISHeaderExtension2Type" 2556
minOccurs="0"/> 2557
 </xsd:sequence> 2558
 <xsd:anyAttribute processContents="lax"/> 2559
 </xsd:complexType> 2560
 <xsd:complexType name="EPCISHeaderExtension2Type"> 2561
 <xsd:sequence> 2562
 <xsd:any namespace="##local" processContents="lax" maxOccurs="unbounded"/> 2563
 </xsd:sequence> 2564
 <xsd:anyAttribute processContents="lax"/> 2565
 </xsd:complexType> 2566
 2567
 <!-- Since 1.2 --> 2568
 <xsd:complexType name="EPCISMasterDataType"> 2569
 <xsd:sequence> 2570
 <xsd:element name="VocabularyList" type="epcis:VocabularyListType" /> 2571
 <xsd:element name="extension" type="epcis:EPCISMasterDataExtensionType" 2572
minOccurs="0"/> 2573
 </xsd:sequence> 2574
 </xsd:complexType> 2575
 <xsd:complexType name="EPCISMasterDataExtensionType"> 2576
 <xsd:sequence> 2577
 <xsd:any namespace="##local" processContents="lax" maxOccurs="unbounded"/> 2578
 </xsd:sequence> 2579
 </xsd:complexType> 2580
 2581

EPC Information Services (EPCIS) Standard

Release 1.2, Ratified, Sep 2016 © 2016 GS1 AISBL Page 90 of 138

 <!-- MasterData CORE ELEMENT TYPES --> 2582
 <xsd:complexType name="VocabularyListType"> 2583
 <xsd:sequence> 2584
 <xsd:element name="Vocabulary" type="epcis:VocabularyType" minOccurs="0" 2585
maxOccurs="unbounded"/> 2586
 </xsd:sequence> 2587
 </xsd:complexType> 2588
 2589
 <xsd:complexType name="VocabularyType"> 2590
 <xsd:sequence> 2591
 <xsd:element name="VocabularyElementList" 2592
type="epcis:VocabularyElementListType" minOccurs="0"/> 2593
 <xsd:element name="extension" type="epcis:VocabularyExtensionType" 2594
minOccurs="0"/> 2595
 <xsd:any namespace="##other" processContents="lax" minOccurs="0" 2596
maxOccurs="unbounded"/> 2597
 </xsd:sequence> 2598
 <xsd:attribute name="type" type="xsd:anyURI" use="required"/> 2599
 <xsd:anyAttribute processContents="lax"/> 2600
 </xsd:complexType> 2601
 2602
 <xsd:complexType name="VocabularyElementListType"> 2603
 <xsd:sequence> 2604
 <xsd:element name="VocabularyElement" type="epcis:VocabularyElementType" 2605
maxOccurs="unbounded"/> 2606
 </xsd:sequence> 2607
 </xsd:complexType> 2608
 2609
 <!-- Implementations SHALL treat a <children list containing zero elements 2610
 in the same way as if the <children> element were omitted altogether. 2611
 --> 2612
 <xsd:complexType name="VocabularyElementType"> 2613
 <xsd:sequence> 2614
 <xsd:element name="attribute" type="epcis:AttributeType" minOccurs="0" 2615
maxOccurs="unbounded"/> 2616
 <xsd:element name="children" type="epcis:IDListType" minOccurs="0"/> 2617
 <xsd:element name="extension" type="epcis:VocabularyElementExtensionType" 2618
minOccurs="0"/> 2619
 <xsd:any namespace="##other" processContents="lax" minOccurs="0" 2620
maxOccurs="unbounded"/> 2621
 </xsd:sequence> 2622
 <xsd:attribute name="id" type="xsd:anyURI" use="required"/> 2623
 <xsd:anyAttribute processContents="lax"/> 2624
 </xsd:complexType> 2625
 2626
 <xsd:complexType name="AttributeType"> 2627
 <xsd:complexContent mixed="true"> 2628
 <xsd:extension base="xsd:anyType"> 2629
 <xsd:attribute name="id" type="xsd:anyURI" use="required"/> 2630
 <xsd:anyAttribute processContents="lax"/> 2631
 </xsd:extension> 2632
 </xsd:complexContent> 2633
 </xsd:complexType> 2634
 2635
 <xsd:complexType name="IDListType"> 2636
 <xsd:sequence> 2637
 <xsd:element name="id" type="xsd:anyURI" minOccurs="0" maxOccurs="unbounded"/> 2638
 </xsd:sequence> 2639
 <xsd:anyAttribute processContents="lax"/> 2640
 </xsd:complexType> 2641
 2642
 <xsd:complexType name="VocabularyExtensionType"> 2643
 <xsd:sequence> 2644
 <xsd:any namespace="##local" processContents="lax" maxOccurs="unbounded"/> 2645
 </xsd:sequence> 2646
 <xsd:anyAttribute processContents="lax"/> 2647

EPC Information Services (EPCIS) Standard

Release 1.2, Ratified, Sep 2016 © 2016 GS1 AISBL Page 91 of 138

 </xsd:complexType> 2648
 2649
 <xsd:complexType name="VocabularyElementExtensionType"> 2650
 <xsd:sequence> 2651
 <xsd:any namespace="##local" processContents="lax" maxOccurs="unbounded"/> 2652
 </xsd:sequence> 2653
 <xsd:anyAttribute processContents="lax"/> 2654
 </xsd:complexType> 2655
 2656
 <xsd:complexType name="EPCISBodyType"> 2657
 <xsd:annotation> 2658
 <xsd:documentation xml:lang="en"> 2659
 specific body that contains EPCIS related Events. 2660
 </xsd:documentation> 2661
 </xsd:annotation> 2662
 <xsd:sequence> 2663
 <xsd:element name="EventList" type="epcis:EventListType" minOccurs="0"/> 2664
 <xsd:element name="extension" type="epcis:EPCISBodyExtensionType" 2665
minOccurs="0"/> 2666
 <xsd:any namespace="##other" processContents="lax" minOccurs="0" 2667
maxOccurs="unbounded"/> 2668
 </xsd:sequence> 2669
 <xsd:anyAttribute processContents="lax"/> 2670
 </xsd:complexType> 2671
 <xsd:complexType name="EPCISBodyExtensionType"> 2672
 <xsd:sequence> 2673
 <xsd:any namespace="##local" processContents="lax" maxOccurs="unbounded"/> 2674
 </xsd:sequence> 2675
 <xsd:anyAttribute processContents="lax"/> 2676
 </xsd:complexType> 2677
 2678
 <!-- EPCIS CORE ELEMENT TYPES --> 2679
 <xsd:complexType name="EventListType"> 2680
 <xsd:choice minOccurs="0" maxOccurs="unbounded"> 2681
 <xsd:element name="ObjectEvent" type="epcis:ObjectEventType" minOccurs="0" 2682
maxOccurs="unbounded"/> 2683
 <xsd:element name="AggregationEvent" type="epcis:AggregationEventType" 2684
minOccurs="0" maxOccurs="unbounded"/> 2685
 <xsd:element name="QuantityEvent" type="epcis:QuantityEventType" minOccurs="0" 2686
maxOccurs="unbounded"/> 2687
 <xsd:element name="TransactionEvent" type="epcis:TransactionEventType" 2688
minOccurs="0" maxOccurs="unbounded"/> 2689
 <xsd:element name="extension" type="epcis:EPCISEventListExtensionType"/> 2690
 <xsd:any namespace="##other" processContents="lax"/> 2691
 </xsd:choice> 2692
 <!-- Note: the use of "unbounded" in both the xsd:choice element 2693
 and the enclosed xsd:element elements is, strictly speaking, 2694
 redundant. However, this was found to avoid problems with 2695
 certain XML processing tools, and so is retained here. 2696
 --> 2697
 </xsd:complexType> 2698
 <!-- Modified in 1.1 --> 2699
 <xsd:complexType name="EPCISEventListExtensionType"> 2700
 <xsd:choice> 2701
 <xsd:element name="TransformationEvent" type="epcis:TransformationEventType"/> 2702
 <xsd:element name="extension" type="epcis:EPCISEventListExtension2Type"/> 2703
 </xsd:choice> 2704
 </xsd:complexType> 2705
 <!-- Since 1.1 --> 2706
 <xsd:complexType name="EPCISEventListExtension2Type"> 2707
 <xsd:sequence> 2708
 <xsd:any namespace="##local" processContents="lax" maxOccurs="unbounded"/> 2709
 </xsd:sequence> 2710
 <xsd:anyAttribute processContents="lax"/> 2711
 </xsd:complexType> 2712
 2713

EPC Information Services (EPCIS) Standard

Release 1.2, Ratified, Sep 2016 © 2016 GS1 AISBL Page 92 of 138

 <xsd:complexType name="EPCListType"> 2714
 <xsd:sequence> 2715
 <xsd:element name="epc" type="epcglobal:EPC" minOccurs="0" 2716
maxOccurs="unbounded"/> 2717
 </xsd:sequence> 2718
 </xsd:complexType> 2719
 <xsd:simpleType name="ActionType"> 2720
 <xsd:restriction base="xsd:string"> 2721
 <xsd:enumeration value="ADD"/> 2722
 <xsd:enumeration value="OBSERVE"/> 2723
 <xsd:enumeration value="DELETE"/> 2724
 </xsd:restriction> 2725
 </xsd:simpleType> 2726
 <xsd:simpleType name="ParentIDType"> 2727
 <xsd:restriction base="xsd:anyURI"/> 2728
 </xsd:simpleType> 2729
 <!-- Standard Vocabulary --> 2730
 <xsd:simpleType name="BusinessStepIDType"> 2731
 <xsd:restriction base="xsd:anyURI"/> 2732
 </xsd:simpleType> 2733
 <!-- Standard Vocabulary --> 2734
 <xsd:simpleType name="DispositionIDType"> 2735
 <xsd:restriction base="xsd:anyURI"/> 2736
 </xsd:simpleType> 2737
 <!-- User Vocabulary --> 2738
 <xsd:simpleType name="EPCClassType"> 2739
 <xsd:restriction base="xsd:anyURI"/> 2740
 </xsd:simpleType> 2741
 <!-- Standard Vocabulary --> 2742
 <!-- Since 1.1 --> 2743
 <xsd:simpleType name="UOMType"> 2744
 <xsd:restriction base="xsd:string"/> 2745
 </xsd:simpleType> 2746
 <!-- Since 1.1 --> 2747
 <xsd:complexType name="QuantityElementType"> 2748
 <xsd:sequence> 2749
 <xsd:element name="epcClass" type="epcis:EPCClassType"/> 2750
 <xsd:sequence minOccurs="0"> 2751
 <xsd:element name="quantity" type="xsd:decimal"/> 2752
 <xsd:element name="uom" type="epcis:UOMType" minOccurs="0"/> 2753
 </xsd:sequence> 2754
 </xsd:sequence> 2755
 </xsd:complexType> 2756
 <xsd:complexType name="QuantityListType"> 2757
 <xsd:sequence> 2758
 <xsd:element name="quantityElement" type="epcis:QuantityElementType" 2759
minOccurs="0" maxOccurs="unbounded"/> 2760
 </xsd:sequence> 2761
 </xsd:complexType> 2762
 2763
 <!-- User Vocabulary --> 2764
 <xsd:simpleType name="ReadPointIDType"> 2765
 <xsd:restriction base="xsd:anyURI"/> 2766
 </xsd:simpleType> 2767
 <xsd:complexType name="ReadPointType"> 2768
 <xsd:sequence> 2769
 <xsd:element name="id" type="epcis:ReadPointIDType"/> 2770
 <xsd:element name="extension" type="epcis:ReadPointExtensionType" 2771
minOccurs="0"/> 2772
 <!-- The wildcard below provides the extension mechanism described in Section 2773
9.4 --> 2774
 <xsd:any namespace="##other" processContents="lax" minOccurs="0" 2775
maxOccurs="unbounded"/> 2776
 </xsd:sequence> 2777
 </xsd:complexType> 2778
 <xsd:complexType name="ReadPointExtensionType"> 2779

EPC Information Services (EPCIS) Standard

Release 1.2, Ratified, Sep 2016 © 2016 GS1 AISBL Page 93 of 138

 <xsd:sequence> 2780
 <xsd:any namespace="##local" processContents="lax" maxOccurs="unbounded"/> 2781
 </xsd:sequence> 2782
 <xsd:anyAttribute processContents="lax"/> 2783
 </xsd:complexType> 2784
 <!-- User Vocabulary --> 2785
 <xsd:simpleType name="BusinessLocationIDType"> 2786
 <xsd:restriction base="xsd:anyURI"/> 2787
 </xsd:simpleType> 2788
 <xsd:complexType name="BusinessLocationType"> 2789
 <xsd:sequence> 2790
 <xsd:element name="id" type="epcis:BusinessLocationIDType"/> 2791
 <xsd:element name="extension" type="epcis:BusinessLocationExtensionType" 2792
minOccurs="0"/> 2793
 <!-- The wildcard below provides the extension mechanism described in Section 2794
9.4 --> 2795
 <xsd:any namespace="##other" processContents="lax" minOccurs="0" 2796
maxOccurs="unbounded"/> 2797
 </xsd:sequence> 2798
 </xsd:complexType> 2799
 <xsd:complexType name="BusinessLocationExtensionType"> 2800
 <xsd:sequence> 2801
 <xsd:any namespace="##local" processContents="lax" maxOccurs="unbounded"/> 2802
 </xsd:sequence> 2803
 <xsd:anyAttribute processContents="lax"/> 2804
 </xsd:complexType> 2805
 <!-- User Vocabulary --> 2806
 <xsd:simpleType name="BusinessTransactionIDType"> 2807
 <xsd:restriction base="xsd:anyURI"/> 2808
 </xsd:simpleType> 2809
 <!-- Standard Vocabulary --> 2810
 <xsd:simpleType name="BusinessTransactionTypeIDType"> 2811
 <xsd:restriction base="xsd:anyURI"/> 2812
 </xsd:simpleType> 2813
 <xsd:complexType name="BusinessTransactionType"> 2814
 <xsd:simpleContent> 2815
 <xsd:extension base="epcis:BusinessTransactionIDType"> 2816
 <xsd:attribute name="type" type="epcis:BusinessTransactionTypeIDType" 2817
use="optional"/> 2818
 </xsd:extension> 2819
 </xsd:simpleContent> 2820
 </xsd:complexType> 2821
 <xsd:complexType name="BusinessTransactionListType"> 2822
 <xsd:sequence> 2823
 <xsd:element name="bizTransaction" type="epcis:BusinessTransactionType" 2824
maxOccurs="unbounded"/> 2825
 </xsd:sequence> 2826
 </xsd:complexType> 2827
 <!-- User Vocabulary --> 2828
 <!-- Since 1.1 --> 2829
 <xsd:simpleType name="SourceDestIDType"> 2830
 <xsd:restriction base="xsd:anyURI"/> 2831
 </xsd:simpleType> 2832
 <!-- Standard Vocabulary --> 2833
 <!-- Since 1.1 --> 2834
 <xsd:simpleType name="SourceDestTypeIDType"> 2835
 <xsd:restriction base="xsd:anyURI"/> 2836
 </xsd:simpleType> 2837
 <!-- Since 1.1 --> 2838
 <xsd:complexType name="SourceDestType"> 2839
 <xsd:simpleContent> 2840
 <xsd:extension base="epcis:SourceDestIDType"> 2841
 <xsd:attribute name="type" type="epcis:SourceDestTypeIDType" 2842
use="required"/> 2843
 </xsd:extension> 2844
 </xsd:simpleContent> 2845

EPC Information Services (EPCIS) Standard

Release 1.2, Ratified, Sep 2016 © 2016 GS1 AISBL Page 94 of 138

 </xsd:complexType> 2846
 <xsd:complexType name="SourceListType"> 2847
 <xsd:sequence> 2848
 <xsd:element name="source" type="epcis:SourceDestType" maxOccurs="unbounded"/> 2849
 </xsd:sequence> 2850
 </xsd:complexType> 2851
 <xsd:complexType name="DestinationListType"> 2852
 <xsd:sequence> 2853
 <xsd:element name="destination" type="epcis:SourceDestType" 2854
maxOccurs="unbounded"/> 2855
 </xsd:sequence> 2856
 </xsd:complexType> 2857
 2858
 <!-- User Vocabulary --> 2859
 <!-- Since 1.1 --> 2860
 <xsd:simpleType name="TransformationIDType"> 2861
 <xsd:restriction base="xsd:anyURI"/> 2862
 </xsd:simpleType> 2863
 2864
 <!-- Since 1.1 --> 2865
 <xsd:complexType name="ILMDType"> 2866
 <xsd:sequence> 2867
 <xsd:element name="extension" type="epcis:ILMDExtensionType" minOccurs="0"/> 2868
 <xsd:any namespace="##other" processContents="lax" minOccurs="0" 2869
maxOccurs="unbounded"/> 2870
 </xsd:sequence> 2871
 <xsd:anyAttribute processContents="lax"/> 2872
 </xsd:complexType> 2873
 <xsd:complexType name="ILMDExtensionType"> 2874
 <xsd:sequence> 2875
 <xsd:any namespace="##local" processContents="lax" maxOccurs="unbounded"/> 2876
 </xsd:sequence> 2877
 <xsd:anyAttribute processContents="lax"/> 2878
 </xsd:complexType> 2879
 2880
 <!-- User Vocabulary --> 2881
 <!-- Since 1.2 --> 2882
 <xsd:simpleType name="EventIDType"> 2883
 <xsd:restriction base="xsd:anyURI"/> 2884
 </xsd:simpleType> 2885
 2886
 <!-- Standard Vocabulary --> 2887
 <!-- Since 1.2 --> 2888
 <xsd:simpleType name="ErrorReasonIDType"> 2889
 <xsd:restriction base="xsd:anyURI"/> 2890
 </xsd:simpleType> 2891
 2892
 <!-- Since 1.2 --> 2893
 <xsd:complexType name="CorrectiveEventIDsType"> 2894
 <xsd:sequence> 2895
 <xsd:element name="correctiveEventID" type="epcis:EventIDType" minOccurs="0" 2896
maxOccurs="unbounded"/> 2897
 </xsd:sequence> 2898
 </xsd:complexType> 2899
 2900
 <!-- Since 1.2 --> 2901
 <xsd:complexType name="ErrorDeclarationType"> 2902
 <xsd:sequence> 2903
 <xsd:element name="declarationTime" type="xsd:dateTime"/> 2904
 <xsd:element name="reason" type="epcis:ErrorReasonIDType" minOccurs="0"/> 2905
 <xsd:element name="correctiveEventIDs" type="epcis:CorrectiveEventIDsType" 2906
minOccurs="0"/> 2907
 <xsd:element name="extension" type="epcis:ErrorDeclarationExtensionType" 2908
minOccurs="0"/> 2909
 <xsd:any namespace="##other" processContents="lax" minOccurs="0" 2910
maxOccurs="unbounded"/> 2911

EPC Information Services (EPCIS) Standard

Release 1.2, Ratified, Sep 2016 © 2016 GS1 AISBL Page 95 of 138

 </xsd:sequence> 2912
 <xsd:anyAttribute processContents="lax"/> 2913
 </xsd:complexType> 2914
 2915
 <xsd:complexType name="ErrorDeclarationExtensionType"> 2916
 <xsd:sequence> 2917
 <xsd:any namespace="##local" processContents="lax" maxOccurs="unbounded"/> 2918
 </xsd:sequence> 2919
 <xsd:anyAttribute processContents="lax"/> 2920
 </xsd:complexType> 2921
 2922
 2923
 2924
 <!-- items listed alphabetically by name --> 2925
 <!-- Some element types accommodate extensibility in the manner of 2926
 "Versioning XML Vocabularies" by David Orchard (see 2927
 http://www.xml.com/pub/a/2003/12/03/versioning.html). 2928
 2929
 In this approach, an optional <extension> element is defined 2930
 for each extensible element type, where an <extension> element 2931
 may contain future elements defined in the target namespace. 2932
 2933
 In addition to the optional <extension> element, extensible element 2934
 types are declared with a final xsd:any wildcard to accommodate 2935
 future elements defined by third parties (as denoted by the ##other 2936
 namespace). 2937
 2938
 Finally, the xsd:anyAttribute facility is used to allow arbitrary 2939
 attributes to be added to extensible element types. --> 2940
 <xsd:complexType name="EPCISEventType" abstract="true"> 2941
 <xsd:annotation> 2942
 <xsd:documentation xml:lang="en"> 2943
 base type for all EPCIS events. 2944
 </xsd:documentation> 2945
 </xsd:annotation> 2946
 <xsd:sequence> 2947
 <xsd:element name="eventTime" type="xsd:dateTime"/> 2948
 <xsd:element name="recordTime" type="xsd:dateTime" minOccurs="0"/> 2949
 <xsd:element name="eventTimeZoneOffset" type="xsd:string"/> 2950
 <xsd:element name="baseExtension" type="epcis:EPCISEventExtensionType" 2951
minOccurs="0"/> 2952
 </xsd:sequence> 2953
 <xsd:anyAttribute processContents="lax"/> 2954
 </xsd:complexType> 2955
 2956
 <xsd:complexType name="EPCISEventExtensionType"> 2957
 <xsd:sequence> 2958
 <xsd:element name="eventID" type="epcis:EventIDType" minOccurs="0"/> 2959
 <xsd:element name="errorDeclaration" type="epcis:ErrorDeclarationType" 2960
minOccurs="0"/> 2961
 <xsd:element name="extension" type="epcis:EPCISEventExtension2Type" 2962
minOccurs="0"/> 2963
 </xsd:sequence> 2964
 <xsd:anyAttribute processContents="lax"/> 2965
 </xsd:complexType> 2966
 2967
 <xsd:complexType name="EPCISEventExtension2Type"> 2968
 <xsd:sequence> 2969
 <xsd:any namespace="##local" processContents="lax" maxOccurs="unbounded"/> 2970
 </xsd:sequence> 2971
 <xsd:anyAttribute processContents="lax"/> 2972
 </xsd:complexType> 2973
 2974
 <xsd:complexType name="ObjectEventType"> 2975
 <xsd:annotation> 2976
 <xsd:documentation xml:lang="en"> 2977

