EPC Gen2V2 Tag Test Report

Report No.: EMC94348B Rev. 2

TEST NAME: EPC Gen2 Version2 Baseline Interoperability (Tag)

Product Name: EM | echo
Trade Mark: EM4423V221
Product ID: EM4423V221
Manufacturer: EM Microelectronic Marin SA
Client: EM Microelectronic Marin SA
Standard(s): EPCglobal Class-1 Generation-2 UHF RFID Protocol, Release 2.0.1

This report shall not be reproduced except in full without the written permission of the Test Laboratory and shall not be quoted out of context.
TABLE OF CONTENTS

EPC GEN2V2 TAG TEST REPORT ... 1

TABLE OF CONTENTS ... 2

1. IDENTIFICATION SUMMARY ... 3
 1.1. Test Laboratory ... 3
 1.2. Client ... 4
 1.3. Manufacturer ... 4
 1.4. Implementation Under Test (IUT) ... 5
 1.5. Testing Environment ... 5
 1.6. Limits and reservations ... 6
 1.7. Record of agreement .. 6

2. IUT Baseline Interoperability Status ... 7

3. TEST CAMPAIGN REPORT (Test Logs) .. 22

4. MEASUREMENT UNCERTAINTY ... 113

ANNEXES
 A. PICS
 B. PIXIT
 C. TEST RESULTS
 D. PHOTOGRAPHS
1. IDENTIFICATION SUMMARY

1.1. Test Laboratory

<table>
<thead>
<tr>
<th>NAME:</th>
<th>MET LABORATORIES, INC.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Address</td>
<td>914 W. PATAPSCO AVE.</td>
</tr>
<tr>
<td>City:</td>
<td>BALTIMORE</td>
</tr>
<tr>
<td>Postal code:</td>
<td>MD</td>
</tr>
<tr>
<td>Country:</td>
<td>21230</td>
</tr>
<tr>
<td>Telephone:</td>
<td>410-354-3300</td>
</tr>
<tr>
<td>Fax:</td>
<td>410-354-3313</td>
</tr>
<tr>
<td>URL:</td>
<td>www.metlabs.com</td>
</tr>
<tr>
<td>Contact person:</td>
<td></td>
</tr>
<tr>
<td>Name:</td>
<td>Benjamin Taylor</td>
</tr>
<tr>
<td>e-mail:</td>
<td>Benjamin.taylor@metlabs.com</td>
</tr>
</tbody>
</table>

Competences and guarantees:

MET Laboratories Inc. is a testing laboratory competent to carry out the tests described in this report.

In order to assure the traceability to other national and international laboratories, MET Laboratories has a calibration and maintenance programme for its measuring equipment.

MET Laboratories guarantees the reliability of the data presented in this report, which is the result of measurements and tests performed to the item under test on the date and under the conditions stated on the report and is based on the knowledge and technical facilities available at MET Laboratories at the time of execution of the test.

MET Laboratories is liable to the client for the maintenance by its personnel of the confidentiality of all information related to the item under test and the results of the test.
1.2. Client

<table>
<thead>
<tr>
<th>NAME:</th>
<th>EM Microelectronic Marin SA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Address:</td>
<td>Sors 3</td>
</tr>
<tr>
<td>City:</td>
<td>Marin-Epagnier</td>
</tr>
<tr>
<td>Postal code:</td>
<td>2074</td>
</tr>
<tr>
<td>Country:</td>
<td>Switzerland</td>
</tr>
<tr>
<td>Telephone:</td>
<td>+41327555195</td>
</tr>
<tr>
<td>Contact person:</td>
<td></td>
</tr>
<tr>
<td>Name:</td>
<td>Jim Springer</td>
</tr>
<tr>
<td>e-mail:</td>
<td>Jim.Springer@emmicro-us.com</td>
</tr>
</tbody>
</table>

1.3. Manufacturer

<table>
<thead>
<tr>
<th>NAME:</th>
<th>EM Micro</th>
</tr>
</thead>
<tbody>
<tr>
<td>Address:</td>
<td>EM Microelectronic Marin SA</td>
</tr>
<tr>
<td>City:</td>
<td>Sors 3</td>
</tr>
<tr>
<td>Postal code:</td>
<td>Marin-Epagnier</td>
</tr>
<tr>
<td>Country:</td>
<td>2074</td>
</tr>
<tr>
<td>Telephone:</td>
<td>Switzerland</td>
</tr>
<tr>
<td>Contact person:</td>
<td></td>
</tr>
<tr>
<td>Name:</td>
<td>Contact person:</td>
</tr>
<tr>
<td>e-mail:</td>
<td>Paul Miller</td>
</tr>
</tbody>
</table>
1.4. Implementation Under Test (IUT)

<table>
<thead>
<tr>
<th>PRODUCT NAME:</th>
<th>EM</th>
<th>echo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trademark:</td>
<td>EM4423V221</td>
<td></td>
</tr>
<tr>
<td>Product ID:</td>
<td>EM4423V221</td>
<td></td>
</tr>
<tr>
<td>Hw version:</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Sw version:</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Profiles supported:</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>Protocol Specification(s):</td>
<td>EPCglobal Generation 2 Version 2</td>
<td></td>
</tr>
<tr>
<td>ICS:</td>
<td>See annex A</td>
<td></td>
</tr>
<tr>
<td>Description of IUT:</td>
<td>UHF RFID Tag</td>
<td></td>
</tr>
<tr>
<td>Sample method:</td>
<td>Samples undergoing test have been selected by: The Client</td>
<td></td>
</tr>
</tbody>
</table>

1.5. Testing Environment

<table>
<thead>
<tr>
<th>IXIT:</th>
<th>SEE ANNEX B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Period of testing:</td>
<td>April, 2017</td>
</tr>
<tr>
<td>Conformance log reference:</td>
<td>See annex C</td>
</tr>
<tr>
<td>Retention date for log reference:</td>
<td>5 years</td>
</tr>
<tr>
<td>Test Requested</td>
<td>RF & EPC Gen 2 v2 conformance</td>
</tr>
</tbody>
</table>

Means of testing identification:

<table>
<thead>
<tr>
<th>Hardware:</th>
<th>CISC RFID Xplorer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Software:</td>
<td>CISC RFID Xplorer Tag Conformance Tester, v. 2-2722667_10</td>
</tr>
<tr>
<td>Test Setup:</td>
<td>See section 8</td>
</tr>
</tbody>
</table>

Test conditions:

NOMINAL

TEMPERATURE IN THE RANGE 18°C TO 27 °C
1.6. Limits and reservations

The test results presented in this test report apply only to the particular implementation under test (IUT) declared in section 1.4 of this report, for the functionality described in the relevant Protocol Implementation Conformance Statement (PICS), as presented for test on the date(s) declared in section 1.5 and configured as declared in the relevant Protocol Implementation Extra Information for Testing (PIXIT).

This test report does not constitute or imply, by its own, to be an approval of the product by Qualification Bodies, Certification Bodies or competent Authorities.

This document is only valid if complete; no partial reproduction can be made without written approval of the Test Laboratory.

This test report cannot be used partially or in full for publicity and/or promotional purposes without previous written approval of the Test Laboratory.

1.7. Record of agreement

The following samples were used for testing.

<table>
<thead>
<tr>
<th>METTrak No.:</th>
<th>SERIAL NO.:</th>
<th>DATE OF RECEPTION:</th>
</tr>
</thead>
<tbody>
<tr>
<td>94348</td>
<td>NA</td>
<td>02/11/2016</td>
</tr>
</tbody>
</table>
2. IUT Baseline Interoperability Status

This IUT has been shown by conformance assessment to be conforming to the referenced specification(s).

| Baseline Interoperability | None |

Number of test cases run

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PASSED</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Failed</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inconclusive</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>12</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2.2. Interoperability Test Case Checklists

2.2.1. Access Memory

<table>
<thead>
<tr>
<th>Access_memory.txt</th>
<th>Pass?</th>
<th>N/A?</th>
<th>Test case</th>
<th>Lock</th>
<th>Action</th>
<th>AP State</th>
<th>AP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>Yes</td>
<td></td>
<td>R_AP_1</td>
<td>-</td>
<td>zero</td>
<td>Correct</td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>Yes</td>
<td></td>
<td>R_AP_2</td>
<td>-</td>
<td>zero</td>
<td>Incorrect</td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>Yes</td>
<td></td>
<td>R_AP_3</td>
<td>-</td>
<td>non-zero</td>
<td>Correct</td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>Yes</td>
<td></td>
<td>R_AP_4</td>
<td>-</td>
<td>non-zero</td>
<td>Incorrect</td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>Yes</td>
<td></td>
<td>R_AP_5</td>
<td>-</td>
<td>non-zero</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>Yes</td>
<td></td>
<td>R_AP_L_1</td>
<td>L</td>
<td>zero</td>
<td>Correct</td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>Yes</td>
<td></td>
<td>R_AP_L_2</td>
<td>L</td>
<td>zero</td>
<td>Incorrect</td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>Yes</td>
<td></td>
<td>R_AP_L_3</td>
<td>L</td>
<td>non-zero</td>
<td>Correct</td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>Yes</td>
<td></td>
<td>R_AP_L_4</td>
<td>L</td>
<td>non-zero</td>
<td>Incorrect</td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>Yes</td>
<td></td>
<td>R_AP_L_5</td>
<td>L</td>
<td>non-zero</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>Yes</td>
<td></td>
<td>W_AP_Z</td>
<td>zero</td>
<td>non-zero</td>
<td>Correct</td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>Yes</td>
<td></td>
<td>W_AP_NZ_1</td>
<td>non-zero</td>
<td>zero</td>
<td>Correct</td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>Yes</td>
<td></td>
<td>W_AP_NZ_2</td>
<td>non-zero</td>
<td>non-zero</td>
<td>Correct</td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>Yes</td>
<td></td>
<td>W_AP_NZ_3</td>
<td>non-zero</td>
<td>non-zero</td>
<td>Incorrect</td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>Yes</td>
<td></td>
<td>W_AP_NZ_4</td>
<td>non-zero</td>
<td>non-zero</td>
<td>None</td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>Yes</td>
<td></td>
<td>W_AP_L_NZ_1</td>
<td>L</td>
<td>non-zero</td>
<td>zero</td>
<td>Correct</td>
</tr>
<tr>
<td>Yes</td>
<td>Yes</td>
<td></td>
<td>W_AP_L_NZ_2</td>
<td>L</td>
<td>non-zero</td>
<td>zero</td>
<td>Incorrect</td>
</tr>
<tr>
<td>Yes</td>
<td>Yes</td>
<td></td>
<td>W_AP_L_NZ_3</td>
<td>L</td>
<td>non-zero</td>
<td>non-zero</td>
<td>Correct</td>
</tr>
<tr>
<td>Yes</td>
<td>Yes</td>
<td></td>
<td>W_AP_L_NZ_4</td>
<td>L</td>
<td>non-zero</td>
<td>non-zero</td>
<td>Incorrect</td>
</tr>
</tbody>
</table>
Table 1. Access Memory Test Cases

<table>
<thead>
<tr>
<th></th>
<th>W_AP_L_NZ_5</th>
<th>L</th>
<th>non-zero</th>
<th>non-zero</th>
<th>None</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>Y</td>
<td></td>
<td>zero</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>L_AP_1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>L_AP_2</td>
<td></td>
<td>zero</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>L_AP_3</td>
<td></td>
<td></td>
<td>non-zero</td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>L_AP_4</td>
<td></td>
<td></td>
<td>non-zero</td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>L_AP_5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>U_AP_L_1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>U_AP_L_2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>U_AP_L_3</td>
<td></td>
<td></td>
<td>non-zero</td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>U_AP_L_4</td>
<td></td>
<td></td>
<td>non-zero</td>
<td></td>
</tr>
</tbody>
</table>

Table 2. Inventory Single Test Cases

<table>
<thead>
<tr>
<th>Inventory_single.txt</th>
<th>Pass?</th>
<th>N/A?</th>
<th>Test case</th>
<th>Lock</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>I</td>
<td></td>
<td>I</td>
<td>L</td>
<td>Non-select inventory</td>
</tr>
<tr>
<td>Yes</td>
<td>I_L</td>
<td></td>
<td>SI_E</td>
<td>L</td>
<td>Select EPC complete</td>
</tr>
<tr>
<td>Yes</td>
<td>SI_E_L</td>
<td></td>
<td>SI_T</td>
<td>L</td>
<td>Select TID complete</td>
</tr>
<tr>
<td>Yes</td>
<td>SI_T_L</td>
<td></td>
<td>SI_U</td>
<td>L</td>
<td>Select User complete</td>
</tr>
<tr>
<td>Yes</td>
<td>SI_U_L</td>
<td></td>
<td></td>
<td></td>
<td>Select User partial</td>
</tr>
</tbody>
</table>
2.2.3. Write Read

<table>
<thead>
<tr>
<th>Write_read.txt</th>
<th>Pass?</th>
<th>N/A?</th>
<th>Test case</th>
<th>Lock</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td></td>
<td></td>
<td>R_KP</td>
<td></td>
<td>Kill password</td>
</tr>
<tr>
<td>Yes</td>
<td></td>
<td></td>
<td>R_KP_L</td>
<td>L</td>
<td>Kill password</td>
</tr>
<tr>
<td>Yes</td>
<td></td>
<td></td>
<td>W_KP_Z</td>
<td></td>
<td>Kill password zero</td>
</tr>
<tr>
<td>Yes</td>
<td></td>
<td></td>
<td>W_KP_NZ</td>
<td></td>
<td>Kill password non-zero</td>
</tr>
<tr>
<td>Yes</td>
<td></td>
<td></td>
<td>W_KP_L_NZ</td>
<td>L</td>
<td>Kill password non-zero</td>
</tr>
<tr>
<td>Yes</td>
<td></td>
<td></td>
<td>L_KP</td>
<td></td>
<td>Kill password</td>
</tr>
<tr>
<td>Yes</td>
<td></td>
<td></td>
<td>U_KP_L</td>
<td>L</td>
<td>Kill password</td>
</tr>
<tr>
<td>Yes</td>
<td></td>
<td></td>
<td>K_Z</td>
<td></td>
<td>Kill zero password</td>
</tr>
<tr>
<td>Yes</td>
<td></td>
<td></td>
<td>K_INZ</td>
<td></td>
<td>Kill incorrect non-zero password</td>
</tr>
<tr>
<td>Yes</td>
<td></td>
<td></td>
<td>K_INZ_L</td>
<td>L</td>
<td>Kill incorrect non-zero password</td>
</tr>
<tr>
<td>Yes</td>
<td></td>
<td></td>
<td>R_E_C</td>
<td></td>
<td>EPC complete</td>
</tr>
<tr>
<td>Yes</td>
<td></td>
<td></td>
<td>R_E_P</td>
<td></td>
<td>EPC partial</td>
</tr>
<tr>
<td>Yes</td>
<td></td>
<td></td>
<td>R_E_L_P</td>
<td>L</td>
<td>EPC partial</td>
</tr>
<tr>
<td>Yes</td>
<td></td>
<td></td>
<td>W_E_C</td>
<td></td>
<td>EPC complete</td>
</tr>
<tr>
<td>Yes</td>
<td></td>
<td></td>
<td>W_E_P</td>
<td></td>
<td>EPC partial</td>
</tr>
<tr>
<td>Yes</td>
<td></td>
<td></td>
<td>W_E_L_P</td>
<td>L</td>
<td>EPC partial</td>
</tr>
<tr>
<td>Yes</td>
<td></td>
<td></td>
<td>L_E</td>
<td></td>
<td>EPC memory</td>
</tr>
<tr>
<td>Yes</td>
<td></td>
<td></td>
<td>U_E_L</td>
<td>L</td>
<td>EPC memory</td>
</tr>
<tr>
<td>Yes</td>
<td></td>
<td></td>
<td>R_T_C</td>
<td></td>
<td>TID complete</td>
</tr>
<tr>
<td>Yes</td>
<td></td>
<td></td>
<td>R_T_P</td>
<td></td>
<td>TID partial</td>
</tr>
<tr>
<td>Yes</td>
<td></td>
<td></td>
<td>R_T_L_P</td>
<td>L</td>
<td>TID partial</td>
</tr>
<tr>
<td>Yes</td>
<td></td>
<td></td>
<td>W_T_C</td>
<td></td>
<td>TID complete</td>
</tr>
<tr>
<td>Yes</td>
<td></td>
<td></td>
<td>W_T_P</td>
<td></td>
<td>TID partial</td>
</tr>
<tr>
<td>Yes</td>
<td></td>
<td></td>
<td>W_T_L_P</td>
<td>L</td>
<td>TID partial</td>
</tr>
<tr>
<td>Yes</td>
<td></td>
<td></td>
<td>L_T</td>
<td></td>
<td>TID memory</td>
</tr>
<tr>
<td>Yes</td>
<td></td>
<td></td>
<td>U_T_L</td>
<td>L</td>
<td>TID memory</td>
</tr>
<tr>
<td>Yes</td>
<td></td>
<td></td>
<td>R_U_C</td>
<td></td>
<td>User complete</td>
</tr>
<tr>
<td>Yes</td>
<td></td>
<td></td>
<td>R_U_P</td>
<td></td>
<td>User partial</td>
</tr>
<tr>
<td>Yes</td>
<td></td>
<td></td>
<td>R_U_P_L</td>
<td>L</td>
<td>User partial</td>
</tr>
<tr>
<td>Yes</td>
<td></td>
<td></td>
<td>W_U_C</td>
<td></td>
<td>User complete</td>
</tr>
<tr>
<td>Yes</td>
<td></td>
<td></td>
<td>W_U_P</td>
<td></td>
<td>User partial</td>
</tr>
<tr>
<td>Yes</td>
<td></td>
<td></td>
<td>W_U_L_P</td>
<td>L</td>
<td>User partial</td>
</tr>
<tr>
<td>Yes</td>
<td></td>
<td></td>
<td>L_U</td>
<td></td>
<td>User memory</td>
</tr>
<tr>
<td>Yes</td>
<td></td>
<td></td>
<td>U_U_L</td>
<td>L</td>
<td>User memory</td>
</tr>
</tbody>
</table>