EPC Information Services (EPCIS) Standard

Release 1.2, Ratified, Sep 2016 © 2016 GS1 AISBL Page 96 of 138

 Object Event captures information about an event pertaining to one or more 2978
 objects identified by EPCs. 2979
 </xsd:documentation> 2980
 </xsd:annotation> 2981
 <xsd:complexContent> 2982
 <xsd:extension base="epcis:EPCISEventType"> 2983
 <xsd:sequence> 2984
 <xsd:element name="epcList" type="epcis:EPCListType"/> 2985
 <xsd:element name="action" type="epcis:ActionType"/> 2986
 <xsd:element name="bizStep" type="epcis:BusinessStepIDType" 2987
minOccurs="0"/> 2988
 <xsd:element name="disposition" type="epcis:DispositionIDType" 2989
minOccurs="0"/> 2990
 <xsd:element name="readPoint" type="epcis:ReadPointType" minOccurs="0"/> 2991
 <xsd:element name="bizLocation" type="epcis:BusinessLocationType" 2992
minOccurs="0"/> 2993
 <xsd:element name="bizTransactionList" 2994
type="epcis:BusinessTransactionListType" minOccurs="0"/> 2995
 <xsd:element name="extension" type="epcis:ObjectEventExtensionType" 2996
minOccurs="0"/> 2997
 <xsd:any namespace="##other" processContents="lax" minOccurs="0" 2998
maxOccurs="unbounded"/> 2999
 </xsd:sequence> 3000
 <xsd:anyAttribute processContents="lax"/> 3001
 </xsd:extension> 3002
 </xsd:complexContent> 3003
 </xsd:complexType> 3004
 <!-- Modified in 1.1 --> 3005
 <xsd:complexType name="ObjectEventExtensionType"> 3006
 <xsd:sequence> 3007
 <xsd:element name="quantityList" type="epcis:QuantityListType" minOccurs="0"/> 3008
 <xsd:element name="sourceList" type="epcis:SourceListType" minOccurs="0"/> 3009
 <xsd:element name="destinationList" type="epcis:DestinationListType" 3010
minOccurs="0"/> 3011
 <xsd:element name="ilmd" type="epcis:ILMDType" minOccurs="0"/> 3012
 <xsd:element name="extension" type="epcis:ObjectEventExtension2Type" 3013
minOccurs="0"/> 3014
 </xsd:sequence> 3015
 <xsd:anyAttribute processContents="lax"/> 3016
 </xsd:complexType> 3017
 <!-- Since 1.1 --> 3018
 <xsd:complexType name="ObjectEventExtension2Type"> 3019
 <xsd:sequence> 3020
 <xsd:any namespace="##local" processContents="lax" maxOccurs="unbounded"/> 3021
 </xsd:sequence> 3022
 <xsd:anyAttribute processContents="lax"/> 3023
 </xsd:complexType> 3024
 3025
 <xsd:complexType name="AggregationEventType"> 3026
 <xsd:annotation> 3027
 <xsd:documentation xml:lang="en"> 3028
 Aggregation Event captures an event that applies to objects that 3029
 have a physical association with one another. 3030
 </xsd:documentation> 3031
 </xsd:annotation> 3032
 <xsd:complexContent> 3033
 <xsd:extension base="epcis:EPCISEventType"> 3034
 <xsd:sequence> 3035
 <xsd:element name="parentID" type="epcis:ParentIDType" minOccurs="0"/> 3036
 <xsd:element name="childEPCs" type="epcis:EPCListType"/> 3037
 <xsd:element name="action" type="epcis:ActionType"/> 3038
 <xsd:element name="bizStep" type="epcis:BusinessStepIDType" 3039
minOccurs="0"/> 3040
 <xsd:element name="disposition" type="epcis:DispositionIDType" 3041
minOccurs="0"/> 3042
 <xsd:element name="readPoint" type="epcis:ReadPointType" minOccurs="0"/> 3043

EPC Information Services (EPCIS) Standard

Release 1.2, Ratified, Sep 2016 © 2016 GS1 AISBL Page 97 of 138

 <xsd:element name="bizLocation" type="epcis:BusinessLocationType" 3044
minOccurs="0"/> 3045
 <xsd:element name="bizTransactionList" 3046
type="epcis:BusinessTransactionListType" minOccurs="0"/> 3047
 <xsd:element name="extension" type="epcis:AggregationEventExtensionType" 3048
minOccurs="0"/> 3049
 <xsd:any namespace="##other" processContents="lax" minOccurs="0" 3050
maxOccurs="unbounded"/> 3051
 </xsd:sequence> 3052
 <xsd:anyAttribute processContents="lax"/> 3053
 </xsd:extension> 3054
 </xsd:complexContent> 3055
 </xsd:complexType> 3056
 <!-- Modified in 1.1 --> 3057
 <xsd:complexType name="AggregationEventExtensionType"> 3058
 <xsd:sequence> 3059
 <xsd:element name="childQuantityList" type="epcis:QuantityListType" 3060
minOccurs="0"/> 3061
 <xsd:element name="sourceList" type="epcis:SourceListType" minOccurs="0"/> 3062
 <xsd:element name="destinationList" type="epcis:DestinationListType" 3063
minOccurs="0"/> 3064
 <xsd:element name="extension" type="epcis:AggregationEventExtension2Type" 3065
minOccurs="0"/> 3066
 </xsd:sequence> 3067
 <xsd:anyAttribute processContents="lax"/> 3068
 </xsd:complexType> 3069
 <!-- Since 1.1 --> 3070
 <xsd:complexType name="AggregationEventExtension2Type"> 3071
 <xsd:sequence> 3072
 <xsd:any namespace="##local" processContents="lax" maxOccurs="unbounded"/> 3073
 </xsd:sequence> 3074
 <xsd:anyAttribute processContents="lax"/> 3075
 </xsd:complexType> 3076
 3077
 <xsd:complexType name="QuantityEventType"> 3078
 <xsd:annotation> 3079
 <xsd:documentation xml:lang="en"> 3080
 Quantity Event captures an event that takes place with respect to a specified 3081
quantity of 3082
 object class. 3083
 </xsd:documentation> 3084
 </xsd:annotation> 3085
 <xsd:complexContent> 3086
 <xsd:extension base="epcis:EPCISEventType"> 3087
 <xsd:sequence> 3088
 <xsd:element name="epcClass" type="epcis:EPCClassType"/> 3089
 <xsd:element name="quantity" type="xsd:int"/> 3090
 <xsd:element name="bizStep" type="epcis:BusinessStepIDType" 3091
minOccurs="0"/> 3092
 <xsd:element name="disposition" type="epcis:DispositionIDType" 3093
minOccurs="0"/> 3094
 <xsd:element name="readPoint" type="epcis:ReadPointType" minOccurs="0"/> 3095
 <xsd:element name="bizLocation" type="epcis:BusinessLocationType" 3096
minOccurs="0"/> 3097
 <xsd:element name="bizTransactionList" 3098
type="epcis:BusinessTransactionListType" minOccurs="0"/> 3099
 <xsd:element name="extension" type="epcis:QuantityEventExtensionType" 3100
minOccurs="0"/> 3101
 <xsd:any namespace="##other" processContents="lax" minOccurs="0" 3102
maxOccurs="unbounded"/> 3103
 </xsd:sequence> 3104
 <xsd:anyAttribute processContents="lax"/> 3105
 </xsd:extension> 3106
 </xsd:complexContent> 3107
 </xsd:complexType> 3108
 <xsd:complexType name="QuantityEventExtensionType"> 3109

EPC Information Services (EPCIS) Standard

Release 1.2, Ratified, Sep 2016 © 2016 GS1 AISBL Page 98 of 138

 <xsd:sequence> 3110
 <xsd:any namespace="##local" processContents="lax" maxOccurs="unbounded"/> 3111
 </xsd:sequence> 3112
 <xsd:anyAttribute processContents="lax"/> 3113
 </xsd:complexType> 3114
 3115
 <xsd:complexType name="TransactionEventType"> 3116
 <xsd:annotation> 3117
 <xsd:documentation xml:lang="en"> 3118
 Transaction Event describes the association or disassociation of physical 3119
objects to one or more business 3120
 transactions. 3121
 </xsd:documentation> 3122
 </xsd:annotation> 3123
 <xsd:complexContent> 3124
 <xsd:extension base="epcis:EPCISEventType"> 3125
 <xsd:sequence> 3126
 <xsd:element name="bizTransactionList" 3127
type="epcis:BusinessTransactionListType"/> 3128
 <xsd:element name="parentID" type="epcis:ParentIDType" minOccurs="0"/> 3129
 <xsd:element name="epcList" type="epcis:EPCListType"/> 3130
 <xsd:element name="action" type="epcis:ActionType"/> 3131
 <xsd:element name="bizStep" type="epcis:BusinessStepIDType" 3132
minOccurs="0"/> 3133
 <xsd:element name="disposition" type="epcis:DispositionIDType" 3134
minOccurs="0"/> 3135
 <xsd:element name="readPoint" type="epcis:ReadPointType" minOccurs="0"/> 3136
 <xsd:element name="bizLocation" type="epcis:BusinessLocationType" 3137
minOccurs="0"/> 3138
 <xsd:element name="extension" type="epcis:TransactionEventExtensionType" 3139
minOccurs="0"/> 3140
 <xsd:any namespace="##other" processContents="lax" minOccurs="0" 3141
maxOccurs="unbounded"/> 3142
 </xsd:sequence> 3143
 <xsd:anyAttribute processContents="lax"/> 3144
 </xsd:extension> 3145
 </xsd:complexContent> 3146
 </xsd:complexType> 3147
 <!-- Modified in 1.1 --> 3148
 <xsd:complexType name="TransactionEventExtensionType"> 3149
 <xsd:sequence> 3150
 <xsd:element name="quantityList" type="epcis:QuantityListType" minOccurs="0"/> 3151
 <xsd:element name="sourceList" type="epcis:SourceListType" minOccurs="0"/> 3152
 <xsd:element name="destinationList" type="epcis:DestinationListType" 3153
minOccurs="0"/> 3154
 <xsd:element name="extension" type="epcis:TransactionEventExtension2Type" 3155
minOccurs="0"/> 3156
 </xsd:sequence> 3157
 <xsd:anyAttribute processContents="lax"/> 3158
 </xsd:complexType> 3159
 <!-- Since 1.1 --> 3160
 <xsd:complexType name="TransactionEventExtension2Type"> 3161
 <xsd:sequence> 3162
 <xsd:any namespace="##local" processContents="lax" maxOccurs="unbounded"/> 3163
 </xsd:sequence> 3164
 <xsd:anyAttribute processContents="lax"/> 3165
 </xsd:complexType> 3166
 3167
 <!-- Since 1.1 --> 3168
 <xsd:complexType name="TransformationEventType"> 3169
 <xsd:annotation> 3170
 <xsd:documentation xml:lang="en"> 3171
 Transformation Event captures an event in which inputs are consumed 3172
 and outputs are produced 3173
 </xsd:documentation> 3174
 </xsd:annotation> 3175

EPC Information Services (EPCIS) Standard

Release 1.2, Ratified, Sep 2016 © 2016 GS1 AISBL Page 99 of 138

 <xsd:complexContent> 3176
 <xsd:extension base="epcis:EPCISEventType"> 3177
 <xsd:sequence> 3178
 <xsd:element name="inputEPCList" type="epcis:EPCListType" minOccurs="0"/> 3179
 <xsd:element name="inputQuantityList" type="epcis:QuantityListType" 3180
minOccurs="0"/> 3181
 <xsd:element name="outputEPCList" type="epcis:EPCListType" minOccurs="0"/> 3182
 <xsd:element name="outputQuantityList" type="epcis:QuantityListType" 3183
minOccurs="0"/> 3184
 <xsd:element name="transformationID" type="epcis:TransformationIDType" 3185
minOccurs="0"/> 3186
 <xsd:element name="bizStep" type="epcis:BusinessStepIDType" 3187
minOccurs="0"/> 3188
 <xsd:element name="disposition" type="epcis:DispositionIDType" 3189
minOccurs="0"/> 3190
 <xsd:element name="readPoint" type="epcis:ReadPointType" minOccurs="0"/> 3191
 <xsd:element name="bizLocation" type="epcis:BusinessLocationType" 3192
minOccurs="0"/> 3193
 <xsd:element name="bizTransactionList" 3194
type="epcis:BusinessTransactionListType" minOccurs="0"/> 3195
 <xsd:element name="sourceList" type="epcis:SourceListType" minOccurs="0"/> 3196
 <xsd:element name="destinationList" type="epcis:DestinationListType" 3197
minOccurs="0"/> 3198
 <xsd:element name="ilmd" type="epcis:ILMDType" minOccurs="0"/> 3199
 <xsd:element name="extension" 3200
type="epcis:TransformationEventExtensionType" minOccurs="0"/> 3201
 <xsd:any namespace="##other" processContents="lax" minOccurs="0" 3202
maxOccurs="unbounded"/> 3203
 </xsd:sequence> 3204
 <xsd:anyAttribute processContents="lax"/> 3205
 </xsd:extension> 3206
 </xsd:complexContent> 3207
 </xsd:complexType> 3208
 <!-- Since 1.1 --> 3209
 <xsd:complexType name="TransformationEventExtensionType"> 3210
 <xsd:sequence> 3211
 <xsd:any namespace="##local" processContents="lax" maxOccurs="unbounded"/> 3212
 </xsd:sequence> 3213
 <xsd:anyAttribute processContents="lax"/> 3214
 </xsd:complexType> 3215
</xsd:schema> 3216

9.6 Core event types – examples (Non-Normative) 3217

This section provides examples of EPCISDocuments, rendered into XML [XML1.0]. 3218

9.6.1 Example 1 – Object Events with instance-level identification 3219

The example in this section contains two ObjectEvents, each containing instance-level 3220
identification. This example only uses features from EPCIS 1.0 and vocabulary from CBV 1.1. The 3221
second event shows an event-level vendor/user extension element named myField, following the 3222
method for vendor/user extensions specified in Section 9.1. 3223

<?xml version="1.0" encoding="UTF-8" standalone="yes"?> 3224
<epcis:EPCISDocument 3225
 xmlns:epcis="urn:epcglobal:epcis:xsd:1" 3226
 xmlns:example="http://ns.example.com/epcis" 3227
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 3228
 creationDate="2005-07-11T11:30:47.0Z" 3229
 schemaVersion="1.2"> 3230
 <EPCISBody> 3231
 <EventList> 3232
 <ObjectEvent> 3233
 <eventTime>2005-04-03T20:33:31.116-06:00</eventTime> 3234
 <eventTimeZoneOffset>-06:00</eventTimeZoneOffset> 3235

EPC Information Services (EPCIS) Standard

Release 1.2, Ratified, Sep 2016 © 2016 GS1 AISBL Page 100 of 138

 <epcList> 3236
 <epc>urn:epc:id:sgtin:0614141.107346.2017</epc> 3237
 <epc>urn:epc:id:sgtin:0614141.107346.2018</epc> 3238
 </epcList> 3239
 <action>OBSERVE</action> 3240
 <bizStep>urn:epcglobal:cbv:bizstep:shipping</bizStep> 3241
 <disposition>urn:epcglobal:cbv:disp:in_transit</disposition> 3242
 <readPoint> 3243
 <id>urn:epc:id:sgln:0614141.07346.1234</id> 3244
 </readPoint> 3245
 <bizTransactionList> 3246
 <bizTransaction 3247
type="urn:epcglobal:cbv:btt:po">http://transaction.acme.com/po/12345678</bizTransact3248
ion> 3249
 </bizTransactionList> 3250
 </ObjectEvent> 3251
 <ObjectEvent> 3252
 <eventTime>2005-04-04T20:33:31.116-06:00</eventTime> 3253
 <eventTimeZoneOffset>-06:00</eventTimeZoneOffset> 3254
 <epcList> 3255
 <epc>urn:epc:id:sgtin:0614141.107346.2018</epc> 3256
 </epcList> 3257
 <action>OBSERVE</action> 3258
 <bizStep>urn:epcglobal:cbv:bizstep:receiving</bizStep> 3259
 <disposition>urn:epcglobal:cbv:disp:in_progress</disposition> 3260
 <readPoint> 3261
 <id>urn:epc:id:sgln:0012345.11111.400</id> 3262
 </readPoint> 3263
 <bizLocation> 3264
 <id>urn:epc:id:sgln:0012345.11111.0</id> 3265
 </bizLocation> 3266
 <bizTransactionList> 3267
 <bizTransaction 3268
type="urn:epcglobal:cbv:btt:po">http://transaction.acme.com/po/12345678</bizTransact3269
ion> 3270
 <bizTransaction 3271
type="urn:epcglobal:cbv:btt:desadv">urn:epcglobal:cbv:bt:0614141073467:1152</bizTran3272
saction> 3273
 </bizTransactionList> 3274
 <example:myField>Example of a vendor/user extension</example:myField> 3275
 </ObjectEvent> 3276
 </EventList> 3277
 </EPCISBody> 3278
</epcis:EPCISDocument> 3279

9.6.2 Example 2 – Object Event with class-level identification 3280

The example in this section contains one ObjectEvent, containing only class-level identification. 3281
Note that the <epcList> element is still present, though empty, as this is required by the XML 3282
schema in order to maintain backward-compatibility with EPCIS 1.0. The QuantityList, along 3283
with other elements new in EPCIS 1.1, are all found in the <extension> area which is reserved for 3284
new features in EPCIS 1.1 (see Section 9.1). A vendor/user extension named myField is also 3285
included. 3286

<?xml version="1.0" encoding="UTF-8" standalone="yes"?> 3287
<epcis:EPCISDocument 3288
 xmlns:epcis="urn:epcglobal:epcis:xsd:1" 3289
 xmlns:example="http://ns.example.com/epcis" 3290
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 3291
 creationDate="2005-07-11T11:30:47.0Z" 3292
 schemaVersion="1.2"> 3293
 <EPCISBody> 3294
 <EventList> 3295
 <ObjectEvent> 3296
 <eventTime>2013-06-08T14:58:56.591Z</eventTime> 3297

EPC Information Services (EPCIS) Standard

Release 1.2, Ratified, Sep 2016 © 2016 GS1 AISBL Page 101 of 138

 <eventTimeZoneOffset>+02:00</eventTimeZoneOffset> 3298
 <epcList/> 3299
 <action>OBSERVE</action> 3300
 <bizStep>urn:epcglobal:cbv:bizstep:receiving</bizStep> 3301
 <disposition>urn:epcglobal:cbv:disp:in_progress</disposition> 3302
 <readPoint> 3303
 <id>urn:epc:id:sgln:0614141.00777.0</id> 3304
 </readPoint> 3305
 <bizLocation> 3306
 <id>urn:epc:id:sgln:0614141.00888.0</id> 3307
 </bizLocation> 3308
 <extension> 3309
 <quantityList> 3310
 <quantityElement> 3311
 <epcClass>urn:epc:class:lgtin:4012345.012345.998877</epcClass> 3312
 <quantity>200</quantity> 3313
 <uom>KGM</uom> 3314
 <!-- Meaning: 200 kg of GTIN '04012345123456' belonging to lot 3315
'998877'--> 3316
 </quantityElement> 3317
 </quantityList> 3318
 <sourceList> 3319
 <source 3320
type="urn:epcglobal:cbv:sdt:possessing_party">urn:epc:id:sgln:4012345.00001.0</sourc3321
e> 3322
 <!-- Party which had physical possession at the originating endpoint of 3323
the business transfer, e.g., a forwarder--> 3324
 <source 3325
type="urn:epcglobal:cbv:sdt:location">urn:epc:id:sgln:4012345.00225.0</source> 3326
 <!-- Physical location of the originating endpoint, e.g., a distribution 3327
centre of the forwarder--> 3328
 </sourceList> 3329
 <destinationList> 3330
 <destination 3331
type="urn:epcglobal:cbv:sdt:owning_party">urn:epc:id:sgln:0614141.00001.0</destinati3332
on> 3333
 <!-- Party which owns the physical objects at the terminating endpoint, 3334
e.g., a retail company --> 3335
 <destination 3336
type="urn:epcglobal:cbv:sdt:location">urn:epc:id:sgln:0614141.00777.0</destination> 3337
 <!-- Physical location of the terminating endpoint, e.g., a warehouse of 3338
the retail company--> 3339
 </destinationList> 3340
 </extension> 3341
 <example:myField>Example of a vendor/user extension</example:myField> 3342
 </ObjectEvent> 3343
 </EventList> 3344
 </EPCISBody> 3345
</epcis:EPCISDocument> 3346