Table 3. Write Read Test Cases
2.2.4. PermaUnlocked

<table>
<thead>
<tr>
<th>PermaUnlocked.txt</th>
<th>Pass?</th>
<th>N/A?</th>
<th>Test case</th>
<th>Lock</th>
<th>Action</th>
<th>AP State</th>
<th>AP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td></td>
<td>N/A</td>
<td>R_KP_PU</td>
<td>PU</td>
<td>Kill password</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td></td>
<td>N/A</td>
<td>W_KP_PU_NZ</td>
<td>PU</td>
<td>Kill password</td>
<td>non-zero</td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td></td>
<td>N/A</td>
<td>PU_KP</td>
<td>PU</td>
<td>Kill password</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td></td>
<td>N/A</td>
<td>U_KP_PU</td>
<td>PU</td>
<td>Kill password</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td></td>
<td>N/A</td>
<td>L_KP_PU</td>
<td>PU</td>
<td>Kill password</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td></td>
<td>N/A</td>
<td>PU_KP_PU</td>
<td>PU</td>
<td>Kill password</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td></td>
<td>N/A</td>
<td>K_INZ_PU</td>
<td>PU</td>
<td>Kill incorrect</td>
<td>non-zero</td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td></td>
<td>N/A</td>
<td>R_E_PU_P</td>
<td>PU</td>
<td>EPC partial</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td></td>
<td>N/A</td>
<td>W_E_PU_P</td>
<td>PU</td>
<td>EPC partial</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td></td>
<td>N/A</td>
<td>PU_E</td>
<td>EPC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td></td>
<td>N/A</td>
<td>U_E_PU</td>
<td>EPC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td></td>
<td>N/A</td>
<td>L_E_PU</td>
<td>EPC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td></td>
<td>N/A</td>
<td>PL_E_PU</td>
<td>EPC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td></td>
<td>N/A</td>
<td>PU_E_PU</td>
<td>EPC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td></td>
<td>N/A</td>
<td>K_INZ_PU</td>
<td>PU</td>
<td>EPC memory</td>
<td>should fail</td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td></td>
<td>N/A</td>
<td>R_U_P_P</td>
<td>PU</td>
<td>User partial</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td></td>
<td>N/A</td>
<td>W_U_PU_P</td>
<td>PU</td>
<td>User partial</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td></td>
<td>N/A</td>
<td>PU_U</td>
<td>User</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td></td>
<td>N/A</td>
<td>U_U_PU</td>
<td>User</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td></td>
<td>N/A</td>
<td>L_U_PU</td>
<td>User</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td></td>
<td>N/A</td>
<td>PL_U_PU</td>
<td>User</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td></td>
<td>N/A</td>
<td>R_AP_PU_1</td>
<td>PU</td>
<td>-</td>
<td>zero</td>
<td>Correct</td>
</tr>
<tr>
<td>Yes</td>
<td></td>
<td>N/A</td>
<td>R_AP_PU_2</td>
<td>PU</td>
<td>-</td>
<td>zero</td>
<td>Incorrect</td>
</tr>
<tr>
<td>Yes</td>
<td></td>
<td>N/A</td>
<td>R_AP_PU_3</td>
<td>PU</td>
<td>-</td>
<td>non-zero</td>
<td>Correct</td>
</tr>
<tr>
<td>Yes</td>
<td></td>
<td>N/A</td>
<td>R_AP_PU_4</td>
<td>PU</td>
<td>-</td>
<td>non-zero</td>
<td>Incorrect</td>
</tr>
<tr>
<td>Yes</td>
<td></td>
<td>N/A</td>
<td>R_AP_PU_5</td>
<td>PU</td>
<td>-</td>
<td>non-zero</td>
<td>None</td>
</tr>
<tr>
<td>Yes</td>
<td></td>
<td>N/A</td>
<td>W_AP_PU_Z</td>
<td>PU</td>
<td>zero</td>
<td>non-zero</td>
<td>Correct</td>
</tr>
<tr>
<td>Yes</td>
<td></td>
<td>N/A</td>
<td>W_AP_PU_NZ_1</td>
<td>PU</td>
<td>non-zero</td>
<td>zero</td>
<td>Correct</td>
</tr>
<tr>
<td>Yes</td>
<td>W_AP_PU_NZ_2</td>
<td>PU</td>
<td>non-zero</td>
<td>non-zero</td>
<td>Correct</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>W_AP_PU_NZ_3</td>
<td>PU</td>
<td>non-zero</td>
<td>non-zero</td>
<td>Incorrect</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>W_AP_PU_NZ_4</td>
<td>PU</td>
<td>non-zero</td>
<td>non-zero</td>
<td>None</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>PU_AP</td>
<td>-</td>
<td>zero</td>
<td>Correct</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>L_AP_PU_1</td>
<td>PU</td>
<td>-</td>
<td>zero</td>
<td>None</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>L_AP_PU_3</td>
<td>PU</td>
<td>-</td>
<td>non-zero</td>
<td>None</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>PU_AP_PU_1</td>
<td>PU</td>
<td>-</td>
<td>zero</td>
<td>None</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>PU_AP_PU_2</td>
<td>PU</td>
<td>-</td>
<td>non-zero</td>
<td>Correct</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>PU_AP_PU_3</td>
<td>PU</td>
<td>-</td>
<td>non-zero</td>
<td>None</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>SI_E_PU</td>
<td>PU</td>
<td>Select EPC</td>
<td>partial</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>SI_T_PU</td>
<td>PU</td>
<td>Select TID</td>
<td>partial</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>SI_U_PU</td>
<td>PU</td>
<td>Select User</td>
<td>partial</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>PU_U_PU</td>
<td>PU</td>
<td>User memory</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>PU_T</td>
<td>TID memory</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 4. PermaUnlocked Test Cases

2.2.5. PermaLocked_L

<table>
<thead>
<tr>
<th>PermaLocked_L.txt</th>
<th>Pass?</th>
<th>N/A?</th>
<th>Test case</th>
<th>Lock</th>
<th>Action</th>
<th>AP State</th>
<th>AP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td></td>
<td></td>
<td>PL_AP_L_1</td>
<td>L</td>
<td>-</td>
<td>non-zero</td>
<td>Correct</td>
</tr>
<tr>
<td>Yes</td>
<td></td>
<td></td>
<td>PL_AP_L_2</td>
<td>L</td>
<td>-</td>
<td>non-zero</td>
<td>None</td>
</tr>
</tbody>
</table>

Table 5. PermaLocked_L Test Cases
2.2.6. PermaLocked_APZ

<table>
<thead>
<tr>
<th>PermaLocked_APZ.txt</th>
<th>Pass?</th>
<th>N/A?</th>
<th>Test case</th>
<th>Lock</th>
<th>Action</th>
<th>AP State</th>
<th>AP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td></td>
<td></td>
<td>R_KP_PL_1</td>
<td>PL</td>
<td>Kill password; Access password zero</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td></td>
<td></td>
<td>W_KP_PL_NZ_1</td>
<td>PL</td>
<td>Kill password non-zero; Access password zero</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td></td>
<td></td>
<td>PL_KP</td>
<td></td>
<td>Kill password</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td></td>
<td></td>
<td>PL_KP_L_1</td>
<td>L</td>
<td>Kill password; Access password zero</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td></td>
<td></td>
<td>U_KP_PL_1</td>
<td>PL</td>
<td>Kill password</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td></td>
<td></td>
<td>L_KP_PL_1</td>
<td>PL</td>
<td>Kill password; Access password zero</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td></td>
<td></td>
<td>PU_KP_PL_1</td>
<td>PL</td>
<td>Kill password; Access password zero</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td></td>
<td></td>
<td>K_INZ_PL</td>
<td>PL</td>
<td>Kill incorrect non-zero password</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td></td>
<td></td>
<td>K_NZ</td>
<td></td>
<td>Kill non-zero password</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td></td>
<td></td>
<td>R_E_PL_P_1</td>
<td>PL</td>
<td>EPC partial; Access password zero</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td></td>
<td></td>
<td>W_E_PL_P_1</td>
<td>PL</td>
<td>EPC partial; Access password zero</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td></td>
<td></td>
<td>PL_E_L_1</td>
<td>L</td>
<td>EPC memory; Access password zero</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td></td>
<td></td>
<td>U_E_PL_1</td>
<td>PL</td>
<td>EPC memory; Access password zero</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td></td>
<td></td>
<td>L_E_PL_1</td>
<td>PL</td>
<td>EPC memory; Access password zero</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PU_E_PL_1</td>
<td>PL</td>
<td>EPC memory; Access password zero</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>----------------</td>
<td>------</td>
<td>----------------------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>R_T_PL_P_1</td>
<td>PL</td>
<td>TID partial; Access password zero</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>W_T_PL_P_1</td>
<td>PL</td>
<td>TID partial; Access password zero</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PL_T_L_1</td>
<td>L</td>
<td>TID memory; Access password zero</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>U_T_PL_1</td>
<td>PL</td>
<td>TID memory; Access password zero</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>L_T_PL_1</td>
<td>PL</td>
<td>TID memory; Access password zero</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PU_T_PL_1</td>
<td>PL</td>
<td>TID memory; Access password zero</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>R_U_P_PL_1</td>
<td>PL</td>
<td>User partial; Access password zero</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>W_U_PL_P_1</td>
<td>PL</td>
<td>User partial; Access password zero</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PL_U_L_1</td>
<td>L</td>
<td>User memory; Access password zero</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>U_U_PL_1</td>
<td>PL</td>
<td>User memory; Access password zero</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>L_U_PL_1</td>
<td>PL</td>
<td>User memory; Access password zero</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PU_U_PL_1</td>
<td>PL</td>
<td>User memory; Access password zero</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PL_AP_L</td>
<td>L</td>
<td>-</td>
<td>zero</td>
<td>Correct</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>U_AP_PL_1</td>
<td>PL</td>
<td>-</td>
<td>zero</td>
<td>Correct</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>L_AP_PL_1</td>
<td>PL</td>
<td>-</td>
<td>zero</td>
<td>Correct</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>PU_AP_PL_1</td>
<td>PL</td>
<td>-</td>
<td>zero</td>
<td>Correct</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>I_PU</td>
<td>PU</td>
<td>Non-select inventory</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>I_PL</td>
<td>PL</td>
<td>Non-select inventory</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SI_E_PL</td>
<td>PL</td>
<td>Select EPC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SI_T_PL</td>
<td>PL</td>
<td>Select TID partial</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------</td>
<td>---------</td>
<td>------</td>
<td>--------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>SI_U_PL</td>
<td>PL</td>
<td>Select User partial</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 6. PermaLocked_APZ Test Cases
2.2.7. PermaLocked_APNZ

<table>
<thead>
<tr>
<th>PermaLocked_APNZ.txt</th>
<th>Pass?</th>
<th>N/A?</th>
<th>Test case</th>
<th>Lock</th>
<th>Action</th>
<th>AP State</th>
<th>AP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Yes</td>
<td></td>
<td>R_KP_PL_2</td>
<td>PL</td>
<td>Kill password; Access password non-zero</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td></td>
<td>W_KP_PL_NZ_2</td>
<td>PL</td>
<td>Kill password non-zero; Access password non-zero</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td></td>
<td>PL_KP_L_2</td>
<td>L</td>
<td>Kill password; Access password non-zero</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td></td>
<td>U_KP_PL_2</td>
<td>PL</td>
<td>Kill password; Access password non-zero</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td></td>
<td>L_KP_PL_2</td>
<td>PL</td>
<td>Kill password; Access password non-zero</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td></td>
<td>PU_KP_PL_2</td>
<td>PL</td>
<td>Kill password; Access password non-zero</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td></td>
<td>R_E_PL_P_2</td>
<td>PL</td>
<td>EPC partial; Access password non-zero</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td></td>
<td>W_E_PL_P_2</td>
<td>PL</td>
<td>EPC partial; Access password non-zero</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td></td>
<td>PL_E_L_2</td>
<td>L</td>
<td>EPC memory; Access password</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Report No.: EMC94348B Rev. 2

Date: 2017-12-08
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th>non-zero</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>U_E_PL_2</td>
<td>PL</td>
<td>EPC memory; Access password non-zero</td>
</tr>
<tr>
<td>Yes</td>
<td>L_E_PL_2</td>
<td>PL</td>
<td>EPC memory; Access password non-zero</td>
</tr>
<tr>
<td>Yes</td>
<td>PU_E_PL_2</td>
<td>PL</td>
<td>EPC memory; Access password non-zero</td>
</tr>
<tr>
<td>Yes</td>
<td>R_T_PL_P_2</td>
<td>PL</td>
<td>TID partial; Access password non-zero</td>
</tr>
<tr>
<td>Yes</td>
<td>W_T_PL_P_2</td>
<td>PL</td>
<td>TID partial; Access password non-zero</td>
</tr>
<tr>
<td>Yes</td>
<td>PL_T_L_2</td>
<td>L</td>
<td>TID memory; Access password non-zero</td>
</tr>
<tr>
<td>Yes</td>
<td>U_T_PL_2</td>
<td>PL</td>
<td>TID memory; Access password non-zero</td>
</tr>
<tr>
<td>Yes</td>
<td>L_T_PL_2</td>
<td>PL</td>
<td>TID memory; Access password non-zero</td>
</tr>
<tr>
<td>Yes</td>
<td>PU_T_PL_2</td>
<td>PL</td>
<td>TID memory; Access password non-zero</td>
</tr>
<tr>
<td>Yes</td>
<td>R_U_P_PL_2</td>
<td>PL</td>
<td>User partial; Access password non-zero</td>
</tr>
<tr>
<td>User</td>
<td>User partial; Access password non-zero</td>
<td>User memory; Access password non-zero</td>
<td>User memory; Access password non-zero</td>
</tr>
<tr>
<td>------</td>
<td>--------------------------------------</td>
<td>--------------------------------------</td>
<td>--------------------------------------</td>
</tr>
<tr>
<td>Yes</td>
<td>W_U_PL_P_2</td>
<td>PL</td>
<td>Yes</td>
</tr>
<tr>
<td>Yes</td>
<td>PL_U_L_2</td>
<td>L</td>
<td>Yes</td>
</tr>
<tr>
<td>Yes</td>
<td>U_U_PL_2</td>
<td>PL</td>
<td>Yes</td>
</tr>
<tr>
<td>Yes</td>
<td>L_U_PL_2</td>
<td>PL</td>
<td>Yes</td>
</tr>
<tr>
<td>Yes</td>
<td>PU_U_PL_2</td>
<td>PL</td>
<td>Yes</td>
</tr>
<tr>
<td>Yes</td>
<td>R_AP_PL_1</td>
<td>PL</td>
<td>Correct</td>
</tr>
<tr>
<td>Yes</td>
<td>R_AP_PL_2</td>
<td>PL</td>
<td>None</td>
</tr>
<tr>
<td>Yes</td>
<td>W_AP_PL_NZ_1</td>
<td>PL</td>
<td>Correct</td>
</tr>
<tr>
<td>Yes</td>
<td>W_AP_PL_NZ_2</td>
<td>PL</td>
<td>Correct</td>
</tr>
<tr>
<td>Yes</td>
<td>L_AP_PU_2</td>
<td>PU</td>
<td>Correct</td>
</tr>
<tr>
<td>Yes</td>
<td>U_AP_PL_2</td>
<td>PL</td>
<td>Correct</td>
</tr>
<tr>
<td>Yes</td>
<td>U_AP_PL_3</td>
<td>PL</td>
<td>None</td>
</tr>
<tr>
<td>Yes</td>
<td>L_AP_PL_2</td>
<td>PL</td>
<td>Correct</td>
</tr>
<tr>
<td>Yes</td>
<td>L_AP_PL_3</td>
<td>PL</td>
<td>None</td>
</tr>
<tr>
<td>Yes</td>
<td>PU_AP_PL_2</td>
<td>PL</td>
<td>Correct</td>
</tr>
<tr>
<td>Yes</td>
<td>PU_AP_PL_3</td>
<td>PL</td>
<td>None</td>
</tr>
</tbody>
</table>

Table 7. PermaLocked_APBZ Test Cases
2.2.8. Inventory Multiple

<table>
<thead>
<tr>
<th>Inventory_multiple.txt</th>
<th>Pass?</th>
<th>N/A?</th>
<th>Test case</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Yes</td>
<td></td>
<td>I_MH</td>
<td>Non-select inventory homogeneous</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td></td>
<td>SI_MH_E</td>
<td>Select EPC complete homogeneous</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td></td>
<td>SI_MH_T</td>
<td>Select TID complete homogeneous</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td></td>
<td>SI_MH_U</td>
<td>Select User complete homogeneous</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td></td>
<td>I_MM</td>
<td>Non-select inventory mixed</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td></td>
<td>SI_MM_E</td>
<td>Select EPC complete mixed</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td></td>
<td>SI_MM_T</td>
<td>Select TID complete mixed</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td></td>
<td>SI_MM_U</td>
<td>Select User complete mixed</td>
</tr>
</tbody>
</table>

Table 8. Inventory Multiple Test Cases
2.2.9. Select/Query EPC Memory

<table>
<thead>
<tr>
<th>sq_epc_test.txt</th>
<th>Pass?</th>
<th>N/A?</th>
<th>Test case</th>
<th>Action</th>
<th>Pointer</th>
<th>Length</th>
<th>Truncate</th>
<th>Lock</th>
<th>Memory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>SQ_E_S0_1</td>
<td>S0</td>
<td>0</td>
<td>32</td>
<td>96</td>
<td>0</td>
<td>EPC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>SQ_E_S0_2</td>
<td>S0</td>
<td>1</td>
<td>34</td>
<td>64</td>
<td>0</td>
<td>EPC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>SQ_E_S0_3</td>
<td>S0</td>
<td>10</td>
<td>37</td>
<td>48</td>
<td>0</td>
<td>EPC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>SQ_E_S0_4</td>
<td>S0</td>
<td>11</td>
<td>43</td>
<td>24</td>
<td>0</td>
<td>EPC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>SQ_E_S0_5</td>
<td>S0</td>
<td>100</td>
<td>55</td>
<td>12</td>
<td>0</td>
<td>EPC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>SQ_E_S0_6</td>
<td>S0</td>
<td>101</td>
<td>79</td>
<td>6</td>
<td>0</td>
<td>EPC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>SQ_E_S0_7</td>
<td>S0</td>
<td>110</td>
<td>95</td>
<td>3</td>
<td>0</td>
<td>EPC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>SQ_E_S0_8</td>
<td>S0</td>
<td>111</td>
<td>127</td>
<td>1</td>
<td>0</td>
<td>EPC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>SQ_E_S1_1</td>
<td>S1</td>
<td>0</td>
<td>117</td>
<td>1</td>
<td>0</td>
<td>L EPC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>SQ_E_S1_2</td>
<td>S1</td>
<td>1</td>
<td>97</td>
<td>3</td>
<td>0</td>
<td>L EPC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>SQ_E_S1_3</td>
<td>S1</td>
<td>10</td>
<td>83</td>
<td>6</td>
<td>0</td>
<td>L EPC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>SQ_E_S1_4</td>
<td>S1</td>
<td>11</td>
<td>64</td>
<td>12</td>
<td>0</td>
<td>L EPC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>SQ_E_S1_5</td>
<td>S1</td>
<td>100</td>
<td>46</td>
<td>24</td>
<td>0</td>
<td>L EPC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>SQ_E_S1_6</td>
<td>S1</td>
<td>101</td>
<td>42</td>
<td>48</td>
<td>0</td>
<td>L EPC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>SQ_E_S1_7</td>
<td>S1</td>
<td>110</td>
<td>38</td>
<td>64</td>
<td>0</td>
<td>L EPC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>SQ_E_S1_8</td>
<td>S1</td>
<td>111</td>
<td>32</td>
<td>96</td>
<td>0</td>
<td>L EPC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>SQ_E_S2_1</td>
<td>S2</td>
<td>0</td>
<td>32</td>
<td>96</td>
<td>0</td>
<td>EPC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>SQ_E_S2_2</td>
<td>S2</td>
<td>1</td>
<td>32</td>
<td>95</td>
<td>0</td>
<td>EPC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>SQ_E_S2_3</td>
<td>S2</td>
<td>10</td>
<td>44</td>
<td>48</td>
<td>0</td>
<td>EPC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>SQ_E_S2_4</td>
<td>S2</td>
<td>11</td>
<td>56</td>
<td>30</td>
<td>0</td>
<td>EPC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>SQ_E_S2_5</td>
<td>S2</td>
<td>100</td>
<td>67</td>
<td>20</td>
<td>0</td>
<td>EPC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>SQ_E_S2_6</td>
<td>S2</td>
<td>101</td>
<td>75</td>
<td>6</td>
<td>0</td>
<td>EPC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>SQ_E_S2_7</td>
<td>S2</td>
<td>110</td>
<td>127</td>
<td>0</td>
<td>0</td>
<td>EPC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>SQ_E_S2_8</td>
<td>S2</td>
<td>111</td>
<td>126</td>
<td>1</td>
<td>0</td>
<td>EPC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>SQ_E_S3_1</td>
<td>S3</td>
<td>0</td>
<td>124</td>
<td>1</td>
<td>0</td>
<td>L EPC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>SQ_E_S3_2</td>
<td>S3</td>
<td>1</td>
<td>102</td>
<td>3</td>
<td>0</td>
<td>L EPC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>SQ_E_S3_3</td>
<td>S3</td>
<td>10</td>
<td>87</td>
<td>6</td>
<td>0</td>
<td>L EPC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>SQ_E_S3_4</td>
<td>S3</td>
<td>11</td>
<td>59</td>
<td>12</td>
<td>0</td>
<td>L EPC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>SQ_E_S3_5</td>
<td>S3</td>
<td>100</td>
<td>45</td>
<td>24</td>
<td>0</td>
<td>L EPC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>SQ_E_S3_6</td>
<td>S3</td>
<td>101</td>
<td>41</td>
<td>48</td>
<td>0</td>
<td>L EPC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>SQ_E_S3_7</td>
<td>S3</td>
<td>110</td>
<td>36</td>
<td>64</td>
<td>0</td>
<td>L EPC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>SQ_E_S3_8</td>
<td>S3</td>
<td>111</td>
<td>32</td>
<td>96</td>
<td>0</td>
<td>L EPC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>SQ_E_SL_1</td>
<td>SL</td>
<td>0</td>
<td>127</td>
<td>2</td>
<td>1</td>
<td>EPC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>SQ_E_SL_2</td>
<td>SL</td>
<td>1</td>
<td>63</td>
<td>64</td>
<td>1</td>
<td>EPC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>SQ_E_SL_3</td>
<td>SL</td>
<td>10</td>
<td>127</td>
<td>1</td>
<td>1</td>
<td>EPC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>SQ_E_SL_4</td>
<td>SL</td>
<td>11</td>
<td>63</td>
<td>0</td>
<td>1</td>
<td>EPC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>SQ_E_SL_5</td>
<td>SL</td>
<td>100</td>
<td>58</td>
<td>12</td>
<td>1</td>
<td>EPC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>SQ_E_SL_6</td>
<td>SL</td>
<td>101</td>
<td>81</td>
<td>16</td>
<td>1</td>
<td>EPC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>SQ_E_SL_7</td>
<td>SL</td>
<td>110</td>
<td>32</td>
<td>0</td>
<td>1</td>
<td>EPC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>------------</td>
<td>----</td>
<td>-----</td>
<td>----</td>
<td>---</td>
<td>---</td>
<td>-----</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>SQ_E_SL_8</td>
<td>SL</td>
<td>111</td>
<td>124</td>
<td>3</td>
<td>1</td>
<td>EPC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>SQ_E_SL_9</td>
<td>SL</td>
<td>0</td>
<td>32</td>
<td>96</td>
<td>1</td>
<td>L</td>
<td>EPC</td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>SQ_E_SL_10</td>
<td>SL</td>
<td>1</td>
<td>32</td>
<td>95</td>
<td>1</td>
<td>L</td>
<td>EPC</td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>SQ_E_SL_11</td>
<td>SL</td>
<td>10</td>
<td>44</td>
<td>48</td>
<td>1</td>
<td>L</td>
<td>EPC</td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>SQ_E_SL_12</td>
<td>SL</td>
<td>11</td>
<td>56</td>
<td>30</td>
<td>1</td>
<td>L</td>
<td>EPC</td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>SQ_E_SL_13</td>
<td>SL</td>
<td>100</td>
<td>67</td>
<td>20</td>
<td>1</td>
<td>L</td>
<td>EPC</td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>SQ_E_SL_14</td>
<td>SL</td>
<td>101</td>
<td>75</td>
<td>6</td>
<td>1</td>
<td>L</td>
<td>EPC</td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>SQ_E_SL_15</td>
<td>SL</td>
<td>110</td>
<td>127</td>
<td>0</td>
<td>1</td>
<td>L</td>
<td>EPC</td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>SQ_E_SL_16</td>
<td>SL</td>
<td>111</td>
<td>126</td>
<td>1</td>
<td>1</td>
<td>L</td>
<td>EPC</td>
<td></td>
</tr>
</tbody>
</table>

Table 9. Select/Query EPC Test Cases
2.2.10 Select/Query TID Memory

<table>
<thead>
<tr>
<th>sq_tid_test.txt</th>
<th>Pass?</th>
<th>N/A?</th>
<th>Test case</th>
<th>Target</th>
<th>Action</th>
<th>Pointer</th>
<th>Length</th>
<th>Truncate</th>
<th>Lock</th>
<th>Memory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>SQ_T_S0_1</td>
<td>S0</td>
<td>0</td>
<td>32</td>
<td>Full</td>
<td>0</td>
<td>TID</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>SQ_T_S0_2</td>
<td>S0</td>
<td>1</td>
<td>32</td>
<td>Half</td>
<td>0</td>
<td>TID</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>SQ_T_S1_1</td>
<td>S1</td>
<td>10</td>
<td>32</td>
<td>Full</td>
<td>0</td>
<td>L TID</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>SQ_T_S1_2</td>
<td>S1</td>
<td>11</td>
<td>32</td>
<td>Half</td>
<td>0</td>
<td>L TID</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>SQ_T_S2_1</td>
<td>S2</td>
<td>100</td>
<td>32</td>
<td>Full</td>
<td>0</td>
<td>TID</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>SQ_T_S2_2</td>
<td>S2</td>
<td>101</td>
<td>32</td>
<td>Half</td>
<td>0</td>
<td>TID</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>SQ_T_S3_1</td>
<td>S3</td>
<td>110</td>
<td>32</td>
<td>Full</td>
<td>0</td>
<td>L TID</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>SQ_T_S3_2</td>
<td>S3</td>
<td>111</td>
<td>32</td>
<td>Half</td>
<td>0</td>
<td>L TID</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>SQ_T_SL_1</td>
<td>SL</td>
<td>0</td>
<td>32</td>
<td>Full</td>
<td>0</td>
<td>TID</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yes</td>
<td>SQ_T_SL_2</td>
<td>SL</td>
<td>1</td>
<td>32</td>
<td>Half</td>
<td>0</td>
<td>TID</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table. 10 Select/Query TID Test Cases
3. TEST CAMPAIGN REPORT (Test Logs)
The abbreviations used in the header row of the test campaign report tables are:

Applicable: Indicates whether or not a test case have been selected for execution against the IUT identified in section XX according to the analysis of the information in the ICS and IXIT for the IUT.

Executed: Indicate whether or not the corresponding test case has been run to completion.

Verdict: Records the verdict assigned to each test case run to completion. Following verdicts are possible:
 Pass: If the test case passed
 Fail: If the test case failed
 Inc: If the test case is inconclusive.

Observations: Provides a reference to additional information relevant to the test presented in section 7.

Access Memory

Created by Impinj and modified by MET Laboratories for use in EPCglobal sanctioned Gen2 RFID interoperability testing
Permission granted for free use only for EPCglobal sponsored interoperability testing activities
#
EPCglobal Inc., its members, officers, directors, employees, or agents shall not be liable for any
injury, loss, damages, financial or otherwise, arising from, related to, or caused by the use of this
document. Use of said document does not guarantee compliance with applicable state and/or federal laws.
User is responsible for the interpretation of and compliance with applicable pedigree laws. The use of
said document shall constitute your express consent to the foregoing disclaimer.

connect 169.254.10.1 FCC 201
 Connected to reader 169.254.10.1, type: FCC, mode: 201
power 20.0
 Power set to 20.0
This section initializes the tag
#
Write pass 00000000 apass
 Write result: 1
 Write SUCCESSFUL
Write pass 00000000 kpass
 Write result: 1
 Write SUCCESSFUL
#
End of initialize tag

=== Access Password Section ===
#
Access password only matters if it non-zero and the memory is locked.
#
Tag is initially set with all zero AP and KP and unlocked memory
AP = access password; U/L is unlocked/locked memory; TC = Test Case

Running the unlocked Access Commands here
#
Read pass 00000000 apass
 Read data: 00000000
 Read SUCCESSFUL
AP = 00000000, U; Verifies AP is all zeros; TC = R_AP_1
This TC reads the correct AP when the AP is zero.

Read fail 00000000 apass EEEEEEEE
 Read data:
 Read SUCCESSFUL
AP = 00000000, U; AP read w/ incorrect AP; TC = R_AP_2
This TC reads the correct AP when the AP is zero, using an incorrect AP.

Lock fail apass DDDDDDDD
 Lock result: 0
 Lock SUCCESSFUL
AP = 00000000, U; Attempted lock w/ incorrect AP; TC = L_AP_2
This TC attempts to lock the AP in the zero state using an incorrect AP.

WrRd pass 11111111 apass
 WrRd Write result: 1
 WrRd read result: 11111111
 WrRd SUCCESSFUL
AP = 11111111, U; Set initial AP; TC = W_AP_NZ_1, R_AP_3
This TC writes and then reads a non-zero AP, using a correct all-zero AP.

Read pass 11111111 apass
 Read data: 11111111
 Read SUCCESSFUL
AP = 11111111, U; Read AP from open state; TC = R_AP_5
This TC attempts to read a non-zero AP using no AP.

Lock fail apass
 Lock result: 0
 Lock SUCCESSFUL
AP = 11111111, U; Attempted Lock w/ nonzero AP; TC = L_AP_5
This TC attempts to lock the AP from the open state, when the AP is non-zero and no AP is given.

Write pass 22222222 apass 11111111
 Write result: 1
 Write SUCCESSFUL
Read pass 22222222 apass 22222222
 Read data: 22222222
 Read SUCCESSFUL
AP = 22222222, U; Verifies AP change after incorrect AP operation; TC = W_AP_NZ_2
This TC writes and then reads a non-zero AP, using another correct non-zero AP.

Write pass 33333333 apass
 Write result: 1
 Write SUCCESSFUL
AP = 33333333, U; Verifies AP change in open state; TC = W_AP_NZ_4
This TC writes a non-zero AP, using no AP, when the AP is non-zero.

Read fail 44444444 apass 44444444
 Read data:
 Read SUCCESSFUL
AP = 33333333, U; Attempted Read of AP w/ incorrect AP; TC = R_AP_4
This TC reads the AP using an incorrect non-zero AP.

Write fail 99999999 apass FFFFFFF
 Write result: 0
 Write SUCCESSFUL
Read pass 33333333 apass
 Read data: 33333333
 Read SUCCESSFUL
AP = 33333333, U; Attempted AP change w/ incorrect AP; TC = W_AP_NZ_3
This TC attempts to write a non-zero AP, using an incorrect non-zero AP. It reads the correct AP from the open state.

Write pass 00000000 apass 33333333
 Write result: 1
 Write SUCCESSFUL
Read pass 00000000 apass 00000000
 Read data: 00000000
 Read SUCCESSFUL
AP = 00000000, U; AP changed to all zeros; TC = W_AP_Z
This TC writes a zero AP, using a correct non-zero AP. It then reads that it is correct.

Running the Locked Access Commands here

Lock pass apass
 Lock result: 1
 Lock SUCCESSFUL
AP = 00000000, L; Verifies Lock operation; TC = L_AP_1
This TC locks the AP from the secured state, when the AP is zero.

Read pass 00000000 apass
 Read data: 00000000
 Read SUCCESSFUL
AP = 00000000, L; Verifying all zero AP; TC = R_AP_L_1
This TC reads the locked AP when the AP is zero and correct.

Read fail 00000000 apass CCCCCCCC
 Read data:
 Read SUCCESSFUL
AP = 00000000, L; Attempted Read w/ incorrect AP; TC = R_AP_L_2
This TC attempts to read the locked AP, when the AP is zero, using an incorrect AP.

Write fail 44444444 apass BBBBBBBB
 Write result: 0
 Write SUCCESSFUL
Read pass 00000000 apass
 Read data: 00000000
 Read SUCCESSFUL
AP = 00000000, L; Attempted Write w/ incorrect AP; TC = W_AP_L_NZ_2
This TC attempts to write a non-zero AP, when the AP is locked and zero, using an incorrect AP.
The AP is read as unchanged.
Write pass 11111111 apass 00000000
 Write result: 1
 Write SUCCESSFUL
Read pass 11111111 apass 11111111
 Read data: 11111111
 Read SUCCESSFUL
AP = 11111111, L; Change AP in Locked State; TC = W_AP_L_NZ_1, R_AP_L_3
This TC writes a non-zero AP, when the AP is locked and zero, using the correct AP.
The AP is read as changed.

Read fail 11111111 ap
 Read data:

 Read SUCCESSFUL
AP = 11111111, L; Attempting read w/o AP (open state read); TC = R_AP_L_5
This TC attempts to read the correct AP, when the AP is locked and non-zero, using no AP.
This TC fails because the read can't be done from the open state.

Read fail 33333333 apass AAAAAAAA
 Read data:

 Read SUCCESSFUL
AP = 11111111, L; Attempted Read w/ incorrect AP; TC = R_AP_L_4
This TC reads the incorrect AP, when the AP is locked and non-zero, using an incorrect AP.

Write pass 22222222 apass 11111111
 Write result: 1
 Write SUCCESSFUL
Read pass 22222222 apass 22222222
 Read data: 22222222
 Read SUCCESSFUL
AP = 22222222, L; Verifies AP change in locked state; TC = W_AP_L_NZ_3
This TC writes to the AP, when the AP is locked and non-zero, using the correct AP.

Write fail 66666666 apass 55555555
 Write result: 0
 Write SUCCESSFUL
Read pass 22222222 apass 22222222
 Read data: 22222222
 Read SUCCESSFUL
AP = 22222222, L; Attempted Write w/ incorrect AP; TC = W_AP_L_NZ_4
This TC attempts to write to the AP, when the AP is locked and non-zero, using an incorrect AP.

Report No.: EMC94348B Rev. 2

Date: 2017-12-08 Page 26 of 114
Write fail 66666666 apass
 Write result: 0
 Write SUCCESSFUL
Read pass 22222222 apass 22222222
 Read data: 22222222
 Read SUCCESSFUL
AP = 22222222, L; Attempted Write to locked memory in open state; TC = W_AP_L_NZ_5
This TC attempts to write to the AP, when the AP is locked and non-zero, using no AP.

#
Run the Unlock Commands here
#

Unlock fail apass AAAAAAAA
 UnLock result: 0
 UnLock SUCCESSFUL
AP = 22222222, L; Attempted Unlock w/ incorrect AP; TC = U_AP_L_4
Write fail 33333333 apass
 Write result: 0
 Write SUCCESSFUL
AP = 22222222, L; Verifies cannot write from open state
Read fail 22222222 apass
 Read data:
 Read SUCCESSFUL
AP = 22222222, L; Verifies cannot read from open state
Read pass 22222222 apass 22222222
 Read data: 22222222
 Read SUCCESSFUL
AP = 22222222, L; Verifies read from secured state
This TC attempts to unlock the AP, when the AP is locked and non-zero, using an incorrect AP.
Unlock pass apass 22222222
 UnLock result: 1
 UnLock SUCCESSFUL
AP = 22222222, U; Successful Unlock w/ correct AP; TC = U_AP_L_3
WrRd pass 33333333 apass
 WrRd Write result: 1
 WrRd read result: 33333333
 WrRd SUCCESSFUL
AP = 33333333, U; Verifies can write and read from open state
Write pass 44444444 apass 33333333
 Write result: 1
 Write SUCCESSFUL
Read pass 44444444 apass 44444444
 Read data: 44444444
 Read SUCCESSFUL
AP = 44444444, U; Verifies can write and read from secured state
This TC unlocks the AP, when the AP is formerly locked and non-zero, using the correct AP.
It also verifies the AP is unlocked.

Lock pass apass 44444444
 Lock result: 1
 Lock SUCCESSFUL
AP = 44444444, L; Verifies lock from secured state; TC = L_AP_3
Write fail 33333333 apass
 Write result: 0
 Write SUCCESSFUL
AP = 44444444, L; Verifies cannot write from open state
Read fail 44444444 apass
 Read data:
 Read SUCCESSFUL
AP = 44444444, L; Verifies read from secured state
This TC locks the AP, when the AP is unlocked and non-zero, using the correct AP.
Both open and secured states are verified.

Unlock pass apass 44444444
 UnLock result: 1
 UnLock SUCCESSFUL
AP = 44444444, U; Unlocks AP for the next test.

Lock fail apass 42424242
 Lock result: 0
 Lock SUCCESSFUL
AP = 44444444, U; Verifies lock with incorrect password; TC = L_AP_4
WrRd pass 33333333 apass
 WrRd Write result: 1
 WrRd read result: 33333333
 WrRd SUCCESSFUL
AP = 33333333, U; Verifies can write and read from open state
Write pass 44444444 apass 33333333
 Write result: 1
 Write SUCCESSFUL
Read pass 44444444 apass 44444444
 Read data: 44444444
 Read SUCCESSFUL
AP = 44444444, U; Verifies can write and read from secured state
This TC attempts to lock the AP, when the AP is unlocked and non-zero, using an incorrect AP.

Write pass 00000000 apass 44444444
 Write result: 1
 Write SUCCESSFUL
AP = 00000000, U; Reset AP to all zeros
Read pass 00000000 apass
 Read data: 00000000
 Read SUCCESSFUL
AP = 00000000, U; Verifies AP is all zeros
Lock pass apass 00000000
 Lock result: 1
 Lock SUCCESSFUL
AP = 00000000, L; Locks AP

Unlock pass apass 00000000
 UnLock result: 1
 UnLock SUCCESSFUL
AP = 00000000, U; Locks AP to all zeros; TC = U_AP_L_1
WrRd pass 33333333 apass
 WrRd Write result: 1
 WrRd read result: 33333333
 WrRd SUCCESSFUL
AP = 33333333, U; Verifies can write and read from open state
Write pass 44444444 apass 33333333
 Write result: 1
 Write SUCCESSFUL
Read pass 44444444 apass 44444444
 Read data: 44444444
 Read SUCCESSFUL
AP = 44444444, U; Verifies can write and read from secured state
This TC unlocks the AP, when the AP is locked and zero, using the correct zero AP.