9.6.3 Example 3 – Aggregation event with mixed identification 3347

The example in this section contains one AggregationEvent, containing children having both 3348
instance-level and class-level identification. The ChildQuantityList is found in the 3349
<extension> area which is reserved for new features in EPCIS 1.1 (see Section 9.1). A 3350
vendor/user extension named myField is also included. 3351

<?xml version="1.0" encoding="UTF-8" standalone="yes"?> 3352
<epcis:EPCISDocument 3353
 xmlns:epcis="urn:epcglobal:epcis:xsd:1" 3354
 xmlns:example="http://ns.example.com/epcis" 3355
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 3356
 creationDate="2005-07-11T11:30:47.0Z" 3357
 schemaVersion="1.2"> 3358
 <EPCISBody> 3359
 <EventList> 3360

EPC Information Services (EPCIS) Standard

Release 1.2, Ratified, Sep 2016 © 2016 GS1 AISBL Page 102 of 138

 <AggregationEvent> 3361
 <eventTime>2013-06-08T14:58:56.591Z</eventTime> 3362
 <eventTimeZoneOffset>+02:00</eventTimeZoneOffset> 3363
 <parentID>urn:epc:id:sscc:0614141.1234567890</parentID> 3364
 <childEPCs> 3365
 <epc>urn:epc:id:sgtin:0614141.107346.2017</epc> 3366
 <epc>urn:epc:id:sgtin:0614141.107346.2018</epc> 3367
 </childEPCs> 3368
 <action>OBSERVE</action> 3369
 <bizStep>urn:epcglobal:cbv:bizstep:receiving</bizStep> 3370
 <disposition>urn:epcglobal:cbv:disp:in_progress</disposition> 3371
 <readPoint> 3372
 <id>urn:epc:id:sgln:0614141.00777.0</id> 3373
 </readPoint> 3374
 <bizLocation> 3375
 <id>urn:epc:id:sgln:0614141.00888.0</id> 3376
 </bizLocation> 3377
 <extension> 3378
 <childQuantityList> 3379
 <quantityElement> 3380
 <epcClass>urn:epc:idpat:sgtin:4012345.098765.*</epcClass> 3381
 <quantity>10</quantity> 3382
 <!-- Meaning: 10 units of GTIN '04012345987652' --> 3383
 </quantityElement> 3384
 <quantityElement> 3385
 <epcClass>urn:epc:class:lgtin:4012345.012345.998877</epcClass> 3386
 <quantity>200.5</quantity> 3387
 <uom>KGM</uom> 3388
 <!-- Meaning: 200.5 kg of GTIN '04012345123456' belonging to lot 3389
'998877'--> 3390
 </quantityElement> 3391
 </childQuantityList> 3392
 </extension> 3393
 <example:myField>Example of a vendor/user extension</example:myField> 3394
 </AggregationEvent> 3395
 </EventList> 3396
 </EPCISBody> 3397
</epcis:EPCISDocument> 3398

9.6.4 Example 4 – Transformation event 3399

The example in this section contains one TransformationEvent, containing children having both 3400
instance-level and class-level identification. Instance/lot master data (ILMD) is also included, which 3401
describes the outputs of the transformation. A vendor/user extension named myField is also 3402
included. The entire event is wrapped in the <extension> element of EventList which is reserved 3403
for new event types in EPCIS 1.1 (see Section 9.1). 3404

<?xml version="1.0" encoding="UTF-8" standalone="yes"?> 3405
<epcis:EPCISDocument schemaVersion="1.2" creationDate="2013-06-3406
04T14:59:02.099+02:00" xmlns:epcis="urn:epcglobal:epcis:xsd:1" 3407
xmlns:example="http://ns.example.com/epcis"> 3408
 <EPCISBody> 3409
 <EventList> 3410
 <extension> 3411
 <TransformationEvent> 3412
 <eventTime>2013-10-31T14:58:56.591Z</eventTime> 3413
 <eventTimeZoneOffset>+02:00</eventTimeZoneOffset> 3414
 <inputEPCList> 3415
 <epc>urn:epc:id:sgtin:4012345.011122.25</epc> 3416
 <epc>urn:epc:id:sgtin:4000001.065432.99886655</epc> 3417
 </inputEPCList> 3418
 <inputQuantityList> 3419
 <quantityElement> 3420
 <epcClass>urn:epc:class:lgtin:4012345.011111.4444</epcClass> 3421
 <quantity>10</quantity> 3422
 <uom>KGM</uom> 3423

EPC Information Services (EPCIS) Standard

Release 1.2, Ratified, Sep 2016 © 2016 GS1 AISBL Page 103 of 138

 </quantityElement> 3424
 <quantityElement> 3425
 <epcClass>urn:epc:class:lgtin:0614141.077777.987</epcClass> 3426
 <quantity>30</quantity> 3427
 <!-- As the uom field has been omitted, 30 instances (e.g., pieces) of 3428
GTIN '00614141777778' belonging to lot '987' have been used. --> 3429
 </quantityElement> 3430
 <quantityElement> 3431
 <epcClass>urn:epc:idpat:sgtin:4012345.066666.*</epcClass> 3432
 <quantity>220</quantity> 3433
 <!-- As the uom field has been omitted and as an EPC pattern is 3434
indicated, 220 instances (e.g., pieces) of GTIN '04012345666663' have been used. --> 3435
 </quantityElement> 3436
 </inputQuantityList> 3437
 <outputEPCList> 3438
 <epc>urn:epc:id:sgtin:4012345.077889.25</epc> 3439
 <epc>urn:epc:id:sgtin:4012345.077889.26</epc> 3440
 <epc>urn:epc:id:sgtin:4012345.077889.27</epc> 3441
 <epc>urn:epc:id:sgtin:4012345.077889.28</epc> 3442
 </outputEPCList> 3443
 <bizStep>urn:epcglobal:cbv:bizstep:commissioning</bizStep> 3444
 <disposition>urn:epcglobal:cbv:disp:in_progress</disposition> 3445
 <readPoint> 3446
 <id>urn:epc:id:sgln:4012345.00001.0</id> 3447
 </readPoint> 3448
 <ilmd> 3449
 <!-- Section, in which the instance/ lot master data referring to the 3450
objects indicated in the outputEPCList are defined.--> 3451
 <example:bestBeforeDate>2014-12-10</example:bestBeforeDate> 3452
 <!-- The namespace 'example' is just a placeholder for the domain under 3453
which the ILMD attributes are defined (for instance, by a GS1 working group). 3454
Meaning: the best before date of the above GTIN + lot is the 10th December 2014. --> 3455
 <example:batch>XYZ</example:batch> 3456
 </ilmd> 3457
 <example:myField>Example of a vendor/user extension</example:myField> 3458
 </TransformationEvent> 3459
 </extension> 3460
 </EventList> 3461
 </EPCISBody> 3462
</epcis:EPCISDocument> 3463

9.7 Schema for master data document 3464

The following is an XML Schema (XSD) defining an EPCIS master data document. An EPCIS master 3465
data document may be used for transmitting master data by mutual agreement. This schema 3466
imports additional schemas as shown in the following table: 3467

Namespace Location reference Source

urn:epcglobal:xsd:1 EPCglobal.xsd Section 9.3

http://www.unece.org/cefact/namesp
aces/StandardBusinessDocumentHeade
r

StandardBusinessDocumentHeader.xsd UN/CEFACT web site; see
Section 9.2

urn:epcglobal:epcis:xsd:1 EPCglobal-epcis-1_2.xsd Section 9.5

 3468

In addition to the constraints implied by the schema, any value of type xsd:dateTime in an 3469
instance document SHALL include a time zone specifier (either “Z” for UTC or an explicit offset from 3470
UTC). 3471

For any XML element of type xsd:anyURI or xsd:string that specifies minOccurs="0", an 3472
EPCIS implementation SHALL treat an instance having the empty string as its value in exactly the 3473
same way as it would if the element were omitted altogether. 3474

EPC Information Services (EPCIS) Standard

Release 1.2, Ratified, Sep 2016 © 2016 GS1 AISBL Page 104 of 138

This schema includes the EPCIS header from the core event types schema specified in Section 9.5. 3475
That header allows for the optional inclusion of master data. However, an EPCIS master data 3476
document (an XML document whose root element is EPCISMasterDataDocument defined by the 3477
schema below) SHALL NOT include the optional EPCISMasterData element within its EPCIS 3478
header. 3479

The XML Schema (XSD) for master data is given below: 3480

<?xml version="1.0" encoding="UTF-8"?> 3481
<xsd:schema xmlns:epcismd="urn:epcglobal:epcis-masterdata:xsd:1" 3482
 3483
xmlns:sbdh="http://www.unece.org/cefact/namespaces/StandardBusinessDocumentHeader" 3484
 xmlns:epcglobal="urn:epcglobal:xsd:1" 3485
 xmlns:epcis="urn:epcglobal:epcis:xsd:1" 3486
 xmlns:xsd="http://www.w3.org/2001/XMLSchema" 3487
 targetNamespace="urn:epcglobal:epcis-masterdata:xsd:1" 3488
 elementFormDefault="unqualified" 3489
 attributeFormDefault="unqualified" 3490
 version="1.2"> 3491
 <xsd:annotation> 3492
 <xsd:documentation xml:lang="en"> 3493
 <epcglobal:copyright> Copyright (C) 2006-2016 GS1 AISBL, All Rights 3494
Reserved.</epcglobal:copyright> 3495
 <epcglobal:disclaimer> 3496
THIS DOCUMENT IS PROVIDED “AS IS” WITH NO WARRANTIES WHATSOEVER, INCLUDING ANY 3497
WARRANTY OF MERCHANTABILITY, NONINFRINGMENT, FITNESS FOR PARTICULAR PURPOSE, OR ANY 3498
WARRANTY OTHER WISE ARISING OUT OF THIS SPECIFICATION. GS1 disclaims all liability 3499
for any damages arising from use or misuse of this Standard, whether special, 3500
indirect, consequential, or compensatory damages, and including liability for 3501
infringement of any intellectual property rights, relating to use of information in 3502
or reliance upon this document. 3503
GS1 retains the right to make changes to this document at any time, without notice. 3504
GS1 makes no warranty for the use of this document and assumes no responsibility for 3505
any errors which may appear in the document, nor does it make a commitment to update 3506
the information contained herein. 3507
 </epcglobal:disclaimer> 3508
 <epcglobal:specification>EPC INFORMATION SERVICE (EPCIS) Version 3509
1.2</epcglobal:specification> 3510
 </xsd:documentation> 3511
 </xsd:annotation> 3512
 <xsd:import namespace="urn:epcglobal:xsd:1" schemaLocation="./EPCglobal.xsd"/> 3513
 <xsd:import 3514
 3515
namespace="http://www.unece.org/cefact/namespaces/StandardBusinessDocumentHeader" 3516
 schemaLocation="./StandardBusinessDocumentHeader.xsd"/> 3517
 <xsd:import 3518
 namespace="urn:epcglobal:epcis:xsd:1" 3519
 schemaLocation="./EPCglobal-epcis-1_2.xsd"/> 3520
 3521
 <!-- MasterData CORE ELEMENTS --> 3522
 <xsd:element name="EPCISMasterDataDocument" 3523
type="epcismd:EPCISMasterDataDocumentType"/> 3524
 <xsd:complexType name="EPCISMasterDataDocumentType"> 3525
 <xsd:annotation> 3526
 <xsd:documentation xml:lang="en"> 3527
 MasterData document that contains a Header and a Body. 3528
 </xsd:documentation> 3529
 </xsd:annotation> 3530
 <xsd:complexContent> 3531
 <xsd:extension base="epcglobal:Document"> 3532
 <xsd:sequence> 3533
 <xsd:element name="EPCISHeader" type="epcis:EPCISHeaderType" 3534
minOccurs="0"/> 3535
 <xsd:element name="EPCISBody" type="epcismd:EPCISMasterDataBodyType"/> 3536
 <xsd:element name="extension" 3537
type="epcismd:EPCISMasterDataDocumentExtensionType" minOccurs="0"/> 3538

EPC Information Services (EPCIS) Standard

Release 1.2, Ratified, Sep 2016 © 2016 GS1 AISBL Page 105 of 138

 <xsd:any namespace="##other" processContents="lax" minOccurs="0" 3539
maxOccurs="unbounded"/> 3540
 </xsd:sequence> 3541
 <xsd:anyAttribute processContents="lax"/> 3542
 </xsd:extension> 3543
 </xsd:complexContent> 3544
 </xsd:complexType> 3545
 3546
 <xsd:complexType name="EPCISMasterDataBodyType"> 3547
 <xsd:annotation> 3548
 <xsd:documentation xml:lang="en"> 3549
 MasterData specific body that contains Vocabularies. 3550
 </xsd:documentation> 3551
 </xsd:annotation> 3552
 <xsd:sequence> 3553
 <xsd:element name="VocabularyList" type="epcis:VocabularyListType" 3554
minOccurs="0"/> 3555
 <xsd:element name="extension" type="epcismd:EPCISMasterDataBodyExtensionType" 3556
minOccurs="0"/> 3557
 <xsd:any namespace="##other" processContents="lax" minOccurs="0" 3558
maxOccurs="unbounded"/> 3559
 </xsd:sequence> 3560
 <xsd:anyAttribute processContents="lax"/> 3561
 </xsd:complexType> 3562
 3563
 <xsd:complexType name="EPCISMasterDataDocumentExtensionType"> 3564
 <xsd:sequence> 3565
 <xsd:any namespace="##local" processContents="lax" maxOccurs="unbounded"/> 3566
 </xsd:sequence> 3567
 <xsd:anyAttribute processContents="lax"/> 3568
 </xsd:complexType> 3569
 3570
 <xsd:complexType name="EPCISMasterDataHeaderExtensionType"> 3571
 <xsd:sequence> 3572
 <xsd:any namespace="##local" processContents="lax" maxOccurs="unbounded"/> 3573
 </xsd:sequence> 3574
 <xsd:anyAttribute processContents="lax"/> 3575
 </xsd:complexType> 3576
 3577
 <xsd:complexType name="EPCISMasterDataBodyExtensionType"> 3578
 <xsd:sequence> 3579
 <xsd:any namespace="##local" processContents="lax" maxOccurs="unbounded"/> 3580
 </xsd:sequence> 3581
 <xsd:anyAttribute processContents="lax"/> 3582
 </xsd:complexType> 3583
 3584
</xsd:schema> 3585

9.8 Master data – example (non-normative) 3586

Here is an example EPCISMasterDataDocument containing master data for BusinessLocation 3587
and ReadPoint vocabularies, rendered into XML [XML1.0]: 3588

<?xml version="1.0" encoding="UTF-8" standalone="yes"?> 3589
<epcismd:EPCISMasterDataDocument 3590
 xmlns:epcismd="urn:epcglobal:epcis-masterdata:xsd:1" 3591
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 3592
 schemaVersion="1.0" 3593
 creationDate="2005-07-11T11:30:47.0Z"> 3594
 <EPCISBody> 3595
 <VocabularyList> 3596
 <Vocabulary type="urn:epcglobal:epcis:vtype:BusinessLocation"> 3597
 <VocabularyElementList> 3598
 <VocabularyElement id="urn:epc:id:sgln:0037000.00729.0"> 3599
 <attribute 3600
id="http://epcis.example.com/mda/latitude">+18.0000</attribute> 3601

EPC Information Services (EPCIS) Standard

Release 1.2, Ratified, Sep 2016 © 2016 GS1 AISBL Page 106 of 138

 <attribute id="http://epcis.example.com/mda/longitude">-3602
70.0000</attribute> 3603
 <attribute id="http://epcis.example.com/mda/address"> 3604
 <example:Address xmlns:example="http://epcis.example.com/ns"> 3605
 <Street>100 Nowhere Street</Street> 3606
 <City>Fancy</City> 3607
 <State>DC</State> 3608
 <Zip>99999</Zip> 3609
 </example:Address> 3610
 </attribute> 3611
 <children> 3612
 <id>urn:epc:id:sgln:0037000.00729.8201</id> 3613
 <id>urn:epc:id:sgln:0037000.00729.8202</id> 3614
 <id>urn:epc:id:sgln:0037000.00729.8203</id> 3615
 </children> 3616
 </VocabularyElement> 3617
 <VocabularyElement id="urn:epc:id:sgln:0037000.00729.8201"> 3618
 <attribute id="urn:epcglobal:cbv:mda:sst">201</attribute> 3619
 </VocabularyElement> 3620
 <VocabularyElement id="urn:epc:id:sgln:0037000.00729.8202"> 3621
 <attribute id="urn:epcglobal:cbv:mda:sst">202</attribute> 3622
 <children> 3623
 <id>urn:epc:id:sgln:0037000.00729.8203</id> 3624
 </children> 3625
 </VocabularyElement> 3626
 <VocabularyElement id="urn:epc:id:sgln:0037000.00729.8203"> 3627
 <attribute id="urn:epcglobal:cbv:mda:sst">202</attribute> 3628
 <attribute id="urn:epcglobal:cbv:mda:ssa">402</attribute> 3629
 </VocabularyElement> 3630
 </VocabularyElementList> 3631
 </Vocabulary> 3632
 <Vocabulary type="urn:epcglobal:epcis:vtype:ReadPoint"> 3633
 <VocabularyElementList> 3634
 <VocabularyElement id="urn:epc:id:sgln:0037000.00729.8201"> 3635
 <attribute id="urn:epcglobal:cbv:mda:site">0037000007296</attribute> 3636
 <attribute id="urn:epcglobal:cbv:mda:sst">201</attribute> 3637
 </VocabularyElement> 3638
 <VocabularyElement id="urn:epc:id:sgln:0037000.00729.8202"> 3639
 <attribute id="urn:epcglobal:cbv:mda:site">0037000007296</attribute> 3640
 <attribute id="urn:epcglobal:cbv:mda:sst">202</attribute> 3641
 </VocabularyElement> 3642
 <VocabularyElement id="urn:epc:id:sgln:0037000.00729.8203"> 3643
 <attribute id="urn:epcglobal:cbv:mda:site">0037000007296</attribute> 3644
 <attribute id="urn:epcglobal:cbv:mda:sst">203</attribute> 3645
 </VocabularyElement> 3646
 </VocabularyElementList> 3647
 </Vocabulary> 3648
 </VocabularyList> 3649
 </EPCISBody> 3650
</epcismd:EPCISMasterDataDocument> 3651

10 Bindings for core capture operations module 3652

This section defines bindings for the Core Capture Operations Module. All bindings specified here are 3653
based on the XML representation of events defined in Section 9.5. An implementation of EPCIS MAY 3654
provide support for one or more Core Capture Operations Module bindings as specified below. 3655

10.1 Message queue binding 3656

This section defines a binding of the Core Capture Operations Module to a message queue system, 3657
as commonly deployed within large enterprises. A message queue system is defined for the purpose 3658
of this section as any system which allows one application to send an XML message to another 3659
application. Message queue systems commonly support both point-to-point message delivery and 3660

EPC Information Services (EPCIS) Standard

Release 1.2, Ratified, Sep 2016 © 2016 GS1 AISBL Page 107 of 138

publish/subscribe message delivery. Message queue systems often include features for guaranteed 3661
reliable delivery and other quality-of-service (QoS) guarantees. 3662

Because there is no universally accepted industry standard message queue system, this 3663
specification is designed to apply to any such system. Many implementation details, therefore, 3664
necessarily fall outside the scope of this specification. Such details include message queue system to 3665
use, addressing, protocols, use of QoS or other system-specific parameters, and so on. 3666

An EPCIS implementation MAY provide a message queue binding of the Core Capture Operations 3667
Module in the following manner. For the purposes of this binding, a “capture client” is an EPCIS 3668
Capture Application that wishes to deliver an EPCIS event through the EPCIS Capture Interface, and 3669
a “capture server” is an EPCIS Repository or EPCIS Accessing Application that receives an event 3670
from a capture client. 3671

A capture server SHALL provide one or more message queue endpoints through which a capture 3672
client may deliver one or more EPCIS events. Each message queue endpoint MAY be a point-to-3673
point queue, a publish/subscribe topic, or some other appropriate addressable channel provided by 3674
the message queue system; the specifics are outside the scope of this specification. 3675