Write pass 00000000 apass 44444444
 Write result: 1
 Write SUCCESSFUL
AP = 00000000, U; Reset AP to all zeros

Report No.: EMC94348B Rev. 2

Date: 2017-12-08
Read pass 00000000 apass
 Read data: 00000000
 Read SUCCESSFUL
AP = 00000000, U; Verifies AP all zeros
Lock pass apass 00000000
 Lock result: 1
 Lock SUCCESSFUL
AP = 00000000, L; Locks the AP

Unlock fail apass BBBBBBBB
 UnLock result: 0
 UnLock SUCCESSFUL
AP = 00000000, L; Unsuccessful unlock w/ incorrect AP; TC = U_AP_L_2
Write pass 11111111 apass 00000000
 Write result: 1
 Write SUCCESSFUL
AP = 11111111, L; Verifies Write from secured state (dropped into secured state because AP is all zeros)
Read pass 11111111 apass 11111111
 Read data: 11111111
 Read SUCCESSFUL
AP = 11111111, L; Verifies read from secured state
This TC attempts to unlock the AP, when the AP is locked and zero, using an incorrect AP.

At the end of the script, the AP should be locked and the AP should be 0x11111111.

disconnect
 Disconnected.
Script completed without failures

Inventory Single
Created by Impinj and modified by MET Laboratories for use in EPCglobal sanctioned Gen2 RFID interoperability testing
Permission granted for free use only for EPCglobal sponsored interoperability testing activities
#
EPCglobal Inc., its members, officers, directors, employees, or agents shall not be liable for any
injury, loss, damages, financial or otherwise, arising from, related to, or caused by the use of this
document. Use of said document does not guarantee compliance with applicable state and/or federal laws.

Report No.: EMC94348B Rev. 2

Date: 2017-12-08
User is responsible for the interpretation of and compliance with applicable pedigree laws. The use of said document shall constitute your express consent to the foregoing disclaimer.

connect 169.254.10.1 FCC 201
 Connected to reader 169.254.10.1, type: FCC, mode: 201
power 20.0
 Power set to 20.0

This section initializes the tag
WrRd pass 340000000000000240601FB8D epc
 Write result: 1
 WrRd read result: 340000000000000240601FB8D
 WrRd SUCCESSFUL
WrRd pass E280B0A1 tid
#
Initialize TID if it is not Permalocked
#
Write pass 00000000 apass
 Write result: 1
 Write SUCCESSFUL
#
WrRd pass 0000111122223333 user
Initialize user memory if available on chip
Requires tag vendor customization as this feature is optional in Gen2
This is an example syntax - total memory varies by vendor
#
End of initialize tag

=== Inventory Section ===
#
Access password only matters if it non-zero and the memory is locked.
#
Tag is initially set with all zero AP and KP and unlocked memory
EPC = 340000000000000240601FB8D
AP = access password; U/L is unlocked/locked memory; TC = Test Case
#
Read pass E280B0A1 tid
 Read data: E280B0A1
 Read SUCCESSFUL
TID = E2801050; Verify TID for tags w/ Permalock TID

Now do inventory cases with unlocked memory locations
Inventory pass 1
Inventoried 1 unique tags
 00000000000000240601fb8d :1
 Inventory SUCCESSFUL

EPC = 340000000000000000240601FB8D, U; AP = 00000000; TC = I
Read pass 340000000000000000240601FB8D epc
 Read data: 340000000000000000240601FB8D
 Read SUCCESSFUL
EPC = 340000000000000000240601FB8D, U; AP = 00000000; Verifies EPC
Inventory pass 1 340000000000000000240601FB8D epc
This TC does a non-select inventory of the tag and reads its EPC number.

EPC = 340000000000000000240601FB8D, U; AP = 00000000; TC = SI_E
Read pass 340000000000000000240601FB8D epc
 Read data: 340000000000000000240601FB8D
 Read SUCCESSFUL
EPC = 340000000000000000240601FB8D, U; AP = 00000000; Verifies EPC
This TC does a complete selection of the single tag's EPC number.

Inventory pass 1 E280B0A1 tid
Inventoried 1 unique tags
 00000000000000240601fb8d :1
 Inventory SUCCESSFUL
TID = E2801050, U; AP = 00000000; TC = SI_T
Read pass E280B0A1 tid
 Read data: E280B0A1
 Read SUCCESSFUL
TID = E2801050, U; AP = 00000000; TC = SI_T; Verifies TID
This TC does a complete selection of the single tag's TID number.

This section is for tags with user memory
Currently this functionality has not been verified
Remove the comment lines on Inventory and Read directives to test the functionality
This is an example syntax - total memory varies by vendor
#
#XXX Inventory pass 1 0000111122223333 user
USER = 0000111122223333, U; AP = 00000000; TC = SI_U
#XXX Read pass 0000111122223333 user
USER = 0000111122223333, U; AP = 00000000; Verifies EPC
This TC does a complete selection of the single tag's user data.
#
#
Now perform Inventory cases with memory locked

Write pass 11111111 apass
 Write result: 1
 Write SUCCESSFUL
Lock pass epc 11111111
 Lock result: 1
 Lock SUCCESSFUL
 # EPC = E28033B2DDD9014035050000, L; AP = 11111111
Write fail 3400000011112222333344445555 epc
 Write result: 0
 Write SUCCESSFUL
 # Verified the EPC memory is locked and not writable
Lock pass tid 11111111
 Lock result: 1
 Lock SUCCESSFUL
 # TID = E2801050, L; AP = 11111111;
Write fail F3112161 tid
 Write result: 0
 Write SUCCESSFUL
 # Verifies the TID is locked or Permalocked
 #
 # This section is for tags with user memory
 # Currently this functionality has not been verified
 # Remove the comment lines on Inventory and Read directives to test the functionality
 # This is an example syntax - total memory varies by vendor
 #
 #XXX Lock pass user 11111111
 # USER = 0000111122223333, L; AP = 11111111;
 #XXX
 #XXX Write fail FFFFFFFFFFFFFFFFFF user

Inventory pass 1
 Inventoried 1 unique tags
 00000000000000240601fb8d :1
 Inventory SUCCESSFUL
 # EPC = 340000000000000000240601FB8D, L; AP = 11111111; TC = I_L
Read pass 3400000000000000000240601FB8D epc 11111111
 Read data: 3400000000000000000240601FB8D
 Read SUCCESSFUL
 # EPC = 340000000000000000240601FB8D, L; AP = 11111111; Verifies EPC
 # This TC inventories the single tag while the AP, epc, and TID are locked/permalocked.

Inventory pass 1 0000 epc

Report No.: EMC94348B Rev. 2
Date: 2017-12-08 Page 33 of 114
Inventoried 1 unique tags
00000000000000240601fb8d :1
Inventory SUCCESSFUL
EPC = 340000000000000000240601FB8D, L; AP = 11111111; TC = SI_E_L
Read pass 340000000000000000240601FB8D epc 11111111
 Read data: 340000000000000000240601FB8D
 Read SUCCESSFUL
EPC = 340000000000000000240601FB8D, L; AP = 11111111; Verifies EPC
This TC selects a portion of the EPC for a single tag while the AP, epc, and TID are locked/permalocked.

Inventory pass 1 E280 tid
 Inventoried 1 unique tags
 00000000000000240601fb8d :1
 Inventory SUCCESSFUL
TID = E2801050, L; AP = 00000000; TC = SI_T_L
Read pass E280B0A1 tid
 Read data: E280B0A1
 Read SUCCESSFUL
TID = E2801050, L; AP = 00000000; Verifies TID
This TC selects a portion of the TID for a single tag while the AP, epc, and TID are locked/permalocked.

This section is for tags with user memory
Currently this functionality has not been verified
Remove the comment lines on Inventory and Read directives to test the functionality
Inventory pass 1 00001111 user
USER = 0000111122223333, L; AP = 00000000; TC = SI_U_L
Read pass 0000111122223333 user,0,4
USER = 0000111122223333, L; AP = 00000000; Verifies user memory
#

disconnect
 Disconnected.
Script completed without failures

Write and Read
Created by Impinj and modified by MET Laboratories for use in EPCglobal sanctioned Gen2 RFID interoperability testing
Permission granted for free use only for EPCglobal sponsored interoperability testing activities
EPCglobal Inc., its members, officers, directors, employees, or agents shall not be liable for any injury, loss, damages, financial or otherwise, arising from, related to, or caused by the use of this document. Use of said document does not guarantee compliance with applicable state and/or federal laws. User is responsible for the interpretation of and compliance with applicable pedigree laws. The use of said document shall constitute your express consent to the foregoing disclaimer.

connect 169.254.10.1 FCC 201
 Connected to reader 169.254.10.1, type: FCC, mode: 201
 power 20.0
 Power set to 20.0

This section initializes the tag
WrRd pass 3400E2800000000000240601FB8D epc
 WrRd Write result: 1
 WrRd read result: 3400E2800000000000240601FB8D
 WrRd SUCCESSFUL
#
TTT WrRd pass E280B0A1 tid
Initialize TID if it is not Permalocked
#
Write pass 00000000 apass
 Write result: 1
 Write SUCCESSFUL
#
WrRd pass 0000111122223333 user
Initialize user memory if available on chip
Requires tag vendor customization as this feature is optional in Gen2
This is an example syntax - total memory varies by vendor
#
End of initialize tag

=== Write and Read Test Section ===
=== Section tests EPC memory ===
#
Access password only matters if it non-zero and the memory is locked.
#
Tag is initially set with all zero AP and KP and unlocked memory
EPC = 3400E2800000000000240601FB8D
AP = access password; U/L is unlocked/locked memory; TC = Test Case
#
Read pass E280B0A1 tid
Read data: E280B0A1
Read SUCCESSFUL
TID = E2001050; Verify TID for tags w/ Permalock TID

WrRd pass 3400E28000000000000240601FB8D epc
 WrRd Write result: 1
 WrRd read result: 3400E28000000000000240601FB8D
 WrRd SUCCESSFUL
EPC = 3400E28000000000000240601FB8D, U; TC = W_E_C, R_E_C
These TCs write and then read the complete EPC number.

WrRd pass E280 epc.2
 WrRd Write result: 1
 WrRd read result: E280
 WrRd SUCCESSFUL
EPC = 3400E28033B2DDD9014035050000, U; TC = W_E_P, R_E_P
These TCs write and then read a portion of the EPC number.

#
Now run test cases for locked EPC

Write pass 11111111 apass
 Write result: 1
 Write SUCCESSFUL
EPC = 3400E28033B2DDD9014035050000, U; AP = 11111111; Sets AP
Lock pass epc 11111111
 Lock result: 1
 Lock SUCCESSFUL
EPC = 3400E28033B2DDD9014035050000, L; AP = 11111111; TC = L_E
This TC locks the epc number.

Write fail 3400E28000000000000240601FB8D epc
 Write result: 0
 Write SUCCESSFUL
EPC = 3400E28033B2DDD9014035050000, L; AP = 11111111; Attempted Write from open state;
Write fail 3200E28033B2DDD9014035050000 epc FFFFFFFF
 Write result: 0
 Write SUCCESSFUL
EPC = 3400E28033B2DDD9014035050000, L; AP = 11111111; Attempted Write incorrect AP;
WrRd pass E280 epc.2 11111111
 WrRd Write result: 1
 WrRd read result: E280
 WrRd SUCCESSFUL
EPC = 3400E28000000000000240601FB8D, L; AP = 11111111; TC = W_E_L_P and R_E_L_P;
This TC writes and then reads a portion of the EPC from the secured state, while the EPC memory is locked.

#
Now run test cases to unlock EPC

Unlock fail epc
 UnLock result: 0
 UnLock SUCCESSFUL
EPC = 3400E28000000000000240601FB8D, L; AP = 11111111; Attempted Unlock w/o AP
Write fail 3400E28033B2DDD9014035050000 epc
 Write result: 0
 Write SUCCESSFUL
EPC = 3400E28000000000000240601FB8D, L; AP = 11111111; Attempted Write from open state;
Write fail 3200E28033B2DDD9014035050000 epc FFFFFFFF
 Write result: 0
 Write SUCCESSFUL
EPC = 3400E2
 # EPC = 3400E28000000000000240601FB8D, L; AP = 11111111; Attempted Write incorrect AP;
 Unlock fail epc FFFFFFFF
 UnLock result: 0
 UnLock SUCCESSFUL
EPC = 3400E28000000000000240601FB8D, L; AP = 11111111; Attempted Unlock w/ incorrect AP
Write fail 3400E28033B2DDD9014035050000 epc
 Write result: 0
 Write SUCCESSFUL
EPC = 3400E28000000000000240601FB8D, L; AP = 11111111; Attempted Write from open state;
Write fail 3400E28033B2DDD9014035050000 epc FFFFFFFF
 Write result: 0
 Write SUCCESSFUL
EPC = 3400E28000000000000240601FB8D, L; AP = 11111111; Attempted Write incorrect AP;
Unlock pass epc 11111111
 UnLock result: 1
 UnLock SUCCESSFUL
EPC = 3400E28000000000000240601FB8D, U; AP = 11111111; TC = U_E_L
WrRd pass E280 epc,2 11111111
 WrRd Write result: 1
 WrRd read result: E280
 WrRd SUCCESSFUL
 # EPC = 3400E28033B2DDD9014035050000, U; AP = 11111111; Write from secured state;
 WrRd pass E280 epc.2
 WrRd Write result: 1
 WrRd read result: E280
 WrRd SUCCESSFUL
 # EPC = 3400E280000000000000240601FB8D, U; AP = 11111111; Write from open state;
 # This TC unlocks the EPC memory from the locked state.

 WrRd pass 00000000 apass
 WrRd Write result: 1
 WrRd read result: 00000000
 WrRd SUCCESSFUL
 # EPC = 3400E280000000000000240601FB8D, U; AP = 00000000; Resets AP

 # === Write and Read Test Section ===
 # === Section tests TID memory ===
 #
 # Access password only matters if it non-zero and the memory is locked.
 #
 # Tag is initially set with all zero AP and KP and unlocked memory
 # Assumes a 32-bit programmable TID
 # TID = E2001050
 # AP = access password; U/L is unlocked/locked memory; TC = Test Case
 #
 # NOTE: This section needs to be modified for each tag with a different TID
 #
 Read pass E280B0A1 tid
 Read data: E280B0A1
 Read SUCCESSFUL
 # TID = E2001050; Verify TID for tags w/ Permalock TID

 #TTT WrRd pass E280B0A1 tid
 # TID = E2001050, U; TC = W_T_C, R_T_C
 # Not valid for permalocked TID
 # This TC writes and then reads the complete TID.

 #TTT WrRd pass 2222 tid,2
 # TID = E2002222, U; TC = W_T_P, R_T_P
 # Not valid for permalocked TID
This TC writes and then reads a portion of the TID.

Now run test cases for locked TID

Write pass 11111111 apass
 Write result: 1
 Write SUCCESSFUL
TID = E2001050, U; AP = 11111111; Sets AP
Lock pass tid 11111111
 Lock result: 1
 Lock SUCCESSFUL
TID = E2001050, L; AP = 11111111; TC = L_T
Write fail E280B0A1 tid
 Write result: 0
 Write SUCCESSFUL
TID = E2001050, L; AP = 11111111; AP = 11111111; Attempted Write from open state;
Write fail E280B0A1 tid FFFFFFFF
 Write result: 0
 Write SUCCESSFUL
TID = E2001050, L; AP = 11111111; Attempted Write incorrect AP;
TID = E2001050, L; AP = 11111111; ATTEMPTED Write incorrect AP;
This TC locks the TID memory.

#TTT WrRd pass 3333 tid,2 11111111
TID = E2003333, L; AP = 11111111; TC = W_T_L_P and R_T_L_P;
Not valid for permalocked TID
This TC writes and then reads a portion of the TID while the TID is locked.

Now run test cases to unlock TID

Unlock fail tid
 UnLock result: 0
 UnLock SUCCESSFUL
TID = E2001050, L; AP = 11111111; Attempted Unlock w/o AP
Write fail E2004444 tid
 Write result: 0
 Write SUCCESSFUL
TID = E2001050, L; AP = 11111111; Attempted Write from open state;
Write fail E2004444 tid FFFFFFFF
 Write result: 0
 Write SUCCESSFUL
TID = E2001050, L; AP = 11111111; Attempted Write incorrect AP;
Unlock fail tid FFFFFFFF
 UnLock result: 0
 UnLock SUCCESSFUL
TID = E2001050, L; AP = 11111111; Attempted Unlock w/ incorrect AP
Write fail E20044444 tid
 Write result: 0
 Write SUCCESSFUL
TID = E2001050, L; AP = 11111111; Attempted Write from open state;
Write fail E20044444 tid FFFFFFFF
 Write result: 0
 Write SUCCESSFUL
TID = E2001050, L; AP = 11111111; Attempted Write incorrect AP;

TID is Permalocked
Unlock fail tid 11111111
 UnLock result: 0
 UnLock SUCCESSFUL
TID = E2001050, U; AP = 11111111; TC = U_T_L
WrRd pass 1111 tid,2 11111111
TID = E2001111, U; AP = 11111111; Write from secured state;
WrRd pass 0000 tid,2
TID = E2000000, U; AP = 11111111; Write from open state;
This TC attempts to unlock the TID from the locked/permalocked state.
It fails because the TID is permalocked, and therefore the tag doesn't allow the reader
to deselect its Lock/Action bits.