A capture client SHALL exercise the capture operation defined in Section 8.1.2 by delivering a 3676
message to the endpoint provided by the capture server. The message SHALL be one of the 3677
following: 3678

■ an XML document whose root element conforms to the EPCISDocument element as defined by 3679
the schema of Section 9.5; or 3680

■ an XML document whose root element conforms to the EPCISQueryDocument element as 3681
defined by the schema of Section 11.1, where the element immediately nested within the 3682
EPCISBody element is a QueryResults element, and where the resultsBody element within 3683
the QueryResults element contains an EventList element. 3684

An implementation of the capture interface SHALL accept the EPCISDocument form and SHOULD 3685
accept the EPCISQueryDocument form. An implementation of the capture interface SHALL NOT 3686
accept documents that are not valid as defined above. Successful acceptance of this message by 3687
the server SHALL constitute capture of all EPCIS events included in the message. 3688

Message queue systems vary in their ability to provide positive and negative acknowledgements to 3689
message senders. When a positive acknowledgement feature is available from the message queue 3690
system, a positive acknowledgement MAY be used to indicate successful capture by the capture 3691
server. When a negative acknowledgement feature is available from the message queue system, a 3692
negative acknowledgement MAY be used to indicate a failure to complete the capture operation. 3693
Failure may be due to an invalid document, an authorisation failure as described in Section 8.1.1, or 3694
for some other reason. The specific circumstances under which a positive or negative 3695
acknowledgement are indicated is implementation-dependent. All implementations, however, SHALL 3696
either accept all events in the message or reject all events. 3697

10.2 HTTP binding 3698

This section defines a binding of the Core Capture Operations Module to HTTP [RFC2616]. 3699

An EPCIS implementation MAY provide an HTTP binding of the Core Capture Operations Module in 3700
the following manner. For the purposes of this binding, a “capture client” is an EPCIS Capture 3701
Application that wishes to deliver an EPCIS event through the EPCIS Capture Interface, and a 3702
“capture server” is an EPCIS Repository or EPCIS Accessing Application that receives an event from 3703
a capture client. 3704

A capture server SHALL provide an HTTP URL through which a capture client may deliver one or 3705
more EPCIS events. 3706

A capture client SHALL exercise the capture operation defined in Section 8.1.2 by invoking an HTTP 3707
POST operation on the URL provided by the capture server. The message payload SHALL be one of 3708
the following: 3709

■ an XML document whose root element conforms to the EPCISDocument element as defined by 3710
the schema of Section 9.5; or 3711

EPC Information Services (EPCIS) Standard

Release 1.2, Ratified, Sep 2016 © 2016 GS1 AISBL Page 108 of 138

■ an XML document whose root element conforms to the EPCISQueryDocument element as 3712
defined by the schema of Section 11.1, where the element immediately nested within the 3713
EPCISBody element is a QueryResults element, and where the resultsBody element within 3714
the QueryResults element contains an EventList element. 3715

An implementation of the capture interface SHALL accept the EPCISDocument form and SHOULD 3716
accept the EPCISQueryDocument form. An implementation of the capture interface SHALL NOT 3717
accept documents that are not valid as defined above. Successful acceptance of this message by the 3718
server SHALL constitute capture of all EPCIS events included in the message. 3719

Status codes returned by the capture server SHALL conform to [RFC2616], Section 10. In particular, 3720
the capture server SHALL return status code 200 to indicate successful completion of the capture 3721
operation, and any status code 3xx, 4xx, or 5xx SHALL indicate that the capture operation was not 3722
successfully completed. The specific circumstances under which a success or failure code is returned 3723
are implementation-dependent. All implementations, however, SHALL either accept all events in the 3724
message or reject all events. 3725

11 Bindings for core query operations module 3726

This section defines bindings for the Core Query Operations Module, as follows: 3727

Interface Binding Document section

Query Control Interface SOAP over HTTP (WSDL) Section 11.2
XML over AS2 Section 11.3

Query Callback Interface XML over HTTP Section 11.4.2

XML over HTTP+TLS
(HTTPS)

Section 11.4.3

XML over AS2 Section 11.4.4
 3728

All of these bindings share a common XML syntax, specified in Section 11.1. The XML schema has 3729
the following ingredients: 3730

■ XML elements for the argument and return signature of each method in the Query Control 3731
Interface as defined in Section 8.2.5 3732

■ XML types for each of the datatypes used in those argument and return signatures 3733

■ XML elements for each of the exceptions defined in Section 8.2.6 3734

■ XML elements for the Query Callback Interface as defined in Section 8.2.8. (These are actually 3735
just a subset of the previous three bullets.) 3736

■ An EPCISQueryDocument element, which is used as an “envelope” by bindings whose 3737
underlying technology does not provide its own envelope or header mechanism (specifically, all 3738
bindings except for the SOAP binding). The AS2 binding uses this to provide a header to match 3739
requests and responses. The EPCISQueryDocument element shares the EPCISHeader type 3740
defined in Section 9.5. Each binding specifies its own rules for using this header, if applicable. 3741

11.1 XML schema for core query operations module 3742

The following schema defines XML representations of data types, requests, responses, and 3743
exceptions used by the EPCIS Query Control Interface and EPCIS Query Callback Interface in the 3744
Core Query Operations Module. This schema is incorporated by reference into all of the bindings for 3745
these two interfaces specified in the remainder of this Section 11. This schema SHOULD be used by 3746
any new binding of any interface within the Core Query Operations Module that uses XML as the 3747
underlying message format. 3748

The QueryParam type defined in the schema below is used to represent a query parameter as used 3749
by the poll and subscribe methods of the query interface defined in Section 8.2.5. A query 3750
parameter consists of a name and a value. The XML schema specifies xsd:anyType for the value, 3751

EPC Information Services (EPCIS) Standard

Release 1.2, Ratified, Sep 2016 © 2016 GS1 AISBL Page 109 of 138

so that a parameter value of any type can be represented. When creating a document instance, the 3752
actual value SHALL conform to a type appropriate for the query parameter, as defined in the 3753
following table: 3754

Parameter type XML type for value element

Int xsd:integer

Float xsd:double

Time xsd:dateTime

String xsd:string

List of String epcisq:ArrayOfString

Void epcisq:VoidHolder

 3755

In particular, the table above SHALL be used to map the parameter types specified for the 3756
predefined queries of Section 8.2.7 into the corresponding XML types. 3757

Each <value> element specifying a query parameter value in an instance document MAY include an 3758
xsi:type attribute as specified in [XSD1]. The following rules specify how query parameter values 3759
are processed: 3760

■ When a <value> element does not include an xsi:type attribute, the subscribe or poll 3761
method of the Query Control Interface SHALL raise a QueryParameterException if the 3762
specified value is not valid syntax for the type required by the query parameter. 3763

■ When a <value> element does include an xsi:type attribute, the following rules apply: 3764

□ If the body of the <value> element is not valid syntax for the type specified by the 3765
xsi:type attribute, the EPCISQueryDocument or SOAP request MAY be rejected by the 3766
implementation’s XML parser. 3767

□ If the value of the xsi:type attribute is not the correct type for that query parameter as 3768
specified in the second column of the table above, the subscribe or poll method of the 3769
Query Control Interface MAY raise a QueryParameterException, even if the body of the 3770
<value> element is valid syntax for the type required by the query parameter. 3771

□ If the body of the <value> element is not valid syntax for the type required by the query 3772
parameter, the subscribe or poll method of the Query Control Interface SHALL raise a 3773
QueryParameterException unless the EPCISQueryDocument or SOAP request was 3774
rejected by the implementation’s XML parser according to the rule above. 3775

This schema imports additional schemas as shown in the following table: 3776

Namespace Location reference Source

urn:epcglobal:xsd:1 EPCglobal.xsd Section 9.3

http://www.unece.org/cefact/namesp
aces/StandardBusinessDocumentHeade
r

StandardBusinessDocumentHeader.xsd UN/CEFACT web site; see
Section 9.2

urn:epcglobal:epcis:xsd:1 EPCglobal-epcis-1_0.xsd Section 9.5

urn:epcglobal:epcis-
masterdata:xsd:1

EPCglobal-epcis-masterdata-1_0.xsd Section 9.7

 3777

In addition to the constraints implied by the schema, any value of type xsd:dateTime in an 3778
instance document SHALL include a time zone specifier (either “Z” for UTC or an explicit offset from 3779
UTC). 3780

For any XML element of type xsd:anyURI or xsd:string that specifies minOccurs="0", an 3781
EPCIS implementation SHALL treat an instance having the empty string as its value in exactly the 3782
same way as it would if the element were omitted altogether. 3783

EPC Information Services (EPCIS) Standard

Release 1.2, Ratified, Sep 2016 © 2016 GS1 AISBL Page 110 of 138

The XML Schema (XSD) for the Core Query Operations Module is given below: 3784

<?xml version="1.0" encoding="UTF-8"?> 3785
 3786
<xsd:schema targetNamespace="urn:epcglobal:epcis-query:xsd:1" 3787
 xmlns:epcis="urn:epcglobal:epcis:xsd:1" 3788
 xmlns:epcismd="urn:epcglobal:epcis-masterdata:xsd:1" 3789
 xmlns:epcisq="urn:epcglobal:epcis-query:xsd:1" 3790
 xmlns:epcglobal="urn:epcglobal:xsd:1" 3791
 xmlns:xsd="http://www.w3.org/2001/XMLSchema" 3792
 elementFormDefault="unqualified" 3793
 attributeFormDefault="unqualified" 3794
 version="1.2"> 3795
 3796
 <xsd:annotation> 3797
 <xsd:documentation xml:lang="en"> 3798
 <epcglobal:copyright> 3799
 Copyright (C) 2006-2016 GS1 AISBL, All Rights Reserved 3800
 </epcglobal:copyright> 3801
 <epcglobal:disclaimer> 3802
THIS DOCUMENT IS PROVIDED “AS IS” WITH NO WARRANTIES WHATSOEVER, INCLUDING ANY 3803
WARRANTY OF MERCHANTABILITY, NONINFRINGMENT, FITNESS FOR PARTICULAR PURPOSE, OR ANY 3804
WARRANTY OTHER WISE ARISING OUT OF THIS SPECIFICATION. GS1 disclaims all liability 3805
for any damages arising from use or misuse of this Standard, whether special, 3806
indirect, consequential, or compensatory damages, and including liability for 3807
infringement of any intellectual property rights, relating to use of information in 3808
or reliance upon this document. 3809
GS1 retains the right to make changes to this document at any time, without notice. 3810
GS1 makes no warranty for the use of this document and assumes no responsibility for 3811
any errors which may appear in the document, nor does it make a commitment to update 3812
the information contained herein. 3813
 </epcglobal:disclaimer> 3814
 <epcglobal:specification> 3815
 EPCIS Query 1.2 3816
 </epcglobal:specification> 3817
 </xsd:documentation> 3818
 </xsd:annotation> 3819
 3820
 <xsd:import namespace="urn:epcglobal:xsd:1" schemaLocation="./EPCglobal.xsd"/> 3821
 <xsd:import namespace="urn:epcglobal:epcis:xsd:1" schemaLocation="./EPCglobal-3822
epcis-1_2.xsd"/> 3823
 3824
 <xsd:element name="EPCISQueryDocument" type="epcisq:EPCISQueryDocumentType"/> 3825
 <xsd:complexType name="EPCISQueryDocumentType"> 3826
 <xsd:complexContent> 3827
 <xsd:extension base="epcglobal:Document"> 3828
 <xsd:sequence> 3829
 <xsd:element name="EPCISHeader" type="epcis:EPCISHeaderType" 3830
minOccurs="0"/> 3831
 <xsd:element name="EPCISBody" type="epcisq:EPCISQueryBodyType"/> 3832
 <xsd:element name="extension" 3833
type="epcisq:EPCISQueryDocumentExtensionType" minOccurs="0"/> 3834
 <xsd:any namespace="##other" processContents="lax" minOccurs="0" 3835
maxOccurs="unbounded"/> 3836
 </xsd:sequence> 3837
 <xsd:anyAttribute processContents="lax"/> 3838
 </xsd:extension> 3839
 </xsd:complexContent> 3840
 </xsd:complexType> 3841
 3842
 <xsd:complexType name="EPCISQueryDocumentExtensionType"> 3843
 <xsd:sequence> 3844
 <xsd:any namespace="##local" processContents="lax" 3845
maxOccurs="unbounded"/> 3846
 </xsd:sequence> 3847
 <xsd:anyAttribute processContents="lax"/> 3848
 </xsd:complexType> 3849

EPC Information Services (EPCIS) Standard

Release 1.2, Ratified, Sep 2016 © 2016 GS1 AISBL Page 111 of 138

 3850
 <xsd:complexType name="EPCISQueryBodyType"> 3851
 <xsd:choice> 3852
 <xsd:element ref="epcisq:GetQueryNames"/> 3853
 <xsd:element ref="epcisq:GetQueryNamesResult"/> 3854
 <xsd:element ref="epcisq:Subscribe"/> 3855
 <xsd:element ref="epcisq:SubscribeResult"/> 3856
 <xsd:element ref="epcisq:Unsubscribe"/> 3857
 <xsd:element ref="epcisq:UnsubscribeResult"/> 3858
 <xsd:element ref="epcisq:GetSubscriptionIDs"/> 3859
 <xsd:element ref="epcisq:GetSubscriptionIDsResult"/> 3860
 <xsd:element ref="epcisq:Poll"/> 3861
 <xsd:element ref="epcisq:GetStandardVersion"/> 3862
 <xsd:element ref="epcisq:GetStandardVersionResult"/> 3863
 <xsd:element ref="epcisq:GetVendorVersion"/> 3864
 <xsd:element ref="epcisq:GetVendorVersionResult"/> 3865
 <xsd:element ref="epcisq:DuplicateNameException"/> 3866
 <!-- queryValidationException unimplemented in EPCIS 1.0 3867
 <xsd:element ref="epcisq:QueryValidationException"/> 3868
 --> 3869
 <xsd:element ref="epcisq:InvalidURIException"/> 3870
 <xsd:element ref="epcisq:NoSuchNameException"/> 3871
 <xsd:element ref="epcisq:NoSuchSubscriptionException"/> 3872
 <xsd:element ref="epcisq:DuplicateSubscriptionException"/> 3873
 <xsd:element ref="epcisq:QueryParameterException"/> 3874
 <xsd:element ref="epcisq:QueryTooLargeException"/> 3875
 <xsd:element ref="epcisq:QueryTooComplexException"/> 3876
 <xsd:element ref="epcisq:SubscriptionControlsException"/> 3877
 <xsd:element ref="epcisq:SubscribeNotPermittedException"/> 3878
 <xsd:element ref="epcisq:SecurityException"/> 3879
 <xsd:element ref="epcisq:ValidationException"/> 3880
 <xsd:element ref="epcisq:ImplementationException"/> 3881
 <xsd:element ref="epcisq:QueryResults"/> 3882
 </xsd:choice> 3883
 </xsd:complexType> 3884
 3885
 <!-- EPCISSERVICE MESSAGE WRAPPERS --> 3886
 3887
 <xsd:element name="GetQueryNames" type="epcisq:EmptyParms"/> 3888
 <xsd:element name="GetQueryNamesResult" type="epcisq:ArrayOfString"/> 3889
 3890
 <xsd:element name="Subscribe" type="epcisq:Subscribe"/> 3891
 <xsd:complexType name="Subscribe"> 3892
 <xsd:sequence> 3893
 <xsd:element name="queryName" type="xsd:string"/> 3894
 <xsd:element name="params" type="epcisq:QueryParams"/> 3895
 <xsd:element name="dest" type="xsd:anyURI"/> 3896
 <xsd:element name="controls" type="epcisq:SubscriptionControls"/> 3897
 <xsd:element name="subscriptionID" type="xsd:string"/> 3898
 </xsd:sequence> 3899
 </xsd:complexType> 3900
 <xsd:element name="SubscribeResult" type="epcisq:VoidHolder"/> 3901
 3902
 <xsd:element name="Unsubscribe" type="epcisq:Unsubscribe"/> 3903
 <xsd:complexType name="Unsubscribe"> 3904
 <xsd:sequence> 3905
 <xsd:element name="subscriptionID" type="xsd:string"/> 3906
 </xsd:sequence> 3907
 </xsd:complexType> 3908
 <xsd:element name="UnsubscribeResult" type="epcisq:VoidHolder"/> 3909
 3910
 <xsd:element name="GetSubscriptionIDs" type="epcisq:GetSubscriptionIDs"/> 3911
 <xsd:complexType name="GetSubscriptionIDs"> 3912
 <xsd:sequence> 3913
 <xsd:element name="queryName" type="xsd:string"/> 3914
 </xsd:sequence> 3915

EPC Information Services (EPCIS) Standard

Release 1.2, Ratified, Sep 2016 © 2016 GS1 AISBL Page 112 of 138

 </xsd:complexType> 3916
 <xsd:element name="GetSubscriptionIDsResult" type="epcisq:ArrayOfString"/> 3917
 3918
 <xsd:element name="Poll" type="epcisq:Poll"/> 3919
 <xsd:complexType name="Poll"> 3920
 <xsd:sequence> 3921
 <xsd:element name="queryName" type="xsd:string"/> 3922
 <xsd:element name="params" type="epcisq:QueryParams"/> 3923
 </xsd:sequence> 3924
 </xsd:complexType> 3925
 <!-- The response from a Poll method is the QueryResults element, defined below. 3926
 The QueryResults element is also used to deliver standing query results 3927
 through the Query Callback Interface --> 3928
 3929
 <xsd:element name="GetStandardVersion" type="epcisq:EmptyParms"/> 3930
 <xsd:element name="GetStandardVersionResult" type="xsd:string"/> 3931
 3932
 <xsd:element name="GetVendorVersion" type="epcisq:EmptyParms"/> 3933
 <xsd:element name="GetVendorVersionResult" type="xsd:string"/> 3934
 3935
 <xsd:element name="VoidHolder" type="epcisq:VoidHolder"/> 3936
 <xsd:complexType name="VoidHolder"> 3937
 <xsd:sequence> 3938
 </xsd:sequence> 3939
 </xsd:complexType> 3940
 3941
 <xsd:complexType name="EmptyParms"/> 3942
 3943
 <xsd:complexType name="ArrayOfString"> 3944
 <xsd:sequence> 3945
 <xsd:element name="string" type="xsd:string" minOccurs="0" 3946
maxOccurs="unbounded"/> 3947
 </xsd:sequence> 3948
 </xsd:complexType> 3949
 3950
 <xsd:complexType name="SubscriptionControls"> 3951
 <xsd:sequence> 3952
 <xsd:element name="schedule" type="epcisq:QuerySchedule" minOccurs="0"/> 3953
 <xsd:element name="trigger" type="xsd:anyURI" minOccurs="0"/> 3954
 <xsd:element name="initialRecordTime" type="xsd:dateTime" minOccurs="0"/> 3955
 <xsd:element name="reportIfEmpty" type="xsd:boolean"/> 3956
 <xsd:element name="extension" type="epcisq:SubscriptionControlsExtensionType" 3957
minOccurs="0"/> 3958
 <xsd:any namespace="##other" processContents="lax" minOccurs="0" 3959
maxOccurs="unbounded"/> 3960
 </xsd:sequence> 3961
 </xsd:complexType> 3962
 3963
 <xsd:complexType name="SubscriptionControlsExtensionType"> 3964
 <xsd:sequence> 3965
 <xsd:any namespace="##local" processContents="lax" maxOccurs="unbounded"/> 3966
 </xsd:sequence> 3967
 <xsd:anyAttribute processContents="lax"/> 3968
 </xsd:complexType> 3969
 3970
 <xsd:complexType name="QuerySchedule"> 3971
 <xsd:sequence> 3972
 <xsd:element name="second" type="xsd:string" minOccurs="0"/> 3973
 <xsd:element name="minute" type="xsd:string" minOccurs="0"/> 3974
 <xsd:element name="hour" type="xsd:string" minOccurs="0"/> 3975
 <xsd:element name="dayOfMonth" type="xsd:string" minOccurs="0"/> 3976
 <xsd:element name="month" type="xsd:string" minOccurs="0"/> 3977
 <xsd:element name="dayOfWeek" type="xsd:string" minOccurs="0"/> 3978
 <xsd:element name="extension" type="epcisq:QueryScheduleExtensionType" 3979
minOccurs="0"/> 3980

EPC Information Services (EPCIS) Standard

Release 1.2, Ratified, Sep 2016 © 2016 GS1 AISBL Page 113 of 138

 <xsd:any namespace="##other" processContents="lax" minOccurs="0" 3981
maxOccurs="unbounded"/> 3982
 </xsd:sequence> 3983
 </xsd:complexType> 3984
 3985
 <xsd:complexType name="QueryScheduleExtensionType"> 3986
 <xsd:sequence> 3987
 <xsd:any namespace="##local" processContents="lax" maxOccurs="unbounded"/> 3988
 </xsd:sequence> 3989
 <xsd:anyAttribute processContents="lax"/> 3990
 </xsd:complexType> 3991
 3992
 <xsd:complexType name="QueryParams"> 3993
 <xsd:sequence> 3994
 <xsd:element name="param" type="epcisq:QueryParam" minOccurs="0" 3995
maxOccurs="unbounded"/> 3996
 </xsd:sequence> 3997
 </xsd:complexType> 3998
 3999
 <xsd:complexType name="QueryParam"> 4000
 <xsd:sequence> 4001
 <xsd:element name="name" type="xsd:string"/> 4002
 <!-- See note in EPCIS spec text regarding the value for this element --> 4003
 <xsd:element name="value" type="xsd:anyType"/> 4004
 </xsd:sequence> 4005
 </xsd:complexType> 4006
 4007
 <xsd:element name="QueryResults" type="epcisq:QueryResults"/> 4008
 <xsd:complexType name="QueryResults"> 4009
 <xsd:sequence> 4010
 <xsd:element name="queryName" type="xsd:string"/> 4011
 <xsd:element name="subscriptionID" type="xsd:string" minOccurs="0"/> 4012
 <xsd:element name="resultsBody" type="epcisq:QueryResultsBody"/> 4013
 <xsd:element name="extension" type="epcisq:QueryResultsExtensionType" 4014
minOccurs="0"/> 4015
 <xsd:any namespace="##other" processContents="lax" minOccurs="0" 4016
maxOccurs="unbounded"/> 4017
 </xsd:sequence> 4018
 </xsd:complexType> 4019
 4020
 <xsd:complexType name="QueryResultsExtensionType"> 4021
 <xsd:sequence> 4022
 <xsd:any namespace="##local" processContents="lax" maxOccurs="unbounded"/> 4023
 </xsd:sequence> 4024
 <xsd:anyAttribute processContents="lax"/> 4025
 </xsd:complexType> 4026
 4027
 <xsd:complexType name="QueryResultsBody"> 4028
 <xsd:choice> 4029
 <xsd:element name="EventList" type="epcis:EventListType"/> 4030
 <xsd:element name="VocabularyList" type="epcis:VocabularyListType"/> 4031
 </xsd:choice> 4032
 </xsd:complexType> 4033
 4034
 <!-- EPCIS EXCEPTIONS --> 4035
 4036
 <xsd:element name="EPCISException" type="epcisq:EPCISException"/> 4037
 <xsd:complexType name="EPCISException"> 4038
 <xsd:sequence> 4039
 <xsd:element name="reason" type="xsd:string"/> 4040
 </xsd:sequence> 4041
 </xsd:complexType> 4042
 4043
 <xsd:element name="DuplicateNameException" type="epcisq:DuplicateNameException"/> 4044
 <xsd:complexType name="DuplicateNameException"> 4045
 <xsd:complexContent> 4046

EPC Information Services (EPCIS) Standard

Release 1.2, Ratified, Sep 2016 © 2016 GS1 AISBL Page 114 of 138

 <xsd:extension base="epcisq:EPCISException"> 4047
 <xsd:sequence/> 4048
 </xsd:extension> 4049
 </xsd:complexContent> 4050
 </xsd:complexType> 4051
 4052
 <!-- QueryValidationException not implemented in EPCIS 1.0 4053
 <xsd:element name="QueryValidationException" 4054
type="epcisq:QueryValidationException"/> 4055
 <xsd:complexType name="QueryValidationException"> 4056
 <xsd:complexContent> 4057
 <xsd:extension base="epcisq:EPCISException"> 4058
 <xsd:sequence/> 4059
 </xsd:extension> 4060
 </xsd:complexContent> 4061
 </xsd:complexType> 4062
 --> 4063
 4064
 <xsd:element name="InvalidURIException" type="epcisq:InvalidURIException"/> 4065
 <xsd:complexType name="InvalidURIException"> 4066
 <xsd:complexContent> 4067
 <xsd:extension base="epcisq:EPCISException"> 4068
 <xsd:sequence/> 4069
 </xsd:extension> 4070
 </xsd:complexContent> 4071
 </xsd:complexType> 4072
 4073
 <xsd:element name="NoSuchNameException" type="epcisq:NoSuchNameException"/> 4074
 <xsd:complexType name="NoSuchNameException"> 4075
 <xsd:complexContent> 4076
 <xsd:extension base="epcisq:EPCISException"> 4077
 <xsd:sequence/> 4078
 </xsd:extension> 4079
 </xsd:complexContent> 4080
 </xsd:complexType> 4081
 4082
 <xsd:element name="NoSuchSubscriptionException" 4083
type="epcisq:NoSuchSubscriptionException"/> 4084
 <xsd:complexType name="NoSuchSubscriptionException"> 4085
 <xsd:complexContent> 4086
 <xsd:extension base="epcisq:EPCISException"> 4087
 <xsd:sequence/> 4088
 </xsd:extension> 4089
 </xsd:complexContent> 4090
 </xsd:complexType> 4091
 4092
 <xsd:element name="DuplicateSubscriptionException" 4093
type="epcisq:DuplicateSubscriptionException"/> 4094
 <xsd:complexType name="DuplicateSubscriptionException"> 4095
 <xsd:complexContent> 4096
 <xsd:extension base="epcisq:EPCISException"> 4097
 <xsd:sequence/> 4098
 </xsd:extension> 4099
 </xsd:complexContent> 4100
 </xsd:complexType> 4101
 4102
 <xsd:element name="QueryParameterException" 4103
type="epcisq:QueryParameterException"/> 4104
 <xsd:complexType name="QueryParameterException"> 4105
 <xsd:complexContent> 4106
 <xsd:extension base="epcisq:EPCISException"> 4107
 <xsd:sequence/> 4108
 </xsd:extension> 4109
 </xsd:complexContent> 4110
 </xsd:complexType> 4111
 4112

EPC Information Services (EPCIS) Standard

Release 1.2, Ratified, Sep 2016 © 2016 GS1 AISBL Page 115 of 138

 <xsd:element name="QueryTooLargeException" type="epcisq:QueryTooLargeException"/> 4113
 <xsd:complexType name="QueryTooLargeException"> 4114
 <xsd:complexContent> 4115
 <xsd:extension base="epcisq:EPCISException"> 4116
 <xsd:sequence> 4117
 <xsd:element name="queryName" type="xsd:string" minOccurs="0"/> 4118
 <xsd:element name="subscriptionID" type="xsd:string" minOccurs="0"/> 4119
 </xsd:sequence> 4120
 </xsd:extension> 4121
 </xsd:complexContent> 4122
 </xsd:complexType> 4123
 4124
 <xsd:element name="QueryTooComplexException" 4125
type="epcisq:QueryTooComplexException"/> 4126
 <xsd:complexType name="QueryTooComplexException"> 4127
 <xsd:complexContent> 4128
 <xsd:extension base="epcisq:EPCISException"> 4129
 <xsd:sequence/> 4130
 </xsd:extension> 4131
 </xsd:complexContent> 4132
 </xsd:complexType> 4133
 4134
 <xsd:element name="SubscriptionControlsException" 4135
type="epcisq:SubscriptionControlsException"/> 4136
 <xsd:complexType name="SubscriptionControlsException"> 4137
 <xsd:complexContent> 4138
 <xsd:extension base="epcisq:EPCISException"> 4139
 <xsd:sequence/> 4140
 </xsd:extension> 4141
 </xsd:complexContent> 4142
 </xsd:complexType> 4143
 4144
 <xsd:element name="SubscribeNotPermittedException" 4145
type="epcisq:SubscribeNotPermittedException"/> 4146
 <xsd:complexType name="SubscribeNotPermittedException"> 4147
 <xsd:complexContent> 4148
 <xsd:extension base="epcisq:EPCISException"> 4149
 <xsd:sequence/> 4150
 </xsd:extension> 4151
 </xsd:complexContent> 4152
 </xsd:complexType> 4153
 4154
 <xsd:element name="SecurityException" type="epcisq:SecurityException"/> 4155
 <xsd:complexType name="SecurityException"> 4156
 <xsd:complexContent> 4157
 <xsd:extension base="epcisq:EPCISException"> 4158
 <xsd:sequence/> 4159
 </xsd:extension> 4160
 </xsd:complexContent> 4161
 </xsd:complexType> 4162
 4163
 <xsd:element name="ValidationException" type="epcisq:ValidationException"/> 4164
 <xsd:complexType name="ValidationException"> 4165
 <xsd:complexContent> 4166
 <xsd:extension base="epcisq:EPCISException"> 4167
 <xsd:sequence/> 4168
 </xsd:extension> 4169
 </xsd:complexContent> 4170
 </xsd:complexType> 4171
 4172
 <xsd:element name="ImplementationException" 4173
 type="epcisq:ImplementationException"/> 4174
 <xsd:complexType name="ImplementationException"> 4175
 <xsd:complexContent> 4176
 <xsd:extension base="epcisq:EPCISException"> 4177
 <xsd:sequence> 4178

EPC Information Services (EPCIS) Standard

Release 1.2, Ratified, Sep 2016 © 2016 GS1 AISBL Page 116 of 138

 <xsd:element name="severity" 4179
 type="epcisq:ImplementationExceptionSeverity"/> 4180
 <xsd:element name="queryName" type="xsd:string" minOccurs="0"/> 4181
 <xsd:element name="subscriptionID" type="xsd:string" minOccurs="0"/> 4182
 </xsd:sequence> 4183
 </xsd:extension> 4184
 </xsd:complexContent> 4185
 </xsd:complexType> 4186
 4187
 <xsd:simpleType name="ImplementationExceptionSeverity"> 4188
 <xsd:restriction base="xsd:NCName"> 4189
 <xsd:enumeration value="ERROR"/> 4190
 <xsd:enumeration value="SEVERE"/> 4191
 </xsd:restriction> 4192
 </xsd:simpleType> 4193
 4194
</xsd:schema> 4195

11.2 SOAP/HTTP binding for the query control interface 4196

The following is a Web Service Description Language (WSDL) 1.1 [WSDL1.1] specification defining 4197
the standard SOAP/HTTP binding of the EPCIS Query Control Interface. An EPCIS implementation 4198
MAY provide a SOAP/HTTP binding of the EPCIS Query Control Interface; if a SOAP/HTTP binding is 4199
provided, it SHALL conform to the following WSDL. This SOAP/HTTP binding is compliant with the 4200
WS-I Basic Profile Version 1.0 [WSI]. This binding builds upon the schema defined in Section 11.1. 4201

If an EPCIS implementation providing the SOAP binding receives an input that is syntactically invalid 4202
according to this WSDL, the implementation SHALL indicate this in one of the two following ways: 4203
the implementation MAY raise a ValidationException, or it MAY raise a more generic exception 4204
provided by the SOAP processor being used. 4205

<?xml version="1.0" encoding="UTF-8"?> 4206
 4207
 4208
<!-- EPCIS QUERY SERVICE DEFINITIONS --> 4209
<wsdl:definitions 4210
 targetNamespace="urn:epcglobal:epcis:wsdl:1" 4211
 xmlns="http://schemas.xmlsoap.org/wsdl/" 4212
 xmlns:apachesoap="http://xml.apache.org/xml-soap" 4213
 xmlns:epcis="urn:epcglobal:epcis:xsd:1" 4214
 xmlns:epcisq="urn:epcglobal:epcis-query:xsd:1" 4215
 xmlns:epcglobal="urn:epcglobal:xsd:1" 4216
 xmlns:impl="urn:epcglobal:epcis:wsdl:1" 4217
 xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/" 4218
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/" 4219
 xmlns:wsdlsoap="http://schemas.xmlsoap.org/wsdl/soap/" 4220
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"> 4221
 4222
 <wsdl:documentation> 4223
 <epcglobal:copyright> 4224
 Copyright (C) 2006-2016 GS1 AISBL, All Rights Reserved 4225
 </epcglobal:copyright> 4226
 <epcglobal:disclaimer> 4227
THIS DOCUMENT IS PROVIDED “AS IS” WITH NO WARRANTIES WHATSOEVER, INCLUDING ANY 4228
WARRANTY OF MERCHANTABILITY, NONINFRINGMENT, FITNESS FOR PARTICULAR PURPOSE, OR ANY 4229
WARRANTY OTHER WISE ARISING OUT OF THIS SPECIFICATION. GS1 disclaims all liability 4230
for any damages arising from use or misuse of this Standard, whether special, 4231
indirect, consequential, or compensatory damages, and including liability for 4232
infringement of any intellectual property rights, relating to use of information in 4233
or reliance upon this document. 4234
GS1 retains the right to make changes to this document at any time, without notice. 4235
GS1 makes no warranty for the use of this document and assumes no responsibility for 4236
any errors which may appear in the document, nor does it make a commitment to update 4237
the information contained herein. 4238
 </epcglobal:disclaimer> 4239
 <epcglobal:specification> 4240

EPC Information Services (EPCIS) Standard

Release 1.2, Ratified, Sep 2016 © 2016 GS1 AISBL Page 117 of 138

 </epcglobal:specification> 4241
 </wsdl:documentation> 4242
 4243
 <!-- EPCISSERVICE TYPES --> 4244
 <wsdl:types> 4245
 <xsd:schema targetNamespace="urn:epcglobal:epcis:wsdl:1" 4246
 xmlns:impl="urn:epcglobal:epcis:wsdl:1" 4247
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"> 4248
 4249
 <xsd:import 4250
 namespace="urn:epcglobal:xsd:1" 4251
 schemaLocation="EPCglobal.xsd"/> 4252
 <xsd:import 4253
 namespace="urn:epcglobal:epcis:xsd:1" 4254
 schemaLocation="EPCglobal-epcis-1_2.xsd"/> 4255
 <xsd:import 4256
 namespace="urn:epcglobal:epcis-query:xsd:1" 4257
 schemaLocation="EPCglobal-epcis-query-1_2.xsd"/> 4258
 </xsd:schema> 4259
 </wsdl:types> 4260
 4261
 <!-- EPCIS QUERY SERVICE MESSAGES --> 4262
 4263
 <wsdl:message name="getQueryNamesRequest"> 4264
 <wsdl:part name="parms" element="epcisq:GetQueryNames"/> 4265
 </wsdl:message> 4266
 <wsdl:message name="getQueryNamesResponse"> 4267
 <wsdl:part name="getQueryNamesReturn" element="epcisq:GetQueryNamesResult"/> 4268
 </wsdl:message> 4269
 4270
 <wsdl:message name="subscribeRequest"> 4271
 <wsdl:part name="parms" element="epcisq:Subscribe"/> 4272
 </wsdl:message> 4273
 <wsdl:message name="subscribeResponse"> 4274
 <wsdl:part name="subscribeReturn" element="epcisq:SubscribeResult"/> 4275
 </wsdl:message> 4276
 4277
 <wsdl:message name="unsubscribeRequest"> 4278
 <wsdl:part name="parms" element="epcisq:Unsubscribe"/> 4279
 </wsdl:message> 4280
 <wsdl:message name="unsubscribeResponse"> 4281
 <wsdl:part name="unsubscribeReturn" element="epcisq:UnsubscribeResult"/> 4282
 </wsdl:message> 4283
 4284
 <wsdl:message name="getSubscriptionIDsRequest"> 4285
 <wsdl:part name="parms" element="epcisq:GetSubscriptionIDs"/> 4286
 </wsdl:message> 4287
 <wsdl:message name="getSubscriptionIDsResponse"> 4288
 <wsdl:part name="getSubscriptionIDsReturn" 4289
element="epcisq:GetSubscriptionIDsResult"/> 4290
 </wsdl:message> 4291
 4292
 <wsdl:message name="pollRequest"> 4293
 <wsdl:part name="parms" element="epcisq:Poll"/> 4294
 </wsdl:message> 4295
 <wsdl:message name="pollResponse"> 4296
 <wsdl:part name="pollReturn" element="epcisq:QueryResults"/> 4297
 </wsdl:message> 4298
 4299
 <wsdl:message name="getStandardVersionRequest"> 4300
 <wsdl:part name="parms" element="epcisq:GetStandardVersion"/> 4301
 </wsdl:message> 4302
 <wsdl:message name="getStandardVersionResponse"> 4303
 <wsdl:part name="getStandardVersionReturn" 4304
element="epcisq:GetStandardVersionResult"/> 4305
 </wsdl:message> 4306

EPC Information Services (EPCIS) Standard

Release 1.2, Ratified, Sep 2016 © 2016 GS1 AISBL Page 118 of 138

 4307
 <wsdl:message name="getVendorVersionRequest"> 4308
 <wsdl:part name="parms" element="epcisq:GetVendorVersion"/> 4309
 </wsdl:message> 4310
 <wsdl:message name="getVendorVersionResponse"> 4311
 <wsdl:part name="getVendorVersionReturn" 4312
element="epcisq:GetVendorVersionResult"/> 4313
 </wsdl:message> 4314
 4315
 <!-- EPCISSERVICE FAULT EXCEPTIONS --> 4316
 <wsdl:message name="DuplicateNameExceptionResponse"> 4317
 <wsdl:part name="fault" element="epcisq:DuplicateNameException"/> 4318
 </wsdl:message> 4319
 <!-- QueryValidationException not implemented in EPCIS 1.0 4320
 <wsdl:message name="QueryValidationExceptionResponse"> 4321
 <wsdl:part name="fault" element="epcisq:QueryValidationException"/> 4322
 </wsdl:message> 4323
 --> 4324
 <wsdl:message name="InvalidURIExceptionResponse"> 4325
 <wsdl:part name="fault" element="epcisq:InvalidURIException"/> 4326
 </wsdl:message> 4327
 <wsdl:message name="NoSuchNameExceptionResponse"> 4328
 <wsdl:part name="fault" element="epcisq:NoSuchNameException"/> 4329
 </wsdl:message> 4330
 <wsdl:message name="NoSuchSubscriptionExceptionResponse"> 4331
 <wsdl:part name="fault" element="epcisq:NoSuchSubscriptionException"/> 4332
 </wsdl:message> 4333
 <wsdl:message name="DuplicateSubscriptionExceptionResponse"> 4334
 <wsdl:part name="fault" element="epcisq:DuplicateSubscriptionException"/> 4335
 </wsdl:message> 4336
 <wsdl:message name="QueryParameterExceptionResponse"> 4337
 <wsdl:part name="fault" element="epcisq:QueryParameterException"/> 4338
 </wsdl:message> 4339
 <wsdl:message name="QueryTooLargeExceptionResponse"> 4340
 <wsdl:part name="fault" element="epcisq:QueryTooLargeException"/> 4341
 </wsdl:message> 4342
 <wsdl:message name="QueryTooComplexExceptionResponse"> 4343
 <wsdl:part name="fault" element="epcisq:QueryTooComplexException"/> 4344
 </wsdl:message> 4345
 <wsdl:message name="SubscriptionControlsExceptionResponse"> 4346
 <wsdl:part name="fault" element="epcisq:SubscriptionControlsException"/> 4347
 </wsdl:message> 4348
 <wsdl:message name="SubscribeNotPermittedExceptionResponse"> 4349
 <wsdl:part name="fault" element="epcisq:SubscribeNotPermittedException"/> 4350
 </wsdl:message> 4351
 <wsdl:message name="SecurityExceptionResponse"> 4352
 <wsdl:part name="fault" element="epcisq:SecurityException"/> 4353
 </wsdl:message> 4354
 <wsdl:message name="ValidationExceptionResponse"> 4355
 <wsdl:part name="fault" element="epcisq:ValidationException"/> 4356
 </wsdl:message> 4357
 <wsdl:message name="ImplementationExceptionResponse"> 4358
 <wsdl:part name="fault" element="epcisq:ImplementationException"/> 4359
 </wsdl:message> 4360
 4361
 <!-- EPCISSERVICE PORTTYPE --> 4362
 <wsdl:portType name="EPCISServicePortType"> 4363
 4364
 <wsdl:operation name="getQueryNames"> 4365
 <wsdl:input message="impl:getQueryNamesRequest" name="getQueryNamesRequest"/> 4366
 <wsdl:output message="impl:getQueryNamesResponse" 4367
name="getQueryNamesResponse"/> 4368
 <wsdl:fault message="impl:SecurityExceptionResponse" 4369
name="SecurityExceptionFault"/> 4370
 <wsdl:fault message="impl:ValidationExceptionResponse" 4371
name="ValidationExceptionFault"/> 4372