WrRd pass 00000000 apass
 WrRd Write result: 1
 WrRd read result: 00000000
 WrRd SUCCESSFUL
TID = E2001050, U; AP = 00000000; Resets AP

=== Write and Read Test Section ===
=== Section tests USER memory ===
#
Access password only matters if it non-zero and the memory is locked.
#
Tag is initially set with all zero AP and KP and unlocked memory
Assumes a 64-bit programmable USER
USER = 0000111122223333
AP = access password; U/L is unlocked/locked memory; TC = Test Case
#
Note: This entire section requires tag vendor customization as this feature is optional
in Gen2

Report No.: EMC94348B Rev. 2

Date: 2017-12-08
This is an example syntax - total memory varies by vendor

#UuU WrRd pass 000111122223333 user
USER = 0000111122223333, U; TC = W_U_C, R_U_C

#UuU WrRd pass 4444 user,4
USER = 0000111122224444, U; TC = W_U_P, R_U_P

#
Now run test cases for locked USER

Write pass 11111111 apass
 Write result: 1
 Write SUCCESSFUL
USER = 0000111122224444, U; AP = 11111111; Sets AP
#UuU Lock pass user 11111111
USER = 0000111122224444, L; AP = 11111111; TC = L_U
#Write fail 0000111122223333 user
USER = 0000111122223333, L; AP = 11111111; AP = 11111111; Attempted Write from open state;
#Write fail 0000111122223333 user FFFFFFFF
USER = 0000111122224444, L; AP = 11111111; Attempted Write incorrect AP;
#UuU WrRd pass 3333 user,4 11111111
USER = 0000111122223333, L; AP = 11111111; TC = W_U_L_P and R_U_L_P;

#
Now run test cases to unlock USER

#UuU Unlock fail user
USER = 0000111122223333, L; AP = 11111111; Attempted Unlock w/o AP
#Write fail 0000111122224444 user
USER = 0000111122223333, L; AP = 11111111; Attempted Write from open state;
#Write fail 0000111122224444 user FFFFFFFF
USER = 0000111122224444, L; AP = 11111111; Attempted Write incorrect AP;

#UuU Unlock fail user FFFFFFFF
USER = 0000111122223333, L; AP = 11111111; Attempted Unlock w/ incorrect AP
#Write fail 0000111122224444 user
USER = 0000111122223333, L; AP = 11111111; Attempted Write from open state;
#Write fail 0000111122224444 user FFFFFFFF
USER = 0000111122223333, L; AP = 11111111; Attempted Write incorrect AP;

#UuU Unlock pass user 11111111
USER = 0000111122223333, L; AP = 11111111; TC = U_U_L
#UuU WrRd pass 4444 user,4 11111111

Report No.: EMC94348B Rev. 2

Date: 2017-12-08
USER = 0000111122224444, U; AP = 11111111; Write from secured state;
UUU WrRd pass 3333 user,4
USER = 0000111122223333, U; AP = 11111111; Write from open state;

Now run test cases for Kill

Write pass 00000000 kpass
Write result: 1
Write SUCCESSFUL
KP = 00000000, U; AP = 11111111; TC = W_KP_Z
This TC writes to the KP when the KP is all zeros.

Read pass 00000000 kpass
Read data: 00000000
Read SUCCESSFUL
KP = 00000000, U; AP = 11111111; TC = R_KP
This TC reads the KP when the KP is unlocked.

Write pass 01234567 kpass
Write result: 1
Write SUCCESSFUL
KP = 01234567, U; AP = 11111111; TC = W_KP_NZ
Read pass 01234567 kpass
Read data: 01234567
Read SUCCESSFUL
KP = 01234567, U; AP = 11111111;
This TC writes a non-zero KP to the KP memory.

Lock pass kpass 11111111
Lock result: 1
Lock SUCCESSFUL
KP = 01234567, L; AP = 11111111; Locks the kill password; TC = L_KP
Read fail 01234567 kpass
Read data:

Read SUCCESSFUL
KP = 01234567, L; AP = 11111111; Attempt to read KP from open state
Write fail 33333333 kpass
Write result: 0
Write SUCCESSFUL
KP = 01234567, L; AP = 11111111; Verifies cannot write from open state
Read fail 01234567 kpass 44444444
Read data:
Read SUCCESSFUL
AP = 44444444, L; AP = 11111111; Verifies cannot read w/ incorrect AP
This TC locks the KP.

Read pass 01234567 kpass 11111111
 Read data: 01234567
 Read SUCCESSFUL
KP = 01234567, L; AP = 11111111; Verifies read from secured state; TC = R_KP_L
This TC reads the KP when the KP is locked.

Write pass 76543210 kpass 11111111
 Write result: 1
 Write SUCCESSFUL
KP = 76543210, L; AP = 11111111; Verifies write from secured state; TC = W_KP_L_NZ
Read pass 76543210 kpass 11111111
 Read data: 76543210
 Read SUCCESSFUL
KP = 76543210, L; AP = 11111111; Verifies read from secured state;
This TC writes to the KP when the KP is locked and non-zero.

Kill fail 01234567
 Kill result: 0
 Kill SUCCESSFUL
KP = 76543210, L; AP = 11111111; TC = K_INZ_L
This TC attempts to kill the tag with an incorrect, non-zero KP, while the KP is locked.

Unlock pass kpass 11111111
 UnLock result: 1
 UnLock SUCCESSFUL
KP = 76543210 , U; AP = 11111111; TC = U_KP_L
This TC unlocks the KP when it was locked.

Kill fail FFFFFFFF
 Kill result: 0
 Kill SUCCESSFUL
KP = 76543210 , U; AP = 11111111; TC = K_INZ
Read pass 76543210 kpass
 Read data: 76543210
 Read SUCCESSFUL
KP = 76543210 , U; AP = 11111111; Verifies tag is still alive
This TC attempts to kill the tag using an incorrect, non-zero KP, while the KP is unlocked.
Write pass 00000000 kpass 11111111
Write result: 1
Write SUCCESSFUL
KP = 00000000, U; AP = 11111111; Sets KP to all zeros
Kill fail 00000000
Kill result: 0
Kill SUCCESSFUL
KP = 00000000 , U; AP = 11111111; TC = K_Z
This TC attempts to kill the tag using an all-zero KP.

At the end of this script, the tag is unlocked with an AP of 0x11111111 and a KP of 0x00000000

disconnect
Disconnected.
Script completed without failures

PermaUnlocked

Created by Impinj and modified by MET Laboratories for use in EPCglobal sanctioned Gen2 RFID interoperability testing
Permission granted for free use only for EPCglobal sponsored interoperability testing activities
EPCglobal Inc., its members, officers, directors, employees, or agents shall not be liable for any
injury, loss, damages, financial or otherwise, arising from, related to, or caused by the use of this
document. Use of said document does not guarantee compliance with applicable state and/or federal laws.
User is responsible for the interpretation of and compliance with applicable pedigree laws. The use of
said document shall constitute your express consent to the foregoing disclaimer.

connect 169.254.10.1 FCC 201
Connected to reader 169.254.10.1, type: FCC, mode: 201
power 20
Power set to 20

This script verifies PermaUnlock behavior with non-zero AP # # # "unlocked" means that the bit pattern to the associated memory bank is "00"
"locked" that the bit pattern to the associated memory bank is "10"
"permaunlocked" means that the bit pattern to the associated memory bank is "01"
"permalocked" means that the bit pattern to the associated memory bank is "11"

Write pass 00000000 apass
 Write result: 1
 Write SUCCESSFUL
Read pass 00000000 apass
 Read data: 00000000
 Read SUCCESSFUL
Write pass AAAAAAAA kpass
 Write result: 1
 Write SUCCESSFUL
Read pass AAAAAAAA kpass
 Read data: AAAAAAAA
 Read SUCCESSFUL
Unlock pass kpass
 UnLock result: 1
 UnLock SUCCESSFUL
Unlock pass epc
 UnLock result: 1
 UnLock SUCCESSFUL
The following line is for rewritable TID
TTT Unlock pass tid
The following line is for Permalocked TID
Unlock fail tid
 UnLock result: 0
 UnLock SUCCESSFUL
UUU Unlock pass user
WrRd pass 3400111122223333444455556666 epc
 WrRd Write result: 1
 WrRd read result: 3400111122223333444455556666
 WrRd SUCCESSFUL
EPC = 3400111122223333444455556666
TTT WrRd pass E280110C tid
Assumes a 48-bit programmable TID memory
TID = E20010501111
UUU WrRd pass 0000111122223333 user
Assumes a 64-bit programmable USER memory
USER = 0000111122223333

==== PermaUnlock Access Password Section ====
Unlock pass apass
 UnLock result: 1
 UnLock SUCCESSFUL
PermLock pass apass
PermLock result: 1
PermLock SUCCESSFUL
AP = 00000000, PU; Permanently unlocks the access password; TC = PU_AP
Sets the PermaLock bit in the AP field to a one
This TC permaunlocks the tag’s AP with the correct, zero AP.

Write pass 22222222 apass
Write result: 1
Write SUCCESSFUL
AP = 22222222, PU; Verifies can write from open state; TC = W_AP PU_NZ_1
This TC writes a non-zero AP when the AP is permaunlocked and zero, using the correct AP.

Read pass 22222222 apass 22222222
Read data: 22222222
Read SUCCESSFUL
AP = 22222222, PU; Verifies can read from secured state; TC = R_AP PU_3
This TC reads a non-zero AP, when the AP is permaunlocked and non-zero, using the correct AP.

Write pass 11111111 apass 22222222
Write result: 1
Write SUCCESSFUL
AP = 11111111, PU; Verifies can write from secured state; TC = W_AP PU_NZ_2
This TC writes a non-zero AP, when the AP is permaunlocked and non-zero, using the correct AP.

Read pass 11111111 apass
Read data: 11111111
Read SUCCESSFUL
AP = 11111111, PU; Verifies can read from open state; TC = R_AP PU_5
This TC reads a non-zero AP, when the AP is permaunlocked and non-zero, using no AP.

Read fail 11111111 apass FFFFFFFF
Read data:

Read SUCCESSFUL
AP = 11111111, PU; Attempted read w incorrect AP; TC = R_AP PU_4
This TC attempts to read a non-zero AP, when the AP is permaunlocked and non-zero, using an incorrect AP.

Read pass 11111111 apass 11111111
Read data: 11111111
Read SUCCESSFUL
AP = 11111111, PU; Verifies AP is all ones
Write pass 22222222 apass
 Write result: 1
 Write SUCCESSFUL
AP = 22222222, PU; Verifies can write from open state; TC = W_AP_PU_NZ_4
This TC writes a non-zero AP, when the AP is permaunlocked and non-zero, using no AP.

Read pass 22222222 apass
 Read data: 22222222
 Read SUCCESSFUL
AP = 22222222, PU; Verifies can read from open state
Write fail 11111111 apass FFFFFFFF
 Write result: 0
 Write SUCCESSFUL
AP = 22222222, PU; Attempted write with incorrect AP; TC = W_AP_PU_NZ_3
This TC attempts to write a non-zero AP, when the AP is permaunlocked and non-zero, using an incorrect AP.

Write pass 00000000 apass 22222222
 Write result: 1
 Write SUCCESSFUL
AP = 00000000, PU; Resets AP to all zeros; TC = W_AP_PU_Z
This TC writes a zero AP, when the AP is permaunlocked and non-zero, using the correct AP.

Read pass 00000000 apass 00000000
 Read data: 00000000
 Read SUCCESSFUL
AP = 00000000, PU; Verifies AP all zeros; TC = R_AP_PU_1
This TC reads a zero AP, when the AP is permaunlocked and zero, using the correct AP.

Read fail FFFFFFFF apass
 Read data: 00000000
 Read SUCCESSFUL
AP = 00000000, PU; Verifies failure to read despite with incorrect AP; TC = R_AP_PU_2
This TC attempts to read a zero AP, when the AP is permaunlocked and zero, using no AP.

PermUnLock fail apass
 PermUnLock result: 0
 PermUnLock SUCCESSFUL

Report No.: EMC94348B Rev. 2

Date: 2017-12-08
AP = 00000000, PU; Tries to deselect the permalock bit to the access password; TC = PU_AP_PU_1
This TC attempts to change the permalock bit, when the AP is permaunlocked and zero, using no AP.

Write pass 22222222 apass
 Write result: 1
 Write SUCCESSFUL
AP = 22222222, PU; Verifies can write from open state
Read pass 22222222 apass
 Read data: 22222222
 Read SUCCESSFUL
AP = 22222222, PU; Verifies can read from open state
PermUnLock fail apass
 PermUnLock result: 0
 PermUnLock SUCCESSFUL
AP = 22222222, PU; Tries to deselect the permalock bit for the access password from open state; TC = PU_AP_PU_3
This TC attempts to change the permalock bit, when the AP is permaunlocked and non-zero, using no AP.

PermUnLock fail apass 22222222
 PermUnLock result: 0
 PermUnLock SUCCESSFUL
AP = 22222222, PU; Tries to deselect the permalock bit for the access password from secured state; TC = PU_AP_PU_2
This TC attempts to change the permalock bit, when the AP is permaunlocked and non-zero, using the correct AP.

Lock fail apass
 Lock result: 0
 Lock SUCCESSFUL
AP = 22222222, PU; Tries to lock the access password from open state; TC = L_AP_PU_3
This TC attempts to set the lock bit, when the AP is permaunlocked and non-zero, using no AP.

Lock fail apass 22222222
 Lock result: 0
 Lock SUCCESSFUL
AP = 22222222, PU; Tries to lock the access password using the correct access password, when the access password is non-zero; TC = L_AP_PU_2
This TC attempts to set the lock bit, when the AP is permaunlocked and non-zero, using the correct AP.

Write pass 00000000 apass 22222222
 Write result: 1
 Write SUCCESSFUL
AP = 00000000, PU; Sets tag AP to all zeros
Read pass 00000000 apass
 Read data: 00000000
 Read SUCCESSFUL
Tag AP is in PermaUnlocked state with all zeros.

Continue with the PermaUnlocked EPC, TID, and USER memory test cases
and Single tag Inventory cases after EPC

Now working on EPC memory
PermLock pass epc
 PermLock result: 1
 PermLock SUCCESSFUL
EPC = 3400111122223333444455556666, PU; AP = 00000000, PU; Permanently unlocks the EPC bank; TC = PU_E
Sets the PermaLock bit in the AP field to a one
This TC puts the EPC in permaunlock, when the AP is permaunlocked and zero, using no AP.

Lock fail epc
 Lock result: 0
 Lock SUCCESSFUL
EPC = 3400111122223333444455556666, PU; AP = 00000000, PU; TC = L_E_PU
Verifies the epc bank is PermaUnlocked and that it can't be locked from the open state
This TC attempts to set the EPC in permaLock, when the AP is permaunlocked and zero and the EPC is permaunlocked, using no AP.

Unlock pass epc
 UnLock result: 1
 UnLock SUCCESSFUL
EPC = 3400111122223333444455556666, PU; AP = 00000000, PU; TC = U_E_PU
This TC unsets the EPC lock bit (or confirms that it is unset in this case), when the AP is permaunlocked and zero and the EPC is permaunlocked.

PermUnLock fail epc
 PermUnLock result: 0
 PermUnLock SUCCESSFUL
EPC = 3400111122223333444455556666, PU; AP = 00000000, PU; TC = PU_E_PU
This TC attempts to unset the EPC permalock bit, when the AP is permaunlocked and
zero and the EPC is permaunlocked, using no AP.

Lock fail epc
 Lock result: 0
 Lock SUCCESSFUL
EPC = 3400111122223333444455556666, PU; AP = 00000000, PU
Verifies the EPC bank is still PermaUnlocked
Write pass 7777 epc,5
 Write result: 1
 Write SUCCESSFUL
EPC = 3400111122223333777755556666, PU; AP = 00000000, PU; TC = W_E_PU_P
This TC writes to a portion of the EPC, when the AP is permaunlocked and zero and
the EPC is permaunlocked.

Read pass 7777 epc,5,1
 Read data: 7777
 Read SUCCESSFUL
EPC = 3400111122223333777755556666, PU; AP = 00000000, PU; TC = R_E_PU_P
This TC reads a portion of the EPC, when the AP is permaunlocked and zero and the
EPC is permaunlocked, using no AP.

#Lock pass epc 00000000
EPC = 3400111122223333777755556666, PL; AP = 00000000, PU; TC = L_E_PU, PL_E_PU
Verifies the epc bank is PermaLocked and that it can be permalocked from the secure
state
This test case is taken care of by PL_E_L_2

Now working on TID memory
This section is for generic TID
Assumes a 48-bit programmable TID memory
TID = E20010501111
#TTT PermLock pass tid
TID = E20010501111, PU; AP = 00000000, PU; Permanently unlocks the EPC bank;
TC = PU_T
Sets the PermaLock bit in the AP field to a one
#TTT Lock fail tid
TID = E20010501111, PU; AP = 00000000, PU; TC = L_T_PU
Verifies the epc bank is PermaUnlocked
#TTT Unlock pass tid
TID = E20010501111, PU; AP = 00000000, PU; TC = U_T_PU
TTT PermUnLock fail tid
TID = E20010501111, PU; AP = 00000000, PU; TC = PU_T_PU
TTT Lock fail tid
TID = E20010501111, PU; AP = 00000000, PU
Verifies the TID bank is still PermaUnlocked
TTT Write pass 2222 tid,2
TID = E20010502222, PU; AP = 00000000, PU; TC = W_T_PU_P
TTT Read pass 2222 tid,2,1
TID = E20010502222, PU; AP = 00000000, PU; TC = R_T_PU_P

This section is for tags with PermaUnlocked TID memory
Note: This section is not applicable for tags with Permalocked TID memory
#
PermLock pass tid
TID = E2001050, PL; AP = 00000000, PU; Permanently unlocks the TID bank; TC = PU_T
Sets the PermaLock bit in the AP field to a one
Lock pass tid
TID = E2001050, PL; AP = 00000000, PU; TC = L_T_PU
Verifies the tid bank is PermaUnlocked
Unlock fail tid
TID = E2001050, PL; AP = 00000000, PU; TC = U_T_PU
PermUnLock fail tid
TID = E2001050, PL; AP = 00000000, PU; TC = PU_T_PU
Lock pass tid
TID = E2001050, PL; AP = 00000000, PU
Verifies the TID bank is still PermaUnlocked
Write fail 1111 tid,1
TID = E2001050, PL; AP = 00000000, PU; TC = W_T_PU_P
Read pass 110C tid,1,1
TID = E2001050, PL; AP = 00000000, PU; TC = R_T_PU_P

Now working on USER memory
Assumes a 64-bit programmable USER
USER = 0000111222233
Note: This section is not applicable for tags with no user memory
UUU Unlock pass user
UUU PermLock pass user
USER = 0000111122223333, PU; AP = 00000000, PU; Permanently unlocks the USER bank; TC = PU_U
Sets the PermaLock bit in the AP field to a one
UUU Lock fail user 00000000
USER = 0000111122223333, PU; AP = 00000000, PU; Attempt to lock the USER bank; TC = L_U_PU
#UUU Unlock pass user
USER = 0000111122223333, PU; AP = 00000000, PU; TC = U_U_PU
#PermUnLock fail user
USER = 0000111122223333, PU; AP = 00000000, PU; TC = PU_U_PU
Verifies the User memory is still Permaunlocked
#UUU Write pass 4444 user,3
USER = 0000111122224444, PU; AP = 00000000, PU; TC = W_U_PU_P
#UUU Read pass 4444 user,3,1
USER = 0000111122224444, PU; AP = 00000000, PU; TC = R_U_PU_P

Now working on Kill password
PermLock pass kpass
 PermLock result: 1
 PermLock SUCCESSFUL
KP = AAAAAAAA, PU; AP = 00000000, PU; Permanently unlocks the EPC bank;
 TC = PU_KP
This TC puts the KP in permaunlock, when the AP is zero, using no AP.

Sets the PermaLock bit in the AP field to a one
Lock fail kpass
 Lock result: 0
 Lock SUCCESSFUL
KP = AAAAAAAA, PU; AP = 00000000, PU; TC = L_KP_PU
Verifies the kill password is PermaUnlocked and that it can’t lock it from the open
 state.
This TC attempts to set the lock bit for the KP, using no AP, when the KP is
 permaunlocked.