EPC Information Services (EPCIS) Standard

Release 1.2, Ratified, Sep 2016 © 2016 GS1 AISBL Page 119 of 138

 <wsdl:fault message="impl:ImplementationExceptionResponse" 4373
name="ImplementationExceptionFault"/> 4374
 </wsdl:operation> 4375
 4376
 <wsdl:operation name="subscribe"> 4377
 <wsdl:input message="impl:subscribeRequest" name="subscribeRequest"/> 4378
 <wsdl:output message="impl:subscribeResponse" name="subscribeResponse"/> 4379
 <wsdl:fault message="impl:NoSuchNameExceptionResponse" 4380
name="NoSuchNameExceptionFault"/> 4381
 <wsdl:fault message="impl:InvalidURIExceptionResponse" 4382
name="InvalidURIExceptionFault"/> 4383
 <wsdl:fault message="impl:DuplicateSubscriptionExceptionResponse" 4384
name="DuplicateSubscriptionExceptionFault"/> 4385
 <wsdl:fault message="impl:QueryParameterExceptionResponse" 4386
name="QueryParameterExceptionFault"/> 4387
 <wsdl:fault message="impl:QueryTooComplexExceptionResponse" 4388
name="QueryTooComplexExceptionFault"/> 4389
 <wsdl:fault message="impl:SubscriptionControlsExceptionResponse" 4390
name="SubscriptionControlsExceptionFault"/> 4391
 <wsdl:fault message="impl:SubscribeNotPermittedExceptionResponse" 4392
name="SubscribeNotPermittedExceptionFault"/> 4393
 <wsdl:fault message="impl:SecurityExceptionResponse" 4394
name="SecurityExceptionFault"/> 4395
 <wsdl:fault message="impl:ValidationExceptionResponse" 4396
name="ValidationExceptionFault"/> 4397
 <wsdl:fault message="impl:ImplementationExceptionResponse" 4398
name="ImplementationExceptionFault"/> 4399
 </wsdl:operation> 4400
 4401
 <wsdl:operation name="unsubscribe"> 4402
 <wsdl:input message="impl:unsubscribeRequest" name="unsubscribeRequest"/> 4403
 <wsdl:output message="impl:unsubscribeResponse" name="unsubscribeResponse"/> 4404
 <wsdl:fault message="impl:NoSuchSubscriptionExceptionResponse" 4405
name="NoSuchSubscriptionExceptionFault"/> 4406
 <wsdl:fault message="impl:SecurityExceptionResponse" 4407
name="SecurityExceptionFault"/> 4408
 <wsdl:fault message="impl:ValidationExceptionResponse" 4409
name="ValidationExceptionFault"/> 4410
 <wsdl:fault message="impl:ImplementationExceptionResponse" 4411
name="ImplementationExceptionFault"/> 4412
 </wsdl:operation> 4413
 4414
 <wsdl:operation name="getSubscriptionIDs"> 4415
 <wsdl:input message="impl:getSubscriptionIDsRequest" 4416
name="getSubscriptionIDsRequest"/> 4417
 <wsdl:output message="impl:getSubscriptionIDsResponse" 4418
name="getSubscriptionIDsResponse"/> 4419
 <wsdl:fault message="impl:NoSuchNameExceptionResponse" 4420
name="NoSuchNameExceptionFault"/> 4421
 <wsdl:fault message="impl:SecurityExceptionResponse" 4422
name="SecurityExceptionFault"/> 4423
 <wsdl:fault message="impl:ValidationExceptionResponse" 4424
name="ValidationExceptionFault"/> 4425
 <wsdl:fault message="impl:ImplementationExceptionResponse" 4426
name="ImplementationExceptionFault"/> 4427
 </wsdl:operation> 4428
 4429
 <wsdl:operation name="poll"> 4430
 <wsdl:input message="impl:pollRequest" name="pollRequest"/> 4431
 <wsdl:output message="impl:pollResponse" name="pollResponse"/> 4432
 <wsdl:fault message="impl:QueryParameterExceptionResponse" 4433
name="QueryParameterExceptionFault"/> 4434
 <wsdl:fault message="impl:QueryTooLargeExceptionResponse" 4435
name="QueryTooLargeExceptionFault"/> 4436
 <wsdl:fault message="impl:QueryTooComplexExceptionResponse" 4437
name="QueryTooComplexExceptionFault"/> 4438

EPC Information Services (EPCIS) Standard

Release 1.2, Ratified, Sep 2016 © 2016 GS1 AISBL Page 120 of 138

 <wsdl:fault message="impl:NoSuchNameExceptionResponse" 4439
name="NoSuchNameExceptionFault"/> 4440
 <wsdl:fault message="impl:SecurityExceptionResponse" 4441
name="SecurityExceptionFault"/> 4442
 <wsdl:fault message="impl:ValidationExceptionResponse" 4443
name="ValidationExceptionFault"/> 4444
 <wsdl:fault message="impl:ImplementationExceptionResponse" 4445
name="ImplementationExceptionFault"/> 4446
 </wsdl:operation> 4447
 4448
 <wsdl:operation name="getStandardVersion"> 4449
 <wsdl:input message="impl:getStandardVersionRequest" 4450
name="getStandardVersionRequest"/> 4451
 <wsdl:output message="impl:getStandardVersionResponse" 4452
name="getStandardVersionResponse"/> 4453
 <wsdl:fault message="impl:SecurityExceptionResponse" 4454
name="SecurityExceptionFault"/> 4455
 <wsdl:fault message="impl:ValidationExceptionResponse" 4456
name="ValidationExceptionFault"/> 4457
 <wsdl:fault message="impl:ImplementationExceptionResponse" 4458
name="ImplementationExceptionFault"/> 4459
 </wsdl:operation> 4460
 4461
 <wsdl:operation name="getVendorVersion"> 4462
 <wsdl:input message="impl:getVendorVersionRequest" 4463
name="getVendorVersionRequest"/> 4464
 <wsdl:output message="impl:getVendorVersionResponse" 4465
name="getVendorVersionResponse"/> 4466
 <wsdl:fault message="impl:SecurityExceptionResponse" 4467
name="SecurityExceptionFault"/> 4468
 <wsdl:fault message="impl:ValidationExceptionResponse" 4469
name="ValidationExceptionFault"/> 4470
 <wsdl:fault message="impl:ImplementationExceptionResponse" 4471
name="ImplementationExceptionFault"/> 4472
 </wsdl:operation> 4473
 </wsdl:portType> 4474
 4475
 <!-- EPCISSERVICE BINDING --> 4476
 <wsdl:binding name="EPCISServiceBinding" type="impl:EPCISServicePortType"> 4477
 <wsdlsoap:binding style="document" 4478
transport="http://schemas.xmlsoap.org/soap/http"/> 4479
 4480
 <wsdl:operation name="getQueryNames"> 4481
 <wsdlsoap:operation soapAction=""/> 4482
 <wsdl:input name="getQueryNamesRequest"> 4483
 <wsdlsoap:body 4484
 use="literal"/> 4485
 </wsdl:input> 4486
 <wsdl:output name="getQueryNamesResponse"> 4487
 <wsdlsoap:body 4488
 use="literal"/> 4489
 </wsdl:output> 4490
 <wsdl:fault name="SecurityExceptionFault"> 4491
 <wsdlsoap:fault 4492
 name="SecurityExceptionFault" 4493
 use="literal"/> 4494
 </wsdl:fault> 4495
 <wsdl:fault name="ValidationExceptionFault"> 4496
 <wsdlsoap:fault 4497
 name="ValidationExceptionFault" 4498
 use="literal"/> 4499
 </wsdl:fault> 4500
 <wsdl:fault name="ImplementationExceptionFault"> 4501
 <wsdlsoap:fault 4502
 name="ImplementationExceptionFault" 4503
 use="literal"/> 4504

EPC Information Services (EPCIS) Standard

Release 1.2, Ratified, Sep 2016 © 2016 GS1 AISBL Page 121 of 138

 </wsdl:fault> 4505
 </wsdl:operation> 4506
 4507
 <wsdl:operation name="subscribe"> 4508
 <wsdlsoap:operation soapAction=""/> 4509
 <wsdl:input name="subscribeRequest"> 4510
 <wsdlsoap:body 4511
 use="literal"/> 4512
 </wsdl:input> 4513
 <wsdl:output name="subscribeResponse"> 4514
 <wsdlsoap:body 4515
 use="literal"/> 4516
 </wsdl:output> 4517
 <wsdl:fault name="NoSuchNameExceptionFault"> 4518
 <wsdlsoap:fault 4519
 name="NoSuchNameExceptionFault" 4520
 use="literal"/> 4521
 </wsdl:fault> 4522
 <wsdl:fault name="InvalidURIExceptionFault"> 4523
 <wsdlsoap:fault 4524
 name="InvalidURIExceptionFault" 4525
 use="literal"/> 4526
 </wsdl:fault> 4527
 <wsdl:fault name="DuplicateSubscriptionExceptionFault"> 4528
 <wsdlsoap:fault 4529
 name="DuplicateSubscriptionExceptionFault" 4530
 use="literal"/> 4531
 </wsdl:fault> 4532
 <wsdl:fault name="QueryParameterExceptionFault"> 4533
 <wsdlsoap:fault 4534
 name="QueryParameterExceptionFault" 4535
 use="literal"/> 4536
 </wsdl:fault> 4537
 <wsdl:fault name="QueryTooComplexExceptionFault"> 4538
 <wsdlsoap:fault 4539
 name="QueryTooComplexExceptionFault" 4540
 use="literal"/> 4541
 </wsdl:fault> 4542
 <wsdl:fault name="SubscribeNotPermittedExceptionFault"> 4543
 <wsdlsoap:fault 4544
 name="SubscribeNotPermittedExceptionFault" 4545
 use="literal"/> 4546
 </wsdl:fault> 4547
 <wsdl:fault name="SubscriptionControlsExceptionFault"> 4548
 <wsdlsoap:fault 4549
 name="SubscriptionControlsExceptionFault" 4550
 use="literal"/> 4551
 </wsdl:fault> 4552
 <wsdl:fault name="SecurityExceptionFault"> 4553
 <wsdlsoap:fault 4554
 name="SecurityExceptionFault" 4555
 use="literal"/> 4556
 </wsdl:fault> 4557
 <wsdl:fault name="ValidationExceptionFault"> 4558
 <wsdlsoap:fault 4559
 name="ValidationExceptionFault" 4560
 use="literal"/> 4561
 </wsdl:fault> 4562
 <wsdl:fault name="ImplementationExceptionFault"> 4563
 <wsdlsoap:fault 4564
 name="ImplementationExceptionFault" 4565
 use="literal"/> 4566
 </wsdl:fault> 4567
 </wsdl:operation> 4568
 4569
 <wsdl:operation name="unsubscribe"> 4570

EPC Information Services (EPCIS) Standard

Release 1.2, Ratified, Sep 2016 © 2016 GS1 AISBL Page 122 of 138

 <wsdlsoap:operation soapAction=""/> 4571
 <wsdl:input name="unsubscribeRequest"> 4572
 <wsdlsoap:body 4573
 use="literal"/> 4574
 </wsdl:input> 4575
 <wsdl:output name="unsubscribeResponse"> 4576
 <wsdlsoap:body 4577
 use="literal"/> 4578
 </wsdl:output> 4579
 <wsdl:fault name="NoSuchSubscriptionExceptionFault"> 4580
 <wsdlsoap:fault 4581
 name="NoSuchSubscriptionExceptionFault" 4582
 use="literal"/> 4583
 </wsdl:fault> 4584
 <wsdl:fault name="SecurityExceptionFault"> 4585
 <wsdlsoap:fault 4586
 name="SecurityExceptionFault" 4587
 use="literal"/> 4588
 </wsdl:fault> 4589
 <wsdl:fault name="ValidationExceptionFault"> 4590
 <wsdlsoap:fault 4591
 name="ValidationExceptionFault" 4592
 use="literal"/> 4593
 </wsdl:fault> 4594
 <wsdl:fault name="ImplementationExceptionFault"> 4595
 <wsdlsoap:fault 4596
 name="ImplementationExceptionFault" 4597
 use="literal"/> 4598
 </wsdl:fault> 4599
 </wsdl:operation> 4600
 4601
 <wsdl:operation name="getSubscriptionIDs"> 4602
 <wsdlsoap:operation soapAction=""/> 4603
 <wsdl:input name="getSubscriptionIDsRequest"> 4604
 <wsdlsoap:body 4605
 use="literal"/> 4606
 </wsdl:input> 4607
 <wsdl:output name="getSubscriptionIDsResponse"> 4608
 <wsdlsoap:body 4609
 use="literal"/> 4610
 </wsdl:output> 4611
 <wsdl:fault name="NoSuchNameExceptionFault"> 4612
 <wsdlsoap:fault 4613
 name="NoSuchNameExceptionFault" 4614
 use="literal"/> 4615
 </wsdl:fault> 4616
 <wsdl:fault name="SecurityExceptionFault"> 4617
 <wsdlsoap:fault 4618
 name="SecurityExceptionFault" 4619
 use="literal"/> 4620
 </wsdl:fault> 4621
 <wsdl:fault name="ValidationExceptionFault"> 4622
 <wsdlsoap:fault 4623
 name="ValidationExceptionFault" 4624
 use="literal"/> 4625
 </wsdl:fault> 4626
 <wsdl:fault name="ImplementationExceptionFault"> 4627
 <wsdlsoap:fault 4628
 name="ImplementationExceptionFault" 4629
 use="literal"/> 4630
 </wsdl:fault> 4631
 </wsdl:operation> 4632
 4633
 <wsdl:operation name="poll"> 4634
 <wsdlsoap:operation soapAction=""/> 4635
 <wsdl:input name="pollRequest"> 4636

EPC Information Services (EPCIS) Standard

Release 1.2, Ratified, Sep 2016 © 2016 GS1 AISBL Page 123 of 138

 <wsdlsoap:body 4637
 use="literal"/> 4638
 </wsdl:input> 4639
 <wsdl:output name="pollResponse"> 4640
 <wsdlsoap:body 4641
 use="literal"/> 4642
 </wsdl:output> 4643
 <wsdl:fault name="QueryParameterExceptionFault"> 4644
 <wsdlsoap:fault 4645
 name="QueryParameterExceptionFault" 4646
 use="literal"/> 4647
 </wsdl:fault> 4648
 <wsdl:fault name="QueryTooComplexExceptionFault"> 4649
 <wsdlsoap:fault 4650
 name="QueryTooComplexExceptionFault" 4651
 use="literal"/> 4652
 </wsdl:fault> 4653
 <wsdl:fault name="QueryTooLargeExceptionFault"> 4654
 <wsdlsoap:fault 4655
 name="QueryTooLargeExceptionFault" 4656
 use="literal"/> 4657
 </wsdl:fault> 4658
 <wsdl:fault name="NoSuchNameExceptionFault"> 4659
 <wsdlsoap:fault 4660
 name="NoSuchNameExceptionFault" 4661
 use="literal"/> 4662
 </wsdl:fault> 4663
 <wsdl:fault name="SecurityExceptionFault"> 4664
 <wsdlsoap:fault 4665
 name="SecurityExceptionFault" 4666
 use="literal"/> 4667
 </wsdl:fault> 4668
 <wsdl:fault name="ValidationExceptionFault"> 4669
 <wsdlsoap:fault 4670
 name="ValidationExceptionFault" 4671
 use="literal"/> 4672
 </wsdl:fault> 4673
 <wsdl:fault name="ImplementationExceptionFault"> 4674
 <wsdlsoap:fault 4675
 name="ImplementationExceptionFault" 4676
 use="literal"/> 4677
 </wsdl:fault> 4678
 </wsdl:operation> 4679
 4680
 <wsdl:operation name="getStandardVersion"> 4681
 <wsdlsoap:operation soapAction=""/> 4682
 <wsdl:input name="getStandardVersionRequest"> 4683
 <wsdlsoap:body 4684
 use="literal"/> 4685
 </wsdl:input> 4686
 <wsdl:output name="getStandardVersionResponse"> 4687
 <wsdlsoap:body 4688
 use="literal"/> 4689
 </wsdl:output> 4690
 <wsdl:fault name="SecurityExceptionFault"> 4691
 <wsdlsoap:fault 4692
 name="SecurityExceptionFault" 4693
 use="literal"/> 4694
 </wsdl:fault> 4695
 <wsdl:fault name="ValidationExceptionFault"> 4696
 <wsdlsoap:fault 4697
 name="ValidationExceptionFault" 4698
 use="literal"/> 4699
 </wsdl:fault> 4700
 <wsdl:fault name="ImplementationExceptionFault"> 4701
 <wsdlsoap:fault 4702

EPC Information Services (EPCIS) Standard

Release 1.2, Ratified, Sep 2016 © 2016 GS1 AISBL Page 124 of 138

 name="ImplementationExceptionFault" 4703
 use="literal"/> 4704
 </wsdl:fault> 4705
 </wsdl:operation> 4706
 4707
 <wsdl:operation name="getVendorVersion"> 4708
 <wsdlsoap:operation soapAction=""/> 4709
 <wsdl:input name="getVendorVersionRequest"> 4710
 <wsdlsoap:body 4711
 use="literal"/> 4712
 </wsdl:input> 4713
 <wsdl:output name="getVendorVersionResponse"> 4714
 <wsdlsoap:body 4715
 use="literal"/> 4716
 </wsdl:output> 4717
 <wsdl:fault name="SecurityExceptionFault"> 4718
 <wsdlsoap:fault 4719
 name="SecurityExceptionFault" 4720
 use="literal"/> 4721
 </wsdl:fault> 4722
 <wsdl:fault name="ValidationExceptionFault"> 4723
 <wsdlsoap:fault 4724
 name="ValidationExceptionFault" 4725
 use="literal"/> 4726
 </wsdl:fault> 4727
 <wsdl:fault name="ImplementationExceptionFault"> 4728
 <wsdlsoap:fault 4729
 name="ImplementationExceptionFault" 4730
 use="literal"/> 4731
 </wsdl:fault> 4732
 </wsdl:operation> 4733
 4734
 </wsdl:binding> 4735
 4736
 <!-- EPCISSERVICE --> 4737
 <wsdl:service name="EPCglobalEPCISService"> 4738
 <wsdl:port binding="impl:EPCISServiceBinding" name="EPCglobalEPCISServicePort"> 4739
 <!-- The address shown below is an example; an implementation MAY specify 4740
 any port it wishes 4741
 --> 4742
 <wsdlsoap:address 4743
 location="http://localhost:6060/axis/services/EPCglobalEPCISService"/> 4744
 </wsdl:port> 4745
 </wsdl:service> 4746
 4747
</wsdl:definitions> 4748

 4749

11.3 AS2 Binding for the query control interface 4750

This section defines a binding of the EPCIS Query Control Interface to AS2 [RFC4130]. An EPCIS 4751
implementation MAY provide an AS2 binding of the EPCIS Query Control Interface; if an AS2 binding 4752
is provided it SHALL conform to the provisions of this section. For the purposes of this binding, a 4753
“query client” is an EPCIS Accessing Application that wishes to issue EPCIS query operations as 4754
defined in Section 8.2.5, and a “query server” is an EPCIS Repository or other system that carries 4755
out such operations on behalf of the query client. 4756

A query server SHALL provide an HTTP URL through which it receives messages from a query client 4757
in accordance with [RFC4130]. A message sent by a query client to a query server SHALL be an XML 4758
document whose root element conforms to the EPCISQueryDocument element as defined by the 4759
schema in Section 11.1. The element immediately nested within the EPCISBody element SHALL be 4760
one of the elements corresponding to an EPCIS Query Control Interface method request (i.e., one of 4761
Subscribe, Unsubscribe, Poll, etc.). The permitted elements are listed in the table below. If 4762
the message sent by the query client fails to conform to the above requirements, the query server 4763

EPC Information Services (EPCIS) Standard

Release 1.2, Ratified, Sep 2016 © 2016 GS1 AISBL Page 125 of 138

SHALL respond with a ValidationException (that is, return an EPCISQueryDocument instance 4764
where the element immediately nested within the EPCISBody is a ValidationException). 4765

The query client SHALL provide an HTTP URL that the query server will use to deliver a response 4766
message. This URL is typically exchanged out of band, as part of setting up a bilateral trading 4767
partner agreement (see [RFC4130] Section 5.1). 4768

Both the query client and query server SHALL comply with the Requirements and SHOULD comply 4769
with the Recommendations listed in the GS1 document “EDIINT AS1 and AS2 Transport 4770
Communications Guidelines” [EDICG]. For reference, the relevant portions of this document are 4771
reproduced below. 4772

The query client SHALL include the Standard Business Document Header within the EPCISHeader 4773
element. The query client SHALL include within the Standard Business Document Header a unique 4774
identifier as the value of the InstanceIdentifier element. The query client MAY include other 4775
elements within the Standard Business Document Header as provided by the schema. The instance 4776
identifier provided by the query client SHOULD be unique with respect to all other messages for 4777
which the query client has not yet received a corresponding response. As described below, the 4778
instance identifier is copied into the response message, to assist the client in correlating responses 4779
with requests. 4780

A query server SHALL respond to each message sent by a query client by delivering a response 4781
message to the URL provided by the query client, in accordance with [RFC4130]. A response 4782
message sent by a query server SHALL be an XML document whose root element conforms to the 4783
EPCISQueryDocument element as defined by the schema in Section 11.1. The element 4784
immediately nested within the EPCISBody element SHALL be one of the elements shown in the 4785
following table, according to the element that was provided in the corresponding request: 4786

Request element Permitted return elements

GetQueryNames GetQueryNamesResult
SecurityException
ValidationException
ImplementationException