Unlock pass kpass
 UnLock result: 1
 UnLock SUCCESSFUL
KP = AAAAAAAA, PU; AP = 00000000, PU; TC = U_KP_PU
This TC unsets the lock bit to the KP (or confirms that it is already unset) when the
 KP is permaunlocked.

PermUnLock fail kpass
 PermUnLock result: 0
 PermUnLock SUCCESSFUL
KP = AAAAAAAA, PU; AP = 00000000, PU; TC = PU_KP_PU
This TC attempts to unset the permalock bit, while the KP is permaunlocked.

Lock fail kpass
 Lock result: 0
 Lock SUCCESSFUL
KP = AAAAAAAA, PU; AP = 00000000, PU
Verifies the Kill password is still PermaUnlocked
Write pass BBBBBBBB kpass
 Write result: 1
 Write SUCCESSFUL
KP = BBBBBBBB, PU; AP = 00000000, PU; TC = W_KP_PU_NZ
This TC writes a non-zero KP, when the AP is zero and the KP is permaunlocked and non-zero.

Read pass BBBBBBBB kpass
 Read data: BBBBBBBB
 Read SUCCESSFUL
KP = BBBBBBBB, PU; AP = 00000000, PU; TC = R_KP_PU
This TC reads a non-zero KP, when the AP is zero and the KP is permaunlocked and non-zero.

Kill fail ABBAABBA
 Kill result: 0
 Kill SUCCESSFUL
KP = AAAAAAAA, PU; AP = 00000000, PU; TC = K_INZ_PU
This TC attempts to kill the tag using an incorrect, non-zero KP, while the KP is permaunlocked.

Now run the Inventory cases

Inventory pass 1
 Inventoried 1 unique tags
 111122223333777755556666 :1
 Inventory SUCCESSFUL
TC = I_PU
This TC does an inventory of a single tag.

Inventory pass 1 11112222 epc
 Inventoried 1 unique tags
 111122223333777755556666 :1
 Inventory SUCCESSFUL
EPC = 34001112222333777755556666, PU; AP = 00000000; TC = SI_E_PU
Read pass 3400111122223333777755556666 epc
 Read data: 3400111122223333777755556666
 Read SUCCESSFUL
EPC = 3400111122223333777755556666, PU; AP = 00000000; Verifies EPC
This TC inventories a single tag, based on a portion of the EPC being present.

Inventory pass 1 E280 tid
 Inventoried 1 unique tags
 111122223333777755556666 :1
Inventory SUCCESSFUL
TID = E2001050, PU/PL; AP = 00000000; TC = SI_T_PU
Read pass E280B0A1 tid
 Read data: E280B0A1
 Read SUCCESSFUL
TID = E2001050, PU/PL; AP = 00000000; Verifies TID
This TC inventories a single tag, based on a portion of the TID being present.

#UUU Inventory pass 1 00001111 user
USER = 0000111122224444, PU; AP = 00000000; TC = SI_U_PU
#UUU Read pass 0000111122224444 user,0,4
USER = 0000111122224444, PU; AP = 00000000; Verifies user memory
This TC inventories a single tag, based on a portion of the User data being present.

disconnect
 Disconnected.

Script completed without failures

PermaLocked_L

Created by Impinj and modified by MET Laboratories for use in EPCglobal sanctioned Gen2 RFID interoperability testing
Permission granted for free use only for EPCglobal sponsored interoperability testing activities
#
EPCglobal Inc., its members, officers, directors, employees, or agents shall not be liable for any
injury, loss, damages, financial or otherwise, arising from, related to, or caused by the use of this
document. Use of said document does not guarantee compliance with applicable state and/or federal laws.
User is responsible for the interpretation of and compliance with applicable pedigree laws. The use of
said document shall constitute your express consent to the foregoing disclaimer.

connect 169.254.10.1 FCC 201
 Connected to reader 169.254.10.1, type: FCC, mode: 201
power 20
 Power set to 20

"unlocked" means that the bit pattern to the associated memory bank is "00"
"locked" that the bit pattern to the associated memory bank is "10"
"permaunlocked" means that the bit pattern to the associated memory bank is "01"
"permalocked" means that the bit pattern to the associated memory bank is "11"

Write pass 00000000 apass
 Write result: 1
 Write SUCCESSFUL
Read pass 00000000 apass
 Read data: 00000000
 Read SUCCESSFUL
Write pass AAAAAAAA kpass
 Write result: 1
 Write SUCCESSFUL
Read pass AAAAAAAA kpass
 Read data: AAAAAAAA
 Read SUCCESSFUL
Unlock pass kpass
 UnLock result: 1
 UnLock SUCCESSFUL
Unlock pass epc
 UnLock result: 1
 UnLock SUCCESSFUL

The following line is for rewritable TID
TTT Unlock pass tid
The following line is for Permalocked TID
Unlock fail tid
 UnLock result: 0
 UnLock SUCCESSFUL

#UUU Unlock pass user
WrRd pass 3400111122223333444455556666 epc
 WrRd Write result: 1
 WrRd read result: 3400111122223333444455556666
 WrRd SUCCESSFUL
EPC = 3400111122223333444455556666
TTT WrRd pass E280110C tid
Assumes a 48-bit programmable TID memory
TID = E20010501111
#UUU WrRd pass 0000111122223333 user
Assumes a 64-bit programmable USER memory
USER = 0000111122223333

Now working on the rest of the AP memory
Write pass 12345678 apass
 Write result: 1
 Write SUCCESSFUL
Read pass 12345678 apass 12345678

Report No.: EMC94348B Rev. 2

Date: 2017-12-08

Page 55 of 114
Read data: 12345678
Read SUCCESSFUL
AP=12345678, U, KP=AAAAAAAA
lock pass apass 12345678
 Lock result: 1
 Lock SUCCESSFUL
Putting tag in locked state for PL test
Permlock fail apass
 PermLock result: 0
 PermLock SUCCESSFUL
Attempting to put in Permalock while in open state. TC=PL_AP_L_2
Write fail 33333333 apass
 Write result: 0
 Write SUCCESSFUL
AP=12345678, L; Verifies can't write from open state
Read fail 33333333 apass
 Read data:

 Read SUCCESSFUL
AP = 12345678, L; Verifies can't read 33333333 from open state
Read fail 12345678 apass
 Read data:

 Read SUCCESSFUL
AP = 12345678, L; Verifies can't read 12345678 from open state
Read pass 12345678 apass 12345678
 Read data: 12345678
 Read SUCCESSFUL
AP = 12345678, L; Verifies can write from secured state;
Write pass 11111111 apass 12345678
 Write result: 1
 Write SUCCESSFUL
AP = 12345678, L; Verifies can write from secured state;
Read pass 11111111 apass 11111111
 Read data: 11111111
 Read SUCCESSFUL
AP = 11111111, L; Verifies AP is 12345678 from the secured state;
This TC attempts to set the permalock bit for the AP, while the tag's AP is locked and non-zero, using no AP
PermLock pass apass 11111111
 PermLock result: 1
 PermLock SUCCESSFUL
Tag now in PL state with non-zero password. TC=PL_AP_L_1

Report No.: EMC94348B Rev. 2

Date: 2017-12-08
Write fail 33333333 apass 11111111
 Write result: 0
 Write SUCCESSFUL
AP=11111111, PL; Verifies can't write from secured state
Read fail 33333333 apass 33333333
 Read data:

 Read SUCCESSFUL
AP = 11111111, PL; Verifies AP is not 33333333
Read fail 11111111 apass
 Read data:

 Read SUCCESSFUL
AP = 11111111, PL; Verifies can't read from open state.
Read fail 11111111 apass 11111111
 Read data:

 Read SUCCESSFUL
AP = 11111111, PL; Verifies can read from secured state
Lock pass apass 11111111
 Lock result: 1
 Lock SUCCESSFUL
AP = 11111111, PL; Verifies still can lock the tag
Write fail 00000000 apass 11111111
 Write result: 0
 Write SUCCESSFUL
Read fail 00000000 apass 00000000
 Read data:

 Read SUCCESSFUL
AP = 11111111, PL; Verifies still can't write to the AP
This TC sets the permalock bit for the AP and puts the tag in permalock, while the
tag's AP is locked and non-zero, using the correct AP.

disconnect
 Disconnected.

Script completed without failures

Permalocked_APZ

Created by Impinj and modified by MET Laboratories for use in EPCglobal sanctioned Gen2 RFID interoperability testing
This script verifies PermaLock behavior with zero AP
#
"unlocked" means that the bit pattern to the associated memory bank is "00"
"locked" that the bit pattern to the associated memory bank is "10"
"permaunlocked" means that the bit pattern to the associated memory bank is "01"
"permalocked" means that the bit pattern to the associated memory bank is "11"

Write pass 00000000 apass
 Write result: 1
 Write SUCCESSFUL
Read pass 00000000 apass
 Read data: 00000000
 Read SUCCESSFUL
Write pass AAAAAAAAA kpass
 Write result: 1
 Write SUCCESSFUL
Read pass AAAAAAAAA kpass
 Read data: AAAAAAAAA
 Read SUCCESSFUL
Unlock pass kpass
 UnLock result: 1
 UnLock SUCCESSFUL
Unlock pass epc
 UnLock result: 1
 UnLock SUCCESSFUL
The following line is for rewritable TID
#TTT Unlock pass tid
The following line is for Permalocked TID
Unlock fail tid
 UnLock result: 0
 UnLock SUCCESSFUL
#UUU Unlock pass user
WrRd pass 3400111122223333444455556666 epc
 WrRd Write result: 1
 WrRd read result: 3400111122223333444455556666
 WrRd SUCCESSFUL
EPC = 3200111122223333444455556666
#TTT WrRd pass E280110C tid
Assumes a 48-bit programmable TID memory
TID = E2801050111
#UUU WrRd pass 0000111122223333 user
Assumes a 64-bit programmable USER memory
USER = 0000111122223333

==== PermaLock Access Password Section ====
Lock pass apass
 Lock result: 1
 Lock SUCCESSFUL
AP = 00000000, L; Locks the access password
Sets the Lock bit in the AP field to a one
This action is required first in order to Permalock using PermLock directive
PermLock pass apass 00000000
 PermLock result: 1
 PermLock SUCCESSFUL
AP = 00000000, PL; Permanently locks the access password; TC = PL_AP_L_3
Sets the PermaLock bit in the AP field to a one
Write fail FFFFFFFF apass
 Write result: 0
 Write SUCCESSFUL
AP = 00000000, PL; Verifies memory cannot write from open state
Read fail FFFFFFFF apass
 Read data: Read SUCCESSFUL
AP = 00000000, PL; Verifies memory cannot read from open state
Write fail 00000000 apass 00000000
 Write result: 0
 Write SUCCESSFUL
AP = 00000000, PL; Verifies memory cannot write from secured state
Read fail 00000000 apass 00000000
 Read data:
Read SUCCESSFUL
AP = 00000000, PL; Verifies memory cannot read from secured state
This TC permalocks the AP when the AP is zero and correct. It's also the TC where it permalocks the AP with it already being locked.

Unlock fail apass 00000000
 UnLock result: 0
 UnLock SUCCESSFUL
AP = 00000000, PL; Verifies memory cannot be unlocked from secured state; TC = U_AP_PL_1
This TC attempts to unlock the AP after it has been permalocked using the correct, zero AP.

PermUnLock fail apass 00000000
 PermUnLock result: 0
 PermUnLock SUCCESSFUL
AP = 00000000, PL; Verifies memory cannot be Permaunlocked from secured state; TC = PU_AP_PL_1
This TC attempts to deset the permalock bit to the AP after it has been permalocked using the correct, zero AP.

Lock pass apass 00000000
 Lock result: 1
 Lock SUCCESSFUL
AP = 00000000, PL; Verifies memory can be Permaunlocked and locked from secured state; TC = L_AP_PL_1
This TC confirms that the lock bit is set to the AP after it has been permalocked using the correct, zero AP.

=== Now working on EPC memory ===
Lock pass epc
 Lock result: 1
 Lock SUCCESSFUL
AP = 00000000, L; Locks the EPC memory
Sets the Lock bit in the EPC field to a one
This action is required first in order to Permalock using PermLock directive
PermLock pass epc 00000000
 PermLock result: 1
 PermLock SUCCESSFUL
EPC = 3400111122223333444455556666, PL; AP = 00000000, PL; Permanently locks the EPC bank from secured state; TC = PL_E_L_1
This TC permalocks the EPC, after it's locked, when the AP is correct and zero.

Sets the PermaLock bit in the AP field to a one
Write fail 7777 epc,5
Write result: 0
Write SUCCESSFUL
EPC = 34001112222333444455556666, PL; AP = 00000000, PL; Verifies memory cannot write from open state; TC = W_E_PL_P_1
This TC attempts to write a portion of the EPC, when the AP is zero and permalocked.

Read pass 4444 epc,5,1
Read data: 4444
Read SUCCESSFUL
EPC = 34001112222333444455556666, PL; AP = 00000000, PL; Verifies memory cannot read from open state; TC = R_E_PL_P_1
This TC attempts to read a portion of the EPC, when the AP is zero and permalocked.

Write fail 7777 epc,5 00000000
Write result: 0
Write SUCCESSFUL
EPC = 34001112222333444455556666, PL; AP = 00000000, PL; Verifies memory cannot write from secured state
Read pass 4444 epc,5,1 00000000
Read data: 4444
Read SUCCESSFUL
EPC = 34001112222333444455556666, PL; AP = 00000000, PL; Verifies memory cannot read from secured state
Unlock fail epc 00000000
Unlock result: 0
Unlock SUCCESSFUL
EPC = 34001112222333444455556666, PL; AP = 00000000, PL; Verifies memory cannot be unlocked from secured state; TC = U_E_PL_1
This TC attempts to unlock the EPC, when the AP is zero and permalocked.

PermUnLock fail epc 00000000
PermUnLock result: 0
PermUnLock SUCCESSFUL
EPC = 34001112222333444455556666, PL; AP = 00000000, PL; Verifies memory cannot be Permaunlocked from secured state; TC = PU_E_PL_1
This TC attempts to unset the permalock bit to the EPC, when the AP is zero and permalocked.

Lock pass epc 00000000
Lock result: 1
Lock SUCCESSFUL
EPC = 34001112222333444455556666, PL; AP = 00000000, PL; Verifies memory can be locked from secured state; TC = L_E_PL_1
This TC attempts to set the lock bit to the EPC, (or confirm that it's set) when the AP is zero and permalocked.

Now working on TID memory

This section is for generic TID
Assumes a 48-bit programmable TID memory
TID = E20010501111
TTT Lock pass tid
TID = E20010501111, L; AP = 00000000, PL; Locks the TID memory
Sets the Lock bit in the TID field to a one
This action is required first in order to Permalock using PermLock directive
TTT PermLock pass tid 00000000
TID = E20010501111, PL; AP = 00000000, PL; Permanently locks the TID bank from secured state; TC = PL_T_L_1
Sets the PermaLock bit in the AP field to a one
TTT Write fail 2222 tid,2
TID = E20010501111, PL; AP = 00000000, PL; Verifies memory cannot write from open state; TC = W_T_PL_P_1
TTT Read pass 1111 tid,2,1
TID = E20010501111, PL; AP = 00000000, PL; Verifies memory cannot read from open state; TC = R_T_PL_P_1
TTT Write fail 2222 tid,2 00000000
TID = E20010501111, PL; AP = 00000000, PL; Verifies memory cannot write from secured state
TTT Read pass 1111 tid,2,1 00000000
TID = E20010501111, PL; AP = 00000000, PL; Verifies memory cannot read from secured state
TTT Unlock fail tid 00000000
TID = E20010501111, PL; AP = 00000000, PL; Verifies memory cannot be unlocked from secured state; TC = U_T_PL_1
TTT PermUnLock fail tid 00000000
TID = E20010501111, PL; AP = 00000000, PL; Verifies memory cannot be Permaunlocked from secured state; TC = PU_T_PL_1
TTT Lock pass tid 00000000
TID = E20010501111, PL; AP = 00000000, PL; Verifies memory can be locked from secured state; TC = L_T_PL_1

This section is for PermaLocked TID
TID = E2001050
Lock pass tid
 Lock result: 1
 Lock SUCCESSFUL
TID = E2001050, L; AP = 00000000, PL; Locks the TID memory
Sets the Lock bit in the TID field to a one
This action is required first in order to Permalock using PermLock directive
PermLock pass tid 00000000
PermLock result: 1
PermLock SUCCESSFUL
TID = E2001050, PL; AP = 00000000, PL; Permanently locks the TID bank from
secured state; TC = PL_T_L_1
This TC permlocks the TID (or confirms it's permlocked) when the tag's TID is
locked and the AP is zero.

Sets the PermaLock bit in the TID field to a one
Write fail 2222 tid,1
Write result: 0
Write SUCCESSFUL
TID = E2001050, PL; AP = 00000000, PL; Verifies memory cannot write from open
state; TC = W_T_PL_P_1
This TC attempts to write to the TID when the TID is permalocked, using an all-zero
AP.

Read pass B0A1 tid,1,1
Read data: B0A1
Read SUCCESSFUL
TID = E2001050, PL; AP = 00000000, PL; Verifies memory can read from open
state; TC = R_T_PL_P_1
This TC reads a known value from the TID when the TID is permalocked, using an
all-zero AP.

Write fail 2222 tid,1 00000000
Write result: 0
Write SUCCESSFUL
TID = E2001050, PL; AP = 00000000, PL; Verifies memory cannot write from
secured state
Read pass B0A1 tid,1,1 00000000
Read data: B0A1
Read SUCCESSFUL
TID = E2001050, PL; AP = 00000000, PL; Verifies memory cannot read from
secured state
Unlock fail tid 00000000
Unlock result: 0
Unlock SUCCESSFUL
TID = E2001050, PL; AP = 00000000, PL; Verifies memory cannot be unlocked from
secured state; TC = U_T_PL_1
This TC attempts to unlock the TID from the permalocked state when the AP is zero.

PermUnLock fail tid 00000000
PermUnLock result: 0
PermUnLock SUCCESSFUL
Lock pass tid 00000000
Lock result: 1
Lock SUCCESSFUL

This TC attempts to unset the TID’s permalock bit when the AP is zero.

Now working on USER memory
Assumes a 64-bit programmable USER
USER = 0000111122223333
#UUU Lock pass user
USER = 0000111122223333, L; Locks the USER memory
Sets the Lock bit in the USER field to a one
This action is required first in order to Permalock using PermLock directive
#UUU PermLock pass user 00000000
USER = 0000111122223333, PL; AP = 00000000, PL; Permanently locks the USER bank from secured state; TC = PL_U_L_1
Sets the PermaLock bit in the USER field to a one
#UUU Write fail 4444 user,3
USER = 0000111122223333, PL; AP = 00000000, PL; Verifies memory cannot write from open state; TC = W_U_PL_P_1
#UUU Read pass 3333 user,3,1
USER = 0000111122223333, PL; AP = 00000000, PL; Verifies memory can read from open state; TC = R_U_PL_P_1
#UUU Write fail 4444 user,3 00000000
USER = 0000111122223333, PL; AP = 00000000, PL; Verifies memory cannot write from secured state
#UUU Read pass 3333 user,3,1 00000000
USER = 0000111122223333, PL; AP = 00000000, PL; Verifies memory cannot read from secured state
#UUU Unlock fail user 00000000
USER = 0000111122223333, PL; AP = 00000000, PL; Verifies memory cannot be unlocked from secured state; TC = U_U_PL_1
#UUU PermUnLock fail user 00000000
USER = 0000111122223333, PL; AP = 00000000, PL; Verifies memory cannot be Permaunlocked from secured state; TC = PU_U_PL_1
#UUU Lock pass user 00000000
USER = 0000111122223333, PL; AP = 00000000, PL; Verifies memory can be locked from secured state; TC = L_U_PL_1
Now working on Kill password
Lock pass kpass
 Lock result: 1
 Lock SUCCESSFUL
KP = AAAAAAAA, L; Locks the Kill password
Sets the Lock bit in the KP field to a one
This action is required first in order to Permalock using PermLock directive
PermLock pass kpass 00000000
 PermLock result: 1
 PermLock SUCCESSFUL
KP = AAAAAAAA, PL; Permanently locks the kill password from secured state; TC = PL_KP_L_1, PL_KP
Sets the PermaLock bit in the KP field to a one
This TC permalocks the KP, after it was locked, using a zero AP.

Write fail FFFFFFFF kpass
 Write result: 0
 Write SUCCESSFUL
KP = AAAAAAAA, PL; Verifies memory cannot write from open state; TC = W_KP_PL_NZ_1
This TC writes a non-zero KP, when the KP is permalocked, using a zero AP.

Read fail AAAAAAAA kpass
 Read data:
 Read SUCCESSFUL
KP = AAAAAAAA, PL; Verifies memory cannot read from open state; TC = R_KP_PL_1
This TC attempts to read the KP, when the KP is permalocked, using a zero AP.

Write fail FFFFFFFF kpass 00000000
 Write result: 0
 Write SUCCESSFUL
KP = AAAAAAAA, PL; Verifies memory cannot write from secured state
Read fail AAAAAAAA kpass 00000000
 Read data:
 Read SUCCESSFUL
KP = AAAAAAAA, PL; Verifies memory cannot read from secured state

Unlock fail kpass 00000000
 UnLock result: 0
 UnLock SUCCESSFUL
KP = AAAAAAAA, PL; Verifies memory cannot be unlocked from secured state; TC = U_KP_PL_1
PermUnLock fail kpass 00000000
PermUnLock result: 0
PermUnLock SUCCESSFUL
KP = AAAAAAAA, PL; Verifies memory cannot be Permaunlocked from secured state; TC = PU_KP_PL_1
This TC attempts to deset the permaunlock bit, when the KP is permalocked, using a zero AP.

Lock pass kpass 00000000
Lock result: 1
Lock SUCCESSFUL
KP = AAAAAAAA, PL; AP = 00000000, PL; Verifies memory can be locked from secured state; TC = L_KP_PL_1
This TC sets the lock bit to the KP, (or confirms that it's set) when the KP is permalocked and the AP is zero.

Kill fail ABBAABBA
Kill result: 0
Kill SUCCESSFUL
KP = AAAAAAAA, PL; AP = 00000000, PL; TC = K_INZ_PL
This TC attempts to kill the tag, while the KP is permalocked, using an incorrect, non-zero KP.

Now run the Inventory cases

Inventory pass 1
Inventoried 1 unique tags
111122223333444455556666 :1
Inventory SUCCESSFUL
TC = I_PL
This TC inventories the single tag while all memory is permalocked.

Inventory pass 1 11112222 epc
Inventoried 1 unique tags
111122223333444455556666 :1
Inventory SUCCESSFUL
EPC = 3200111122223333444455556666, PL; AP = 00000000; TC = SI_E_PL
Read pass 3400111122223333444455556666 epc
Read data: 3400111122223333444455556666
Read SUCCESSFUL
EPC = 3200111122223333444455556666, PL; AP = 00000000; Verifies EPC
This TC inventories the tag based on a portion of the EPC while the tag's memory is permalocked.

Inventory pass 1 E280 tid
Inventoried 1 unique tags
111122223333444455556666 :1
Inventory SUCCESSFUL
TID = E2001050, PU/PL; AP = 00000000; TC = SI_T_PL
Read pass E280B0A1 tid
 Read data: E280B0A1
 Read SUCCESSFUL
TID = E2001050, PU/PL; AP = 00000000; Verifies TID
This TC inventories the tag based on a portion of the TID while the tag's memory is permalocked.

#UUU Inventory pass 1 00001111 user
USER = 0000111122223333, PL; AP = 00000000; TC = SI_U_PL
#UUU Read pass 0000111122223333 user
USER = 0000111122223333, PL; AP = 00000000; Verifies user memory

Kill pass AAAAAAAA
 Kill result: 1
 Kill SUCCESSFUL
KP = AAAAAAAA, PL; AP = 00000000, PL; TC = K_NZ
Dead tag
Inventory fail 1 11112222 epc
 Inventoried 0 unique tags
 Inventory SUCCESSFUL
EPC = 3400111122223333444455556666, PL; AP = 00000000
Inventory fail 1 E280 tid
 Inventoried 0 unique tags
 Inventory SUCCESSFUL
TID = E2001050, PU/PL; AP = 00000000
Inventory fail 1 00001111 user
 Inventoried 0 unique tags
 Inventory SUCCESSFUL
USER = 0000111122223333, PL; AP = 00000000
This TC kills the tag using a non-zero KP.

disconnect
 Disconnected.
Script completed without failures

PermaLocked_APNZ

Created by Impinj, with comments by MET Laboratories, for use in EPCglobal sanctioned Gen2 RFID interoperability testing
Permission granted for free use only for EPCglobal sponsored interoperability testing activities
This script verifies PermaLock behavior with nonzero AP
#
"unlocked" means that the bit pattern to the associated memory bank is "00"
"locked" that the bit pattern to the associated memory bank is "10"
"permaunlocked" means that the bit pattern to the associated memory bank is "01"
"permalocked" means that the bit pattern to the associated memory bank is "11"
#
Write pass ABCDEF01 apass
 Write result: 1
 Write SUCCESSFUL
Read pass ABCDEF01 apass
 Read data: ABCDEF01
 Read SUCCESSFUL
Write pass AAAAAAAA kpass ABCDEF01
 Write result: 1
 Write SUCCESSFUL
Read pass AAAAAAAA kpass ABCDEF01
 Read data: AAAAAAAA
 Read SUCCESSFUL
Unlock pass kpass ABCDEF01
 UnLock result: 1
 UnLock SUCCESSFUL
Unlock pass epc ABCDEF01
 UnLock result: 1
 UnLock SUCCESSFUL
The following line is for rewritable TID
#TTT Unlock pass tid ABCDEF01
The following line is for Permalocked TID
Unlock fail tid ABCDEF01
 UnLock result: 0
 UnLock SUCCESSFUL
The following line is for User memory
 #UUU Unlock pass user
 WrRd pass 3400AAAAABBBCCDDEEEEFFFF epc ABCDEF01
 WrRd Write result: 1
 WrRd read result: 3400AAAAABBBCCDDEEEEFFFF
 WrRd SUCCESSFUL
EPC = 3400AAAAABBBCCDDEEEEFFFF
TTT WrRd pass E2C0B0A1 tid ABCDEF01
Assumes a 48-bit programmable TID memory
TID = E20010501111
UUU WrRd pass FFFFEFDDDDCC user ABCDEF01
Assumes a 64-bit programmable USER memory
USER = FFFFEFDDDDCC
==== PermaLock Access Password Section ====
Lock pass apass ABCDEF01
 Lock result: 1
 Lock SUCCESSFUL
AP = ABCDEF01, L; Locks the access password
Sets the Lock bit in the AP field to a one
This action is required first in order to Permalock using PermLock directive
PermLock pass apass ABCDEF01
 PermLock result: 1
 PermLock SUCCESSFUL
AP = ABCDEF01, PL; Permanently locks the access password; same as TC = L_AP_PU_2
Sets the PermaLock bit in the AP field to a one
This TC puts the AP in permalocked state, which is what happens when the AP is
locked from the PU state, using a non-zero and correct AP.
Write fail FFFFFFFF apass
 Write result: 0
 Write SUCCESSFUL
AP = ABCDEF01, PL; Verifies memory cannot write from open state
Read fail ABCDEF01 apass
 Read data:
 Read SUCCESSFUL
AP = ABCDEF01, PL; Verifies memory cannot read from open state
Write fail FFFFEFDDDDCC apass ABCDEF01
 Write result: 0
Write SUCCESSFUL
AP = ABCDEF01, PL; Verifies memory cannot write from secured state; TC = W_AP_PL_NZ_1
This TC writes a non-zero AP, when the AP is permalocked and non-zero, using the correct AP.

Read fail ABCDEF01 apass ABCDEF01
Read data:

 Read SUCCESSFUL
AP = ABCDEF01, PL; Verifies memory cannot read from secured state; TC = R_AP_PL_1
This TC attempts to read the AP, when the AP is permalocked and non-zero, using the correct AP.

Write fail FFFFFFFF apass
 Write result: 0
Write SUCCESSFUL
AP = ABCDEF01, PL; Verifies memory cannot write from open state; TC = W_AP_PL_NZ_2
This TC attempts to write a non-zero AP, when the AP is permalocked and non-zero, using no AP.

Read fail ABCDEF01 apass
Read data:

 Read SUCCESSFUL
AP = ABCDEF01, PL; Verifies memory cannot read from open state; TC = R_AP_PL_2
This TC attempts to read the AP, when the AP is permalocked and non-zero, using no AP.

Unlock fail apass ABCDEF01
 UnLock result: 0
Unlock SUCCESSFUL
AP = ABCDEF01, PL; Verifies memory cannot be unlocked from secured state; TC = U_AP_PL_2
This TC attempts to deset the lock bit to the AP, when the AP is permalocked and non-zero, using the correct AP.

Unlock fail apass
 UnLock result: 0
Unlock SUCCESSFUL
AP = ABCDEF01, PL; Verifies memory cannot be unlocked from open state; TC = U_AP_PL_3
This TC attempts to unlock the AP, when the AP is permalocked and non-zero, using no AP.

PermUnLock fail apass ABCDEF01
 PermUnLock result: 0
 PermUnLock SUCCESSFUL
AP = ABCDEF01, PL; Verifies memory cannot be Permaunlocked from secured state; TC = PU_AP_PL_2
This TC attempts to deset the peramlock bit to the AP, when the AP is permalocked and non-zero, using the correct AP.

PermUnLock fail apass
 PermUnLock result: 0
 PermUnLock SUCCESSFUL
AP = ABCDEF01, PL; Verifies memory cannot be Permaunlocked from open state; TC = PU_AP_PL_3
This TC attempts to deset the peramlock bit to the AP, when the AP is permalocked and non-zero, using no AP.

Lock pass apass ABCDEF01
 Lock result: 1
 Lock SUCCESSFUL
AP = ABCDEF01, PL; Verifies memory cannot be Permaunlocked from secured state; TC = L_AP_PL_2
This TC locks the AP (or confirms that the lock bit is set), when the AP is permalocked and non-zero, using the correct AP.

Lock fail apass
 Lock result: 0
 Lock SUCCESSFUL
AP = ABCDEF01, PL; Verifies memory cannot be Permaunlocked from open state; TC = L_AP_PL_3
This TC attempts to lock the AP (or confirm that the lock bit is set), when the AP is permalocked and non-zero, using no AP.

=== Now working on EPC memory ===

Lock pass epc ABCDEF01
 Lock result: 1
 Lock SUCCESSFUL
AP = ABCDEF01, L; Locks the EPC memory
Sets the Lock bit in the EPC field to a one
This action is required first in order to Permalock using PermLock directive
PermLock pass epc ABCDEF01
 PermLock result: 1
PermLock SUCCESSFUL
EPC = 3400AAAABBBBCCCCDDDDDEEEEEFFFF, PL; AP = ABCDEF01, PL;
Permanently locks the EPC bank from secured state; TC = PL_E_L_2
Sets the PermaLock bit in the AP field to a one
This TC permalocks the EPC, when the EPC is locked and the AP is non-zero.

Write fail 7777 epc,5
 Write result: 0
 Write SUCCESSFUL
EPC = 3400AAAABBBBCCCCDDDDDEEEEEFFFF, PL; AP = ABCDEF01, PL;
Verifies memory cannot write from open state; TC = W_E_PL_P_2
This TC attempts to write to a portion of the EPC, when the AP is non-zero and the EPC is permalocked. See following command for write from secured state.

Read pass DDDD epc,5,1
 Read data: DDDD
 Read SUCCESSFUL
EPC = 3400AAAABBBBCCCCDDDDDEEEEEFFFF, PL; AP = ABCDEF01, PL;
Verifies memory can be read from open state; TC = R_E_PL_P_2
This TC reads a portion of the EPC, when the AP is non-zero and the EPC is permalocked. See following command for read from secured state.

Write fail 7777 epc,5 ABCDEF01
 Write result: 0
 Write SUCCESSFUL
EPC = 3400AAAABBBBCCCCDDDDDEEEEEFFFF, PL; AP = ABCDEF01, PL;
Verifies memory cannot write from secured state

Read pass DDDD epc,5,1 ABCDEF01
 Read data: DDDD
 Read SUCCESSFUL
EPC = 3400AAAABBBBCCCCDDDDDEEEEEFFFF, PL; AP = ABCDEF01, PL;
Verifies memory can be read from secured state

Unlock fail epc ABCDEF01
 UnLock result: 0
 UnLock SUCCESSFUL
EPC = 3400AAAABBBBCCCCDDDDDEEEEEFFFF, PL; AP = ABCDEF01, PL;
Verifies memory cannot be unlocked from secured state; TC = U_E_PL_2
This TC attempts to deset the lock bit, when the AP is non-zero and the EPC is permalocked.

PermUnLock fail epc ABCDEF01
 PermUnLock result: 0
 PermUnLock SUCCESSFUL
EPC = 3400AAAABBBBCCCDDDEEEFF, PL; AP = ABCDEF01, PL;
Verifies memory cannot be Permaunlocked from secured state; TC = PU_E_PL_2
This TC attempts to deset the permalock bit, when the AP is non-zero and the EPC is
permalocked.

Lock fail epc 12345678
 Lock result: 0
 Lock SUCCESSFUL
EPC = 3400AAAABBBBCCCDDDEEEFF, PL; AP = ABCDEF01, PL;
Verifies memory cannot be locked from secured state with incorrect AP

Lock fail epc
 Lock result: 0
 Lock SUCCESSFUL
EPC = 3400AAAABBBBCCCDDDEEEFF, PL; AP = ABCDEF01, PL;
Verifies memory cannot be locked from open state
Lock pass epc ABCDEF01
 Lock result: 1
 Lock SUCCESSFUL
EPC = 3400AAAABBBBCCCDDDEEEFF, PL; AP = ABCDEF01, PL;
Verifies memory can be locked from secured state; TC = L_E_PL_2
This TC attempts to set the lock bit, when the AP is non-zero and the EPC is
permalocked, using an incorrect AP, no AP, and the correct AP.

Now working on TID memory
This section is for generic TID
Assumes a 48-bit programmable TID memory
TID = E20010501111
#TTT Lock pass tid ABCDEF01
TID = E20010501111, L; AP = ABCDEF01, PL; Locks the TID memory
Sets the Lock bit in the TID field to a one
This action is required first in order to Permalock using PermLock directive
#TTT PermLock pass tid ABCDEF01
TID = E20010501111, PL; AP = ABCDEF01, PL; Permanently locks the TID bank
from secured state; TC = PL_T_L_2
Sets the PermaLock bit in the AP field to a one
#TTT Write fail 2222 tid,2
TID = E20010501111, PL; AP = ABCDEF01, PL; Verifies memory cannot write
from open state; TC = W_T_PL_P_2
#TTT Read pass 1111 tid,2
TID = E20010501111, PL; AP = ABCDEF01, PL; Verifies memory can be read from
open state; TC = R_T_PL_P_2
#TTT Write fail 2222 tid,2 ABCDEF01
TID = E20010501111, PL; AP = ABCDEF01, PL; Verifies memory cannot write from secured state
TTT Read pass 1111 tid,2,1 ABCDEF01
TID = E20010501111, PL; AP = ABCDEF01, PL; Verifies memory can be read from secured state
TTT Unlock fail tid ABCDEF01
TID = E20010501111, PL; AP = ABCDEF01, PL; Verifies memory cannot be unlocked from secured state; TC = U_T_PL_2
TTT PermUnLock fail tid ABCDEF01
TID = E20010501111, PL; AP = ABCDEF01, PL; Verifies memory cannot be Permanently locked from secured state; TC = PU_T_PL_2
TTT Lock fail tid 12345678
TID = E20010501111, PL; AP = ABCDEF01, PL; Verifies memory cannot be locked from secured state with incorrect AP
TTT Lock fail tid
TID = E20010501111, PL; AP = ABCDEF01, PL; Verifies memory cannot be locked from open state
TTT Lock pass tid ABCDEF01
TID = E20010501111, PL; AP = ABCDEF01, PL; Verifies memory can be locked from secured state; TC = L_T_PL_2

This section is for PermaLocked TID
TID = E2001050
Lock pass tid ABCDEF01
 Lock result: 1
 Lock SUCCESSFUL
TID = E2001050, L; AP = ABCDEF01, PL; Locks the TID memory
Sets the Lock bit in the TID field to a one
This action is required first in order to Permalock using PermLock directive
PermLock pass tid ABCDEF01
 PermLock result: 1
 PermLock SUCCESSFUL
TID = E2001050, PL; AP = ABCDEF01, PL; Permanently locks the TID bank from secured state; TC = PL_T_L_2
This TC makes the TID permalocked (or confirms that it's permalocked) when the AP is non-zero and the TID is locked.

Sets the PermaLock bit in the TID field to a one
Write fail 2222 tid,1
 Write result: 0
 Write SUCCESSFUL
TID = E2001050, PL; AP = ABCDEF01, PL; Verifies memory cannot write from open state; TC = W_T_PL_P_2
This TC (and the subsequent command for the secured state) attempt to write to a portion of the TID, when the TID is permalocked and the AP is non-zero.
Read pass B0A1 tid,1,1
 Read data: B0A1
 Read SUCCESSFUL
TID = E2001050, PL; AP = ABCDEF01, PL; Verifies memory can be read from open state; TC = R_T_PL_P_2
This TC (and the subsequent command for the secured state) attempt to read from a portion of the TID, when the TID is permalocked and the AP is non-zero.