Subscribe SubscribeResult
NoSuchNameException
InvalidURIException
DuplicateSubscriptionException
QueryParameterException
QueryTooComplexException
SubscriptionControlsException
SubscribeNotPermittedException
SecurityException
ValidationException
ImplementationException

Unsubscribe UnsubscribeResult
NoSuchSubscriptionException
SecurityException
ValidationException
ImplementationException

GetSubscriptionIDs GetSubscriptionIDsResult
NoSuchNameException
SecurityException
ValidationException
ImplementationException

EPC Information Services (EPCIS) Standard

Release 1.2, Ratified, Sep 2016 © 2016 GS1 AISBL Page 126 of 138

Request element Permitted return elements

Poll QueryResults
QueryParameterException
QueryTooLargeException
QueryTooComplexException
NoSuchNameException
SecurityException
ValidationException
ImplementationException

GetStandardVersion GetStandardVersionResult
SecurityException
ValidationException
ImplementationException

GetVendorVersion GetVendorVersionResult
SecurityException
ValidationException
ImplementationException

 4787

The query server SHALL include the Standard Business Document Header within the EPCISHeader 4788
element. The query server SHALL include within the Standard Business Document Header the 4789
BusinessScope element containing a Scope element containing a CorrelationInformation 4790
element containing a RequestingDocumentInstanceIdentifier element; the value of the 4791
latter element SHALL be the value of the InstanceIdentifier element from the Standard 4792
Business Document Header of the corresponding request. Within the Scope element, the Type 4793
subelement SHALL be set to EPCISQuery, and the InstanceIdentifier element SHALL be set to 4794
EPCIS. The query server MAY include other elements within the Standard Business Document 4795
Header as provided by the schema. 4796

11.3.1 GS1 AS2 guidelines (Non-Normative) 4797

As stated above, the query client and query server SHALL comply with the Requirements and 4798
SHOULD comply with the Recommendations listed in the GS1 document “EDIINT AS1 and AS2 4799
Transport Communications Guidelines” [EDICG] For reference, the relevant portions of this 4800
document are reproduced below. This extract is marked non-normative; in the case of conflict 4801
between [EDICG] and what is written below, [EDICG] shall prevail. 4802

Digital Certificate Requirements 4803

Requirement 1 4804

Payload data SHALL be encrypted and digitally signed using the S/MIME specification (see RFC 4805
3851). 4806

Requirement 2 4807

The length of the one-time session (symmetric) key SHALL be 128 bits or greater. 4808

Requirement 3 4809

The length of the Public/Private Encryption key SHALL be 1024 bits or greater. 4810

Requirement 4 4811

The length of the Public/Private Signature key SHALL be 1024 bits or greater. 4812

Requirement 5 4813

The Signature Hash algorithm used SHALL be SHA1. 4814

Configuration Requirement 4815

Requirement 6 4816

EPC Information Services (EPCIS) Standard

Release 1.2, Ratified, Sep 2016 © 2016 GS1 AISBL Page 127 of 138

Digitally signed receipts (Signed Message Disposition Notifications (MDNs)) SHALL be requested by 4817
the Sender of Message. 4818

Recommendations 4819

Recommendation 1 – MDN Request Option 4820

Either Asynchronous or Synchronous MDNs MAY be used with EDIINT AS2. There are potential 4821
issues with both synchronous and asynchronous MDNs, and Trading Partners need to jointly 4822
determine which option is best based on their operational environments and message 4823
characteristics. 4824

Recommendation 2 – MDN Delivery 4825

Recipients SHOULD transmit the MDN as soon as technically possible to ensure that the message 4826
sender recognises that the message has been received and processed by the receiving EDIINT 4827
software in a timely fashion. This applies equally to AS1 and AS2 as well as Asynchronous and 4828
Synchronous MDN requests. 4829

Recommendation 3 – Delivery Retry with Asynchronous MDNs Requested 4830

When a message has been successfully sent, but an asynchronous MDN has not been received in a 4831
timely manner, the Sender of Message SHOULD wait a configurable amount of time and then 4832
automatically resend the original message with the same content and the same Message-ID value 4833
as the initial message. The period of time to wait for a MDN and then automatically resend the 4834
original message is based on business and technical needs, but generally SHOULD be not be less 4835
than one hour. There SHOULD be no more than two automatic resends of a message before 4836
personally contacting a technical support contact at the Receiver of Message site. 4837

Recommendation 4 – Delivery Retry for AS2 4838

Delivery retry SHOULD take place when any HTTP response other than “200 OK” is received (for 4839
example, 401, 500, 502, 503, timeout, etc). This occurrence indicates that the actual transfer of 4840
data was not successful. A delivery retry of a message SHALL have the same content and the same 4841
Message-ID value as the initial message. Retries SHOULD occur on a configurable schedule. 4842
Retrying SHALL cease when a message is successfully sent (which is indicated by receiving a HTTP 4843
200 range status code), or SHOULD cease when a retry limit is exceeded. 4844

Recommendation 5 – Message Resubmission 4845

If neither automated Delivery Retry nor automated Delivery Resend are successful, the Sender of 4846
Message MAY elect to resubmit the payload data in a new message at a later time. The Receiver of 4847
Message MAY also request message resubmission if a message was lost subsequent to a successful 4848
receive. If the message is resubmitted a new Message-ID MUST be used. Resubmission is normally 4849
a manual compensation. 4850

Recommendation 6 – HTTP vs. HTTP/S (SSL) 4851

For EDIINT AS2, the transport protocol HTTP SHOULD be used. However, if there is a need to secure 4852
the AS2-To and the AS2-From addresses and other AS2 header information, HTTPS MAY be used in 4853
addition to the payload encryption provided by AS2. The encryption provided by HTTPS secures only 4854
the point to point communications channel directly between the client and the server. 4855

Recommendation 7 – AS2 Header 4856

For EDIINT AS2, the values used in the AS2-From and AS2-To fields in the header SHOULD be GS1 4857
Global Location Numbers (GLNs). 4858

Recommendation 8 - SMTP 4859

[not applicable] 4860

Recommendation 9 - Compression 4861

EDIINT compression MAY be used as an option, especially if message sizes are larger than 1MB. 4862
Although current versions of EDIINT software handle compression automatically, this SHOULD be 4863
bilaterally agreed between the sender and the receiver. 4864

Recommendation 10 – Digital Certificate Characteristics 4865

EPC Information Services (EPCIS) Standard

Release 1.2, Ratified, Sep 2016 © 2016 GS1 AISBL Page 128 of 138

Digital certificates MAY either be from a trusted third party or self signed if bilaterally agreed 4866
between trading partners. If certificates from a third party are used, the trust level SHOULD be at a 4867
minimum what is termed ‘Class 2’ which ensures that validation of the individual and the 4868
organisation has been done. 4869

Recommendation 11 – Common Digital Certificate for Encryption & Signature 4870

A single digital certificate MAY be used for both encryption and signatures, however if business 4871
processes dictate, two separate certificates MAY be used. Although current versions of EDIINT 4872
software handle two certificates automatically, this SHOULD be bilaterally agreed between the 4873
sender and the receiver. 4874

Recommendation 12 – Digital Certificate Validity Period 4875

The minimum validity period for a certificate SHOULD be 1 year. The maximum validity period 4876
SHOULD be 5 years. 4877

Recommendation 13 – Digital Certificate – Automated Exchange 4878

The method for certificate exchange SHALL be bilaterally agreed upon. When the “Certificate 4879
Exchange Messaging for EDIINT” specification is widely implemented by software vendors, its use 4880
will be strongly recommended. This IETF specification will enable automated certificate exchange 4881
once the initial trust relationship is established, and will significantly reduce the operational burden 4882
of manually exchanging certificates prior to their expiration. 4883

Recommendation 14 – HTTP and HTTP/S Port Numbers for AS2 4884

Receiving AS2 messages on a single port (for each protocol) significantly minimises operational 4885
complexities such as firewall set-up for both the sending and receiving partner. Ideally, all AS2 4886
partners would receive messages using the same port number. However some AS2 partners have 4887
previously standardised to use a different port number than others and changing to a new port 4888
number would add costs without commensurate benefits. 4889

Therefore AS2 partners MAY standardise on the use of port 4080 to receive HTTP messages and the 4890
use of port 5443 to receive HTTP/S (SSL) messages. 4891

Recommendation 15 – Duplicate AS2 Messages 4892

AS2 software implementations SHOULD use the ‘AS2 Message-ID’ value to detect duplicate 4893
messages and avoid sending the payload from the duplicate message to internal business 4894
applications. The Receiver of Message SHALL return an appropriate MDN even when a message is 4895
detected as a duplicate. Note: The Internet Engineering Task Force (IETF) is developing an 4896
“Operational Reliability for EDIINT AS2” specification which defines procedures to avoid duplicates 4897
and ensure reliability. 4898

Recommendation 15 – Technical Support 4899

There SHOULD be a technical support contact for each Sender of Message and Receiver of Message. 4900
The contact information SHOULD include name, email address and phone number. For 24x7x365 4901
operation, a pager or help desk information SHOULD be also provided. 4902

11.4 Bindings for query callback interface 4903

This section specifies bindings for the Query Callback Interface. Each binding includes a specification 4904
for a URI that may be used as the dest parameter to the subscribe method of Section 8.2.5. 4905
Each subsection below specifies the conformance requirement (MAY, SHOULD, SHALL) for each 4906
binding. 4907

Implementations MAY support additional bindings of the Query Callback Interface. Any additional 4908
binding SHALL NOT use a URI scheme already used by one of the bindings specified herein. 4909

All destination URIs, whether standardised as a part of this specification or not, SHALL conform to 4910
the general syntax for URIs as defined in [RFC2396]. Each binding of the Query Callback Interface 4911
may impose additional constraints upon syntax of URIs for use with that binding. 4912

EPC Information Services (EPCIS) Standard

Release 1.2, Ratified, Sep 2016 © 2016 GS1 AISBL Page 129 of 138

11.4.1 General Considerations for all XML-based bindings 4913

The following applies to all XML-based bindings of the Query Callback Interface, including the 4914
bindings specified in Sections 11.4.2, 11.4.3, and 11.4.4. 4915

The payload delivered to the recipient SHALL be an XML document conforming to the schema 4916
specified in Section 11.1. Specifically, the payload SHALL be an EPCISQueryDocument instance 4917
whose EPCISBody element contains one of the three elements shown in the table below, according 4918
to the method of the Query Callback Interface being invoked: 4919

Query Callback Interface Method Payload Body Contents

callbackResults QueryResults

callbackQueryTooLargeException QueryTooLargeException

callbackImplementationException ImplementationException

 4920

In all cases, the queryName and subscriptionID fields of the payload body element SHALL 4921
contain the queryName and subscriptionID values, respectively, that were supplied in the call to 4922
subscribe that created the standing query. 4923

11.4.2 HTTP binding of the query callback interface 4924

The HTTP binding provides for delivery of standing query results in XML via the HTTP protocol using 4925
the POST operation. Implementations MAY provide support for this binding. 4926

The syntax for HTTP destination URIs as used by EPCIS SHALL be as defined in [RFC2616], Section 4927
3.2.2. Informally, an HTTP URI has one of the two following forms: 4928

http://host:port/remainder-of-URL 4929
http://host/remainder-of-URL 4930

where 4931

■ host is the DNS name or IP address of the host where the receiver is listening for incoming 4932
HTTP connections. 4933

■ port is the TCP port on which the receiver is listening for incoming HTTP connections. The port 4934
and the preceding colon character may be omitted, in which case the port SHALL default to 80. 4935

■ remainder-of-URL is the URL to which an HTTP POST operation will be directed. 4936

The EPCIS implementation SHALL deliver query results by sending an HTTP POST request to 4937
receiver designated in the URI, where remainder-of-URL is included in the HTTP request-line 4938
(as defined in [RFC2616]), and where the payload is an XML document as specified in 4939
Section 11.4.1. 4940

The interpretation by the EPCIS implementation of the response code returned by the receiver is 4941
outside the scope of this specification; however, all implementations SHALL interpret a response 4942
code 2xx (that is, any response code between 200 and 299, inclusive) as a normal response, not 4943
indicative of any error. 4944

11.4.3 HTTPS binding of the query callback interface 4945

The HTTPS binding provides for delivery of standing query results in XML via the HTTP protocol 4946
using the POST operation, secured via TLS. Implementations MAY provide support for this binding. 4947

The syntax for HTTPS destination URIs as used by EPCIS SHALL be as defined in [RFC2818], Section 4948
2.4, which in turn is identical to the syntax defined in [RFC2616], Section 3.2.2, with the 4949
substitution of https for http. Informally, an HTTPS URI has one of the two following forms: 4950

https://host:port/remainder-of-URL 4951
https://host/remainder-of-URL 4952

where 4953

EPC Information Services (EPCIS) Standard

Release 1.2, Ratified, Sep 2016 © 2016 GS1 AISBL Page 130 of 138

■ host is the DNS name or IP address of the host where the receiver is listening for incoming 4954
HTTP connections. 4955

■ port is the TCP port on which the receiver is listening for incoming HTTP connections. The port 4956
and the preceding colon character may be omitted, in which case the port SHALL default to 443. 4957

■ remainder-of-URL is the URL to which an HTTP POST operation will be directed. 4958

The EPCIS implementation SHALL deliver query results by sending an HTTP POST request to 4959
receiver designated in the URI, where remainder-of-URL is included in the HTTP request-line 4960
(as defined in [RFC2616]), and where the payload is an XML document as specified in 4961
Section 11.4.1. 4962

For the HTTPS binding, HTTP SHALL be used over TLS as defined in [RFC2818]. TLS for this purpose 4963
SHALL be implemented as defined in [RFC2246] except that the mandatory cipher suite is 4964
TLS_RSA_WITH_AES_128_CBC_SHA, as defined in [RFC3268] with CompressionMethod.null. 4965
Implementations MAY support additional cipher suites and compression algorithms as desired 4966

The interpretation by the EPCIS implementation of the response code returned by the receiver is 4967
outside the scope of this specification; however, all implementations SHALL interpret a response 4968
code 2xx (that is, any response code between 200 and 299, inclusive) as a normal response, not 4969
indicative of any error. 4970

11.4.4 AS2 Binding of the query callback interface 4971

The AS2 binding provides for delivery of standing query results in XML via AS2 [RFC4130]. 4972
Implementations MAY provide support for this binding. 4973

The syntax for AS2 destination URIs as used by EPCIS SHALL be as follows: 4974

as2:remainder-of-URI 4975

where 4976

■ remainder-of-URI identifies a specific AS2 communication profile to be used by the EPCIS 4977
Service to deliver information to the subscriber. The syntax of remainder-of-URI is specific to 4978
the particular EPCIS Service to which the subscription is made, subject to the constraint that the 4979
complete URI SHALL conform to URI syntax as defined by [RFC2396]. 4980

Typically, the value of remainder-of-URI is a string naming a particular AS2 communication 4981
profile, where the profile implies such things as the HTTP URL to which AS2 messages are to be 4982
delivered, the security certificates to use, etc. A client of the EPCIS Query Interface wishing to use 4983
AS2 for delivery of standing query results must pre-arrange with the provider of the EPCIS Service 4984
the specific value of remainder-of-URI to use. 4985

 Non-Normative: Explanation: Use of AS2 typically requires pre-arrangement between 4986
communicating parties, for purposes of certificate exchange and other out-of-band 4987
negotiation as part of a bilateral trading partner agreement (see [RFC4130] Section 5.1). The 4988
remainder-of-URI part of the AS2 URI essentially is a name referring to the outcome of a 4989
particular pre-arrangement of this kind. 4990

The EPCIS implementation SHALL deliver query results by sending an AS2 message in accordance 4991
with [RFC4130]. The AS2 message payload SHALL be an XML document as specified in 4992
Section 11.4.1. 4993

Both the EPCIS Service and the recipient of standing query results SHALL comply with the 4994
Requirements and SHOULD comply with the Recommendations listed in the GS1 document “EDIINT 4995
AS1 and AS2 Transport Communications Guidelines” [EDICG] For reference, the relevant portions of 4996
this document are reproduced in Section 11.3. 4997

EPC Information Services (EPCIS) Standard

Release 1.2, Ratified, Sep 2016 © 2016 GS1 AISBL Page 131 of 138

12 Conformance 4998

The EPCIS standard defines both standard event data and standard interfaces between system 4999
components that communicate event data. Both the data formats and the interfaces may be 5000
implemented by a variety of software and data components in any given system. 5001

This section defines what it means to conform to the EPCIS standard. As there are many types of 5002
system components that have the potential to conform to various parts of the EPCIS standard, they 5003
are enumerated below. In the text that follows, any reference to a section of the EPCIS standard 5004
should be understood to refer to that section in its entirety, including subsections thereof. 5005

12.1 Conformance of EPCIS data 5006

An electronic document is in conformance to the EPCIS standard when all of the following are true: 5007

■ The document is a well-formed XML document conforming to [XML1.0]. 5008

■ The document conforms to the XML schema for EPCISDocument specified in Section 9.5, the 5009
XML schema for EPCISMasterDataDocument specified in Section 9.7, or the XML schema for 5010
EPCISQueryDocument specified in Section 11.1, as well as all additional constraints specified 5011
in the respective section. 5012

■ All EPCIS event data within the document (if any) conforms to the definitions of EPCIS event 5013
data specified in Section 7 and its subsections. 5014

■ All master data within the document (if any) conforms to the constraints upon master data 5015
specified in Sections 6.1.1, 6.5, and 9.4. 5016

■ All uses of the extension mechanism (if any) conform to the constraints specified in Section 9.1. 5017

■ If a Standard Business Document Header is present, it conforms to the constraints specified in 5018
Section 9.2. 5019

Many applications of EPCIS will require, in addition to conformance to the EPCIS standard, that data 5020
conform to the EPCIS Core Business Vocabulary [CBV1.2] standard. The CBV standard defines two 5021
conformance levels termed “CBV Compliant” and “CBV Compatible”. See the CBV standard for 5022
details. 5023

12.2 Conformance of EPCIS capture interface clients 5024

A system is in conformance to the EPCIS standard as a capture interface client when all of the 5025
following are true: 5026

■ The system conforms to all statements appearing in either Section 10.1 or Section 10.2 that are 5027
indicated as pertaining to a “capture client.” 5028

Such a system is said to conform to a particular binding of the capture interface (or more than one 5029
binding) depending on which subsection of Section 10 it conforms to. 5030

12.3 Conformance of EPCIS capture interface servers 5031

A system is in conformance to the EPCIS standard as a capture interface server when all of the 5032
following are true: 5033

■ The system conforms to the statements appearing in Section 8.1. 5034

■ The system conforms to all statements appearing in either Section 10.1 or Section 10.2 that are 5035
indicated as pertaining to a “capture server.” 5036

■ The system processes the recordTime field in EPCIS events as specified in the table in 5037
Section 7.4.1. 5038

Such a system is said to conform to a particular binding of the capture interface (or more than one 5039
binding) depending on which subsection of Section 10 it conforms to. 5040

EPC Information Services (EPCIS) Standard

Release 1.2, Ratified, Sep 2016 © 2016 GS1 AISBL Page 132 of 138

12.4 Conformance of EPCIS query interface clients 5041

A system is in conformance to the EPCIS standard as a query interface client when either or both of 5042
the following are true: 5043

■ The system conforms to the definition of a “sender” as specified in [WSI] and sends messages in 5044
conformance to the WSDL specification in Section 11.2. 5045

■ The system conforms to all statements appearing in Section 11.3 that are indicated as 5046
pertaining to a “query client.” 5047

Such a system is said to conform to a particular binding of the query interface (or more than one 5048
binding) depending on which subsection of Section 11 it conforms to. 5049

12.5 Conformance of EPCIS query interface servers 5050

A system is in conformance to the EPCIS standard as a query interface server when all of the 5051
following are true: 5052

■ The system conforms to the statements appearing in Section 8.2. 5053

■ When the system processes a master data query, the returned master data conforms to the 5054
constraints upon master data specified in the first row of the table in Section 6.1.1. 5055

■ The system includes the recordTime field in all EPCIS events returned as query results, as 5056
specified in the table in Section 7.4.1. 5057

■ One or both of the following are true: 5058

□ The system conforms to the definition of a “receiver” as specified in [WSI], receives 5059
messages in conformance to the WSDL specification in Section 11.2, and also conforms to 5060
the additional constraints specified in Section 11.2. 5061

□ The system conforms to all statements appearing in Section 11.3 that are indicated as 5062
pertaining to a “query server.” 5063

Such a system is said to conform to a particular binding of the query interface (or more than one 5064
binding) depending on which subsection of Section 11 it conforms to. 5065

12.6 Conformance of EPCIS query callback interface implementations 5066

A system is in conformance to the EPCIS standard as a query callback interface implementation 5067
when it conforms to the statements appearing in one or more subsections of Section 11.4. Such a 5068
system is said to conform to a particular binding of the query callback interface (or more than one 5069
binding) depending on which subsection it conforms to. 5070

13 References 5071

Normative references: 5072

[ALE1.0] EPCglobal, “The Application Level Events (ALE) Specification, Version 1.0,” EPCglobal 5073
Standard Specification, September 2005, http://www.gs1.org/ale. 5074

[CBV1.2] GS1, “GS1 Core Business Vocabulary (CBV) Version 1.2 Standard,” GS1 standard, June 5075
2016, http://www.gs1.org/epcis. 5076

[CEFACT20] United Nations Economic Commission for Europe, “Recommendation 20: Codes for 5077
Units of Measure Used in International Trade,” September 2010, 5078
http://www.unece.org/fileadmin/DAM/cefact/recommendations/rec20/rec20_Rev7e_2010.zip. 5079

[EDICG] GS1, “EDIINT AS1 and AS2 Transport Communications Guidelines,” GS1 Technical 5080
Document, February 2006, http://www.gs1.org/gs1-xml/guideline/ediint-as1-and-as2-transport-5081
communication-guidelines. 5082

[ISODir2] ISO, “Rules for the structure and drafting of International Standards (ISO/IEC Directives, 5083
Part 2, 2001, 4th edition),” July 2002. 5084

http://www.gs1.org/ale
http://www.gs1.org/epcis
http://www.unece.org/fileadmin/DAM/cefact/recommendations/rec20/rec20_Rev7e_2010.zip
http://www.gs1.org/gs1-xml/guideline/ediint-as1-and-as2-transport-communication-guidelines
http://www.gs1.org/gs1-xml/guideline/ediint-as1-and-as2-transport-communication-guidelines

EPC Information Services (EPCIS) Standard

Release 1.2, Ratified, Sep 2016 © 2016 GS1 AISBL Page 133 of 138

[RFC1738] T. Berners-Lee, L. Masinter, M. McCahill, “Uniform Resource Locators (URL),” RFC 1738, 5085
December 1994, http://www.ietf.org/rfc/rfc1738. 5086

[RFC2141] R. Moats, “URN Syntax,” Internet Engineering Task Force Request for Comments RFC-5087
2141, May 1997, http://www.ietf.org/rfc/rfc2141.txt. 5088

[RFC2246] T. Dierks, C. Allen, “The TLS Protocol, Version 1.0,” RFC2246, January 1999, 5089
http://www.ietf.org/rfc/rfc2246. 5090

[RFC2396] T. Berners-Lee, R. Fielding, L. Masinter, “Uniform Resource Identifiers (URI): Generic 5091
Syntax,” RFC2396, August 1998, http://www.ietf.org/rfc/rfc2396. 5092

[RFC2616] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, T. Berners-Lee, 5093
“Hypertext Transfer Protocol -- HTTP/1.1,” RFC2616, June 1999, http://www.ietf.org/rfc/rfc2616. 5094

[RFC2818] E. Escorla, “HTTP Over TLS,” RFC2818, May 2000, http://www.ietf.org/rfc/rfc2818. 5095

[RFC3268] P. Chown, “Advanced Encryption Standard (AES) Cipersuites for Transport Layer Security 5096
(TLS),” RFC3268, June 2002, http://www.ietf.org/rfc/rfc3268. 5097

[RFC4130] D. Moberg and R. Drummond, “MIME-Based Secure Peer-to-Peer Business Data 5098
Interchange Using HTTP, Applicability Statement 2 (AS2),” RFC4130, July 2005, 5099
http://www.ietf.org/rfc/rfc4130. 5100

[SBDH] United Nations Centre for Trade Facilitation and Electronic Business (UN/CEFACT), 5101
“Standard Business Document Header Technical Specification, Version 1.3,” June 2004, 5102
http://www.gs1.org/services/gsmp/kc/ecom/xml/xml_sbdh.html 5103

[TDS1.9] GS1, “GS1 EPCglobal Tag Data Standards Version 1.9,” GS1 standard, June 2014, 5104
http://www.gs1.org/epc/tag-data-standard 5105

[WSDL1.1] E. Christensen, F. Curbera, G. Meredith, S. Weerawarana, “Web Services Description 5106
Language (WSDL) 1.1,” W3C Note, March 2001, http://www.w3.org/TR/2001/NOTE-wsdl-5107
20010315. 5108

[WSI] K. Ballinger, D. Ehnebuske, M. Gudgin, M. Nottingham, P. Yendluri, “Basic Profile Version 5109
1.0,” WS-i Final Material, April 2004, http://www.ws-i.org/Profiles/BasicProfile-1.0-2004-04-5110
16.html. 5111

[XML1.0] T. Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler, F. Yergeau, “Extensible Markup 5112
Language (XML) 1.0 (Third Edition),” W3C Recommendation, February 2004, 5113
http://www.w3.org/TR/2004/REC-xml-20040204/. 5114

[XMLDR] “XML Design Rules for EAN.UCC, Version 2.0,” February 2004. 5115

[XMLVersioning] D. Orchard, “Versioning XML Vocabularies,” December 2003, 5116
http://www.xml.com/pub/a/2003/12/03/versioning.html. 5117

[XSD1] H. Thompson, D. Beech, M. Maloney, N. Mendelsohn, “XML Schema Part 1: Structures,” 5118
W3C Recommendation, May 2001, http://www.w3.org/TR/xmlschema-1/. 5119

[XSD2] P. Biron, A. Malhotra, “XML Schema Part 2: Datatypes,” W3C Recommendation, May 2001, 5120
http://www.w3.org/TR/xmlschema-2/. 5121

Non-normative references: 5122

[GS1Arch] “The GS1 System Architecture,” GS1 technical document, April 2015, 5123
http://www.gs1.org/docs/gsmp/architecture/GS1_System_Architecture.pdf 5124

[EPCAF] K. R. Traub et al, “EPCglobal Architecture Framework,” EPCglobal technical document, July 5125
2005, http://www.epcglobalinc.org/standards/architecture/architecture_1_0-standard-5126
20050701.pdf 5127

[EPCISGuideline] GS1, “EPCIS and CBV Implementation Guideline,” GS1 Guideline, October 2015, 5128
http://www.gs1.org/docs/epc/EPCIS_Guideline.pdf. 5129

14 Contributors to earlier versions 5130

Below is a list of more active participants and contributors in the development of EPCIS 1.1. This list 5131
does not acknowledge those who only monitored the process or those who chose not to have their 5132

http://www.ietf.org/rfc/rfc1738
http://www.ietf.org/rfc/rfc2141.txt
http://www.ietf.org/rfc/rfc2246
http://www.ietf.org/rfc/rfc2396
http://www.ietf.org/rfc/rfc2616
http://www.ietf.org/rfc/rfc2818
http://www.ietf.org/rfc/rfc3268
http://www.ietf.org/rfc/rfc4130
http://www.gs1.org/services/gsmp/kc/ecom/xml/xml_sbdh.html
http://www.gs1.org/epc/tag-data-standard
http://www.w3.org/TR/2001/NOTE-wsdl-20010315
http://www.w3.org/TR/2001/NOTE-wsdl-20010315
http://www.ws-i.org/Profiles/BasicProfile-1.0-2004-04-16.html
http://www.ws-i.org/Profiles/BasicProfile-1.0-2004-04-16.html
http://www.w3.org/TR/2004/REC-xml-20040204/
http://www.xml.com/pub/a/2003/12/03/versioning.html
http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/xmlschema-2/
http://www.gs1.org/docs/gsmp/architecture/GS1_System_Architecture.pdf
http://www.epcglobalinc.org/standards/architecture/architecture_1_0-standard-20050701.pdf
http://www.epcglobalinc.org/standards/architecture/architecture_1_0-standard-20050701.pdf
http://www.gs1.org/docs/epc/EPCIS_Guideline.pdf

EPC Information Services (EPCIS) Standard

Release 1.2, Ratified, Sep 2016 © 2016 GS1 AISBL Page 134 of 138

name listed here. The participants listed below generated emails, attended face-to-face meetings 5133
and conference calls that were associated with the development of this Standard. 5134

Name Company

Andrew Kennedy FoodLogiQ (Working group co-chair)

Michele Southall GS1 US (Working group co-chair)

Gena Morgan GS1 (Working group facilitator)

Ken Traub Ken Traub Consulting LLC (Editor)

Craig Alan Repec GS1 Global Office

Jean-Pierre Allard Optel Vision

Romain Arnaud Courbon

Shirley Arsenault GS1 Global Office

Koji Asano GS1 Japan

Karla Biggs-Gregory Oracle

Havard Bjastad TraceTracker AS

Stephan Bourguignon Daimler AG

Bob Bunsey SPEDE Technologies

Birgit Burmeister Daimler AG

Jonas Buskenfried GS1 Sweden

Robert Celeste GS1 US

Chris Chandler GS1 US

Lucy Deus Tracetracker

Hussam El-Leithy GS1 US

Heinz Graf GS1 Switzerland

Anders Grangard GS1 Global

Emmanuel Hadzipetros TraceLink

Mark Harrison Auto-ID Labs

Dave Harty Systech International

Douglas Hill GS1 Denmark

Robert Hotaling Supply Insight

John Howells HDMA

Tany Hui GS1 Hong Kong

Yoshihiko Iwasaki GS1 Japan

Art Kaufmann Frequentz LLC, IBM

John Keogh GS1 Global Office

Janice Kite GS1 Global Office

Steinar Kjærnsrød TraceTracker AS

Jay Kolli Abbott

Jens Kungl METRO Group

Sean Lockhead GS1 Global Office

Paul Lothian Tyson

Dale Moberg Axway

EPC Information Services (EPCIS) Standard

Release 1.2, Ratified, Sep 2016 © 2016 GS1 AISBL Page 135 of 138

Name Company

Reiko Moritani GS1 Japan

Mark Morris Abbott Laboratories Inc.

Marc-Antoine Mouilleron France Telecom Orange

Alice Mukaru GS1 Sweden

Falk Nieder IBM Germany

Andrew Osbourne GS1 UK

Ted Osinski MET Laboratories

Nicolas Pauvre GS1 France

Cynthia Poetker Abbott Laboratories

Venkataramanan Rajaraman Abbott Laboratories

Craig Alan Repec GS1 Global Office

Chris Roberts GlaxoSmithKline

Ian Robertson Supply Chain RFID Consulting LLC

Dirk Rodgers Dirk Rodgers Consulting, LLC

Thomas Rumbach SAP AG

John Ryu GS1 Global Office

Aravindan Sankaramurthy Oracle

Michael Sarachman GS1 Global Office

Udo Scheffer METRO Group

Frank Schmid IBM (US)

Michael Smith Merck & Co., Inc.

Monika Solanki Aston University

Peter Spellman TraceLink

Steve Tadevich McKesson

Petter Thune-Larsen GS1 Norway

Peter Tomicki Zimmer, Inc.

Ralph Troeger GS1 Germany

Jens Vialkowitsch Robert Bosch GmbH

Geir Vevle HRAFN

Matthew Warren Zimmer, Inc.

David Weatherby GS1 UK

Joachim Wilkens C & A SCS

 5135

Below is a list of more active participants and contributors in the development of EPCIS 1.0. This list 5136
does not acknowledge those who only monitored the process or those who chose not to have their 5137
name listed here. The participants listed below generated emails, attended face-to-face meetings 5138
and conference calls that were associated with the development of this Standard. 5139

Name Company

Craig Asher IBM (Co-Chair)

Greg Gibert Verisign (Co-Chair)

Richard Swan T3Ci (Co-Chair)

EPC Information Services (EPCIS) Standard

Release 1.2, Ratified, Sep 2016 © 2016 GS1 AISBL Page 136 of 138

Name Company

Ken Traub BEA Systems; ConnecTerra (Specification Editor)

Gena Morgan EPCglobal, Inc. (WorkGroup Facilitator)

Chi-Hyeong Ahn Ceyon Technology Co., Ltd

Umair Akeel IBM

John Anderla Kimberly-Clark Corp

Richard Bach Globe Ranger

Scott Barvick Reva Systems

Sylvanus Bent Bent Systems, Inc.

Hersh Bhargava Rafcor

Chet Birger ConnecTerra

Bud Biswas Polaris Networks

Prabhudda Biswas Oracle Corporation

Havard Bjastad Tracetracker

Joe Bohning Nestle Purina

Al Bottner UNITED PARCEL SERVICE (UPS)

Joe Bradley Sun Microsystems

Leo Burstein Gillette; Procter & Gamble

Anit Chakraborty Oracle Corporation

Chia Chang Sun Microsystems

Ying-Hung Chang Acer Cybercenter Service Inc.

Martin Chen SAP

Nagesh Chigurupati VeriSign

Christian Clauss IBM

John Cooper Kimberly-Clark Corp

Valir-Alin Crisan IBM

Mustafa Dohadwala Shipcom Wireless, Inc.

John Duker Procter & Gamble

Igor Elbert Sensitech

Ronny Fehling Oracle Corporation

Akira Fujinami Internet Initiative Japan, Inc.

Tony Gallo Real Time Systems

Manish Gambhir

Cesar Gemayel Sensitech

Eric Gieseke BEA Systems

Greg Gilbert Manhattan Associates

Graham Gillen Verisign

John Gravitis Allumis

Yuichiro Hanawa Mitsui

Mark Harrison Auto-ID Labs - Cambridge

Jeremy Helm ACSIS

EPC Information Services (EPCIS) Standard

Release 1.2, Ratified, Sep 2016 © 2016 GS1 AISBL Page 137 of 138

Name Company

Barba Hickman Intermec

Manju James BEA Systems

Paul Jatkowski

Jennifer Kahn IBM

Howard Kapustein Manhattan Associates

Sean Lockhead GS1 US

Paul Lovvik Sun Microsystems

Midori Lowe Nippon Telegraph & Telephone Corp (NTT)

Dave Marzouck SAP

Andrew McGrath Manhattan Associates

Michael Mealling Verisign; Refactored Networks

Stephen Miles Auto-ID Labs - MIT

Tim Milne Target

Dale Moberg AXWAY/formerly Cyclone

Stephen Morris Printronix

Ron Moser Wal-Mart

Don Mowery Nestle

Doug Naal Altria Group, Inc./Kraft Foods

David Nesbitt Vue Technology

Shigeki Ohtsu Internet Initiative Japan, Inc.

Ted Osinski MET Labs

Jong Park Tibco

Ju-Hyun Park Samsung SDS

Sung Gong Park Metarights

Eliot Polk Reva Systems

Mike Profit Verisign

Sridhar Ramachandran OAT Systems

Ajay Ramachandron

Karen Randall Johnson & Johnson

Steve Rehling Procter & Gamble

Nagendra Revanur T3Ci Incorporated

Thomas Rumbach SAP

Uday Sadhukhan Polaris Networks

Hares Sangani Hubspan, Inc.

Puneet Sawhney CHEP

Rick Schendel Target

Chris Shabsin BEA Systems

Bhavesh Shah Abbott Laboratories

Harshal Shah Oracle Corporation

Dong Cheul Shin Metarights

Sung-hak Song Samsung SDS

EPC Information Services (EPCIS) Standard

Release 1.2, Ratified, Sep 2016 © 2016 GS1 AISBL Page 138 of 138

Name Company

Ashley Stephenson Reva Systems

Nikola Stojanovic GS1 US

Jim Sykes Savi Technology

Hiroki Tagato NEC Corporation

Diane Taillard GS1 France

Neil Tan UPS

Zach Thom Unilever

Frank Thompson Afilias Canada Corp

Frank Tittel Gedas Deutschland GmbH

Bryan Tracey Globe Ranger

Hsi-Lin Tsai Acer Cybercenter Service Inc.

Richard Ulrich Walmart

David Unge

Steve Vazzano 1Sync

Vasanth Velusamy Supply Insight, Inc.

Dan Wallace

Jie Wang True Demand Software (fka-Truth Software)

John Williams Auto-ID Labs - MIT

Michael Williams Hewlett-Packard Co. (HP)

Steve Winkler SAP

Katsuyuki Yamashita Nippon Telegraph & Telephone Corp (NTT)

Patrick Yee Hubspan, Inc.

Angela Zilmer Kimberly-Clark Corp

 5140

	1 Introduction
	2 Relationship to the GS1 System Architecture
	2.1 Overview of GS1 standards
	2.2 EPCIS in relation to the “Capture” and “Share” layers
	2.3 EPCIS in Relation to trading partners
	2.4 EPCIS in relation to other GS1 System Architecture components

	3 EPCIS specification principles
	4 Terminology and typographical conventions
	5 EPCIS specification framework
	5.1 Layers
	5.2 Extensibility
	5.3 Modularity

	6 Abstract data model layer
	6.1 Event data and master data
	6.1.1 Transmission of master data in EPCIS

	6.2 Vocabulary kinds
	6.3 Extension mechanisms
	6.4 Identifier representation
	6.5 Hierarchical vocabularies

	7 Data definition layer
	7.1 General rules for specifying data definition layer modules
	7.1.1 Content
	7.1.2 Notation
	7.1.3 Semantics

	7.2 Core event types module – overview
	7.3 Core event types module – building blocks
	7.3.1 Primitive types
	7.3.2 Action type
	7.3.3 The “What” dimension
	7.3.3.1 Instance-level vs. Class-level identification
	7.3.3.2 EPC
	7.3.3.3 QuantityElement
	7.3.3.3.1 UOM
	7.3.3.3.2 EPCClass values for GTIN
	7.3.3.3.3 EPCClass values for GTIN + Batch/Lot

	7.3.3.4 Summary of identifier types (Non-Normative)

	7.3.4 The “Where” Dimension – read point and business location
	7.3.4.1 Example of the distinction between a read point and a business location (Non-Normative)
	7.3.4.2 Explanation of reader types versus location types (Non-Normative)

	7.3.5 The “Why” dimension
	7.3.5.1 Business step
	7.3.5.2 Disposition
	7.3.5.3 Business transaction
	7.3.5.3.1 Business transaction type
	7.3.5.3.2 Business transaction ID

	7.3.5.4 Source and destination
	7.3.5.4.1 Source/Destination type
	7.3.5.4.2 Source/Destination ID

	7.3.6 Instance/Lot master data (ILMD)

	7.4 Core event types module – events
	7.4.1 EPCISEvent
	7.4.1.1 Explanation of eventTimeZoneOffset (Non-Normative)
	7.4.1.2 ErrorDeclaration
	7.4.1.3 Use of error declarations (Non-Normative)
	7.4.1.4 Matching an error declaration to the original event (non-normative)

	7.4.2 ObjectEvent (subclass of EPCISEvent)
	7.4.3 AggregationEvent (subclass of EPCISEvent)
	7.4.4 QuantityEvent (subclass of EPCISEvent) – DEPRECATED
	7.4.5 TransactionEvent (subclass of EPCISEvent)
	7.4.6 TransformationEvent (subclass of EPCISEvent)

	8 Service layer
	8.1 Core capture operations module
	8.1.1 Authentication and authorisation
	8.1.2 Capture service

	8.2 Core Query operations module
	8.2.1 Authentication
	8.2.2 Authorisation
	8.2.3 Queries for large amounts of data
	8.2.4 Overly complex queries
	8.2.5 Query framework (EPCIS query control interface)
	8.2.5.1 Subscription controls
	8.2.5.2 Automatic limitation based on event record time
	8.2.5.3 Query schedule
	8.2.5.3.1 Query schedule examples (Non-Normative)

	8.2.5.4 QueryResults

	8.2.6 Error conditions
	8.2.7 Predefined queries for EPCIS
	8.2.7.1 SimpleEventQuery
	8.2.7.1.1 Processing of MATCH query parameters

	8.2.7.2 SimpleMasterDataQuery

	8.2.8 Query callback interface

	9 XML bindings for data definition modules
	9.1 Extensibility mechanism
	9.2 Standard business document header
	9.3 EPCglobal Base schema
	9.4 Master data in the XML binding
	9.5 Schema for core event types
	9.6 Core event types – examples (Non-Normative)
	9.6.1 Example 1 – Object Events with instance-level identification
	9.6.2 Example 2 – Object Event with class-level identification
	9.6.3 Example 3 – Aggregation event with mixed identification
	9.6.4 Example 4 – Transformation event

	9.7 Schema for master data document
	9.8 Master data – example (non-normative)

	10 Bindings for core capture operations module
	10.1 Message queue binding
	10.2 HTTP binding

	11 Bindings for core query operations module
	11.1 XML schema for core query operations module
	11.2 SOAP/HTTP binding for the query control interface
	11.3 AS2 Binding for the query control interface
	11.3.1 GS1 AS2 guidelines (Non-Normative)

	11.4 Bindings for query callback interface
	11.4.1 General Considerations for all XML-based bindings
	11.4.2 HTTP binding of the query callback interface
	11.4.3 HTTPS binding of the query callback interface
	11.4.4 AS2 Binding of the query callback interface

	12 Conformance
	12.1 Conformance of EPCIS data
	12.2 Conformance of EPCIS capture interface clients
	12.3 Conformance of EPCIS capture interface servers
	12.4 Conformance of EPCIS query interface clients
	12.5 Conformance of EPCIS query interface servers
	12.6 Conformance of EPCIS query callback interface implementations

	13 References
	14 Contributors to earlier versions