Write fail 2222 tid,1 ABCDEF01
 Write result: 0
 Write SUCCESSFUL
TID = E2001050, PL; AP = ABCDEF01, PL; Verifies memory cannot write from secured state
Read pass B0A1 tid,1,1 ABCDEF01
 Read data: B0A1
 Read SUCCESSFUL
TID = E2001050, PL; AP = ABCDEF01, PL; Verifies memory can be read from secured state

Unlock fail tid ABCDEF01
 UnLock result: 0
 UnLock SUCCESSFUL
TID = E2001050, PL; AP = ABCDEF01, PL; Verifies memory cannot be unlocked from secured state; TC = U_T_PL_2
This TC attempts to deset the lock bit to the TID, when the TID is permalocked and the AP is non-zero.

PermUnLock fail tid ABCDEF01
 PermUnLock result: 0
 PermUnLock SUCCESSFUL
TID = E2001050, PL; AP = ABCDEF01, PL; Verifies memory cannot be Permaunlocked from secured state; TC = PU_T_PL_2
This TC attempts to deset the permalock bit to the TID, when the TID is permalocked and the AP is non-zero.

Lock fail tid 12345678
 Lock result: 0
 Lock SUCCESSFUL
TID = E2001050, PL; AP = ABCDEF01, PL; Verifies memory cannot be locked from secured state with incorrect AP
Lock fail tid
 Lock result: 0
 Lock SUCCESSFUL

Report No.: EMC94348B Rev. 2
Date: 2017-12-08
TID = E2001050, PL; AP = ABCDEF01, PL; Verifies memory cannot be locked from open state
Lock pass tid ABCDEF01
 Lock result: 1
 Lock SUCCESSFUL
TID = E2001050, PL; AP = ABCDEF01, PL; Verifies memory can be locked; TC = L_T_PL_2
This TC attempts to set the lock bit, when the AP is non-zero and the TID is permalocked, using an incorrect AP, no AP, and the correct AP.

Now working on USER memory
Assumes a 64-bit programmable USER
USER = FFFFFFFEEEDDDDCCCC
#UUU Lock pass user ABCDEF01
USER = FFFFFFFEEEDDDDCCCC, L; Locks the USER memory
Sets the Lock bit in the USER field to a one
This action is required first in order to Permalock using PermLock directive
#UUU PermLock pass user ABCDEF01
USER = FFFFFFFEEEDDDDCCCC, PL; AP = ABCDEF01, PL; Permanently locks the USER bank from secured state; TC = PL_U_L_2
Sets the PermaLock bit in the USER field to a one
#UUU Write fail 4444 user,3
USER = FFFFFFFEEEDDDDCCCC, PL; AP = ABCDEF01, PL; Verifies memory cannot write from open state; TC = W_U_PL_P_2
#UUU Read pass 3333 user,3,1
USER = FFFFFFFEEEDDDDCCCC, PL; AP = ABCDEF01, PL; Verifies memory can be read from open state; TC = R_U_PL_P_2
#UUU Write fail 4444 user,3 ABCDEF01
USER = FFFFFFFEEEDDDDCCCC, PL; AP = ABCDEF01, PL; Verifies memory cannot write from secured state
#UUU Read pass 3333 user,3,1 ABCDEF01
USER = FFFFFFFEEEDDDDCCCC, PL; AP = ABCDEF01, PL; Verifies memory can be read from secured state
#UUU Unlock fail user ABCDEF01
USER = FFFFFFFEEEDDDDCCCC, PL; AP = ABCDEF01, PL; Verifies memory cannot be unlocked from secured state; TC = U_U_PL_2
#UUU PermUnLock fail user ABCDEF01
USER = FFFFFFFEEEDDDDCCCC, PL; AP = ABCDEF01, PL; Verifies memory cannot be Permaunlocked from secured state; TC = PU_U_PL_2
#UUU Lock fail user 12345678
USER = FFFFFFFEEEDDDDCCCC, PL; AP = ABCDEF01, PL; Verifies memory cannot be locked from secured state with incorrect AP
#UUU Lock fail user
USER = FFFFFFFEEEDDDDCCCC, PL; AP = ABCDEF01, PL; Verifies memory cannot be locked from open state

Report No.: EMC94348B Rev. 2
Lock pass user ABCDEF01
USER = FFFFFFFEEDDDCCCC, PL; AP = ABCDEF01, PL; Verifies memory can be locked while Permaunlocked from secured state; TC = L_U_PL_2

Now working on Kill password
Lock pass kpass ABCDEF01
 Lock result: 1
 Lock SUCCESSFUL
KP = AAAAAAAA, L; Locks the Kill password
Sets the Lock bit in the KP field to a one
This action is required first in order to Permalock using PermLock directive
PermLock pass kpass ABCDEF01
 PermLock result: 1
 PermLock SUCCESSFUL
KP = AAAAAAAA, PL; Permanently locks the kill password from secured state; TC = PL_KP_L_2
Sets the PermaLock bit in the KP field to a one
This TC makes the KP permalocked, when the KP was locked and the AP is non-zero.

Write fail FFFFFFFF kpass
 Write result: 0
 Write SUCCESSFUL
KP = AAAAAAAA, PL; Verifies memory cannot write from open state; TC = W_KP_PL_NZ_2
This TC (and the subsequent directive from the secured state) attempt to write to the KP, when the KP is permalocked and non-zero and the AP is non-zero.

Read fail AAAAAAAA kpass
 Read data:
 Read SUCCESSFUL
KP = AAAAAAAA, PL; Verifies memory cannot read from open state; TC = R_KP_PL_2
This TC (and the subsequent directive from the secured state) attempt to read the KP, when the KP is permalocked and non-zero and the AP is non-zero.

Write fail FFFFFFFF kpass ABCDEF01
 Write result: 0
 Write SUCCESSFUL
KP = AAAAAAAA, PL; Verifies memory cannot write from secured state
Read fail AAAAAAAA kpass ABCDEF01
 Read data:
 Read SUCCESSFUL
KP = AAAAAAAA, PL; Verifies memory cannot read from secured state
Unlock fail kpass ABCDEF01
 UnLock result: 0
 UnLock SUCCESSFUL
 # KP = AAAAAAAA, PL; Verifies memory cannot be unlocked from secured state; TC = U_KP_PL_2
 # This TC attempts to deset the lock bit to the KP, when the KP is permalocked and the AP is non-zero.

PermUnLock fail kpass ABCDEF01
 PermUnLock result: 0
 PermUnLock SUCCESSFUL
 # KP = AAAAAAAA, PL; Verifies memory cannot be Permaunlocked from secured state; TC = PU_KP_PL_2
 # This TC attempts to deset the permalock bit to the KP, when the KP is permalocked and the AP is non-zero.

Lock fail kpass 12345678
 Lock result: 0
 Lock SUCCESSFUL
 # KP = AAAAAAAA, PL; AP = ABCDEF01, PL; Verifies memory cannot be locked from secured state with incorrect AP
Lock fail kpass
 Lock result: 0
 Lock SUCCESSFUL
 # KP = AAAAAAAA, PL; AP = ABCDEF01, PL; Verifies memory cannot be locked from open state
Lock pass kpass ABCDEF01
 Lock result: 1
 Lock SUCCESSFUL
 # KP = AAAAAAAA, PL; AP = ABCDEF01, PL; Verifies lock bit still set from secured state; TC = L_KP_PL_2
 # This TC attempts to set the lock bit, when the AP is non-zero and the KP is permalocked, using an incorrect AP, no AP, and the correct AP.

disconnect
 Disconnected.
Script completed without failures

SQ_EPC_TEST

Created by Impinj and modified by MET Laboratories for use in EPCglobal sanctioned Gen2 RFID interoperability testing
Permission granted for free use only for EPCglobal sponsored interoperability testing activities
EPCglobal Inc., its members, officers, directors, employees, or agents shall not be liable for any
injury, loss, damages, financial or otherwise, arising from, related to, or caused by the
use of this
document. Use of said document does not guarantee compliance with applicable state
and/or federal laws.
User is responsible for the interpretation of and compliance with applicable pedigree
laws. The use of
said document shall constitute your express consent to the foregoing disclaimer.

Connect to reader in FCC mode and set Tx power to 30 dBm
connect 169.254.10.1 FCC 201
 Connected to reader 169.254.10.1, type: FCC, mode: 201
 power 20
 Power set to 20

Program tag with 96-bit EPC "111122223333444455556666"
WrRd pass 34001112222333444455556666 epc
 WrRd Write result: 1
 WrRd read result: 34001112222333444455556666
 WrRd SUCCESSFUL

Write non-zero access password
Write pass 11111111 apass
 Write result: 1
 Write SUCCESSFUL

Matching EPC, matching Query target (A->A)
SQ pass epc 96 s0 000 32 96 111122223333444455556666 0 s0 00 A
 SQ result: 1
 EPC result: 111122223333444455556666
 SQ SUCCESSFUL

Matching EPC, non-matching Query target (A->A)
SQ fail epc 96 s0 000 32 96 111122223333444455556666 0 s0 00 B
 SQ result: 0
 SQ SUCCESSFUL

Non-matching EPC, matching Query target (A->B)
SQ pass epc 96 s0 000 32 96 111122223333444455556667 0 s0 00 B
SQ result: 1
EPC result: 111122223333444455556666
SQ SUCCESSFUL
Non-matching EPC, non-matching Query Sel (A->B)
SQ fail epc 96 s0 000 32 96 1111222233334444555566667 0 s0 11 B
 SQ result: 0
 SQ SUCCESSFUL

SQ_E_S0_2
#
Matching EPC, matching Query target (A->A)
SQ pass epc 96 s0 001 34 64 444488888cccd1111 0 s0 00 A
 SQ result: 1
 EPC result: 111122223333444455556666
 SQ SUCCESSFUL
Matching EPC, non-matching Query Sel (A->A)
SQ fail epc 96 s0 001 34 64 444488888cccd1111 0 s0 11 A
 SQ result: 0
 SQ SUCCESSFUL
Non-matching EPC, matching Query target (A)
SQ pass epc 96 s0 001 34 64 444488888cccd11FF 0 s0 00 A
 SQ result: 1
 EPC result: 111122223333444455556666
 SQ SUCCESSFUL
Non-matching EPC, non-matching Query target (A)
SQ fail epc 96 s0 001 34 64 444488888cccd1111 0 s0 00 B
 SQ result: 0
 SQ SUCCESSFUL

SQ_E_S0_3
#
Matching EPC, matching Query target (A)
SQ pass epc 96 s0 010 37 48 222444466668 0 s0 00 A
 SQ result: 1
 EPC result: 111122223333444455556666
 SQ SUCCESSFUL
Matching EPC, non-matching Query target (A)
SQ fail epc 96 s0 010 37 48 222444466668 0 s0 00 B
 SQ result: 0
 SQ SUCCESSFUL
Non-matching EPC, matching Query target (A->B)
SQ pass epc 96 s0 010 37 48 22244446666FF 0 s0 00 B
 SQ result: 1
 EPC result: 111122223333444455556666
SQ SUCCESSFUL
Non-matching EPC, non-matching Query Session (A->B)
SQ fail epc 96 s0 010 37 48 2224444666FF 0 s0 00 A
 SQ result: 0
 SQ SUCCESSFUL

SQ_E_S0_4
#
Matching EPC, matching Query target (A->B)
SQ pass epc 96 s0 011 43 24 891111 0 s0 00 B
 SQ result: 1
 EPC result: 1112222333444455556666
 SQ SUCCESSFUL
Matching EPC, non-matching Query Session (A->B)
SQ fail epc 96 s0 011 43 24 891111 0 s1 00 B
 SQ result: 0
 SQ SUCCESSFUL
Non-matching EPC, matching Query target (A)
SQ pass epc 96 s0 011 43 24 89111F 0 s0 00 A
 SQ result: 1
 EPC result: 11112222333444455556666
 SQ SUCCESSFUL
Non-matching EPC, non-matching Query target (A)
SQ fail epc 96 s0 011 43 24 89111F 0 s0 00 B
 SQ result: 0
 SQ SUCCESSFUL

SQ_E_S0_5
#
Matching EPC, matching Query target (A->B)
SQ pass epc 96 s0 100 55 12 111 0 s0 00 B
 SQ result: 1
 EPC result: 1112222333444455556666
 SQ SUCCESSFUL
Matching EPC, non-matching Query target (A->B)
SQ fail epc 96 s0 100 55 12 111 0 s0 00 A
 SQ result: 0
 SQ SUCCESSFUL
Non-matching EPC, matching Query target (A->A)
SQ pass epc 96 s0 100 55 12 11F 0 s0 00 A
 SQ result: 1
 EPC result: 11112222333444455556666
 SQ SUCCESSFUL
Non-matching EPC, non-matching Query Sel (A->A)
SQ fail epc 96 s0 100 55 12 11F 0 s0 11 A
SQ result: 0
SQ SUCCESSFUL

SQ_E_S0_6
#
Matching EPC, matching Query target (A->B)
SQ pass epc 96 s0 101 79 6 A0 0 s0 00 B
 SQ result: 1
 EPC result: 111122223334444555556666
 SQ SUCCESSFUL

Matching EPC, non-matching Query Session (A->B)
SQ fail epc 96 s0 101 79 6 A0 0 s3 00 B
 SQ result: 0
 SQ SUCCESSFUL

Non-matching EPC, matching Query target (A)
SQ pass epc 96 s0 101 79 6 AF 0 s0 00 A
 SQ result: 1
 EPC result: 111122223334444555556666
 SQ SUCCESSFUL

Non-matching EPC, non-matching Query target (A)
SQ fail epc 96 s0 101 79 6 AF 0 s0 00 B
 SQ result: 0
 SQ SUCCESSFUL

SQ_E_S0_7
#
Matching EPC, matching Query target (A)
SQ pass epc 96 s0 110 95 3 2 0 s0 00 A
 SQ result: 1
 EPC result: 111122223334444555556666
 SQ SUCCESSFUL

Matching EPC, non-matching Query target (A)
SQ fail epc 96 s0 110 95 3 2 0 s0 00 B
 SQ result: 0
 SQ SUCCESSFUL

Non-matching EPC, matching Query target (A->A)
SQ pass epc 96 s0 110 95 3 F 0 s0 00 A
 SQ result: 1
 EPC result: 111122223334444555556666
 SQ SUCCESSFUL

Non-matching EPC, non-matching Query Sel (A->A)
SQ fail epc 96 s0 110 95 3 F 0 s0 11 A
 SQ result: 0
 SQ SUCCESSFUL
SQ_E_S0_8

Matching EPC, matching Query target (A)
SQ pass epc 96 s0 111 127 1 0 0 s0 00 A
 SQ result: 1
 EPC result: 11112223333444455556666
 SQ SUCCESSFUL

Matching EPC, non-matching Query Sel (A)
SQ fail epc 96 s0 111 127 1 0 0 s0 11 A
 SQ result: 0
 SQ SUCCESSFUL

Non-matching EPC, matching Query target (A>B)
SQ pass epc 96 s0 111 127 1 F 0 s0 00 B
 SQ result: 1
 EPC result: 11112223333444455556666
 SQ SUCCESSFUL

Non-matching EPC, non-matching Query target (A>B)
SQ fail epc 96 s0 111 127 1 F 0 s0 00 A
 SQ result: 0
 SQ SUCCESSFUL

Lock epc
Lock pass epc 11111111
 Lock result: 1
 Lock SUCCESSFUL

SQ_E_S1_1

Matching EPC, matching Query target (A>A)
SQ pass epc 96 s1 000 117 1 8 0 s1 00 A
 SQ result: 1
 EPC result: 11112223333444455556666
 SQ SUCCESSFUL

Matching EPC, non-matching Query target (A>A)
SQ fail epc 96 s1 000 117 1 8 0 s1 00 B
 SQ result: 0
 SQ SUCCESSFUL

Non-matching EPC, matching Query target (A>B)
SQ pass epc 96 s1 000 117 1 0 0 s1 00 B
 SQ result: 1
 EPC result: 11112223333444455556666
 SQ SUCCESSFUL
Non-matching EPC, non-matching Query Session (A->B)
SQ fail epc 96 s1 000 117 1 0 0 s1 00 A
 SQ result: 0
 SQ SUCCESSFUL

SQ_E_S1_2
#
Matching EPC, matching Query target (B->A)
SQ pass epc 96 s1 001 97 3 A 0 s1 00 A
 SQ result: 1
 EPC result: 111122223333444455556666
 SQ SUCCESSFUL
Matching EPC, non-matching Query Sel (B->A)
SQ fail epc 96 s1 001 97 3 A 0 s1 11 A
 SQ result: 0
 SQ SUCCESSFUL
Non-matching EPC, matching Query target (A)
SQ pass epc 96 s1 001 97 3 F 0 s1 00 A
 SQ result: 1
 EPC result: 111122223333444455556666
 SQ SUCCESSFUL
Non-matching EPC, non-matching Query target (A)
SQ fail epc 96 s1 001 97 3 F 0 s1 00 B
 SQ result: 0
 SQ SUCCESSFUL

SQ_E_S1_3
#
Matching EPC, matching Query target (A)
SQ pass epc 96 s1 010 83 6 20 0 s1 00 A
 SQ result: 1
 EPC result: 111122223333444455556666
 SQ SUCCESSFUL
Matching EPC, non-matching Query target (A)
SQ fail epc 96 s1 010 83 6 20 0 s1 00 B
 SQ result: 0
 SQ SUCCESSFUL
Non-matching EPC, matching Query target (A->B)
SQ pass epc 96 s1 010 83 6 2F 0 s1 00 B
 SQ result: 1
 EPC result: 111122223333444455556666
 SQ SUCCESSFUL
Non-matching EPC, non-matching Query Session (A->B)
SQ fail epc 96 s1 010 83 6 2F 0 s0 00 B
 SQ result: 0
SQ SUCCESSFUL

Send SELECT with 0 length mask and Action 000 to send Sx INV to A
Do not send correct query to avoid flipping flag back to B by ACKing it
SQ fail epc 96 s0 000 32 0 0 0 s0 00 B
 SQ result: 0
 SQ SUCCESSFUL
SQ fail epc 96 s1 000 32 0 0 0 s1 00 B
 SQ result: 0
 SQ SUCCESSFUL
SQ fail epc 96 s2 000 32 0 0 0 s2 00 B
 SQ result: 0
 SQ SUCCESSFUL
SQ fail epc 96 s3 000 32 0 0 0 s3 00 B
 SQ result: 0
 SQ SUCCESSFUL

SQ_E_S1_4
#
Matching EPC, matching Query target (A->B)
SQ pass epc 96 s1 011 64 12 333 0 s1 00 B
 SQ result: 1
 EPC result: 111122223333444455556666
 SQ SUCCESSFUL
Give an extra command so that the flag will toggle back to A
Read pass - epc
Matching EPC, non-matching Query Sel (B->A)
SQ fail epc 96 s1 011 64 12 333 0 s1 11 B
 SQ result: 0
 SQ SUCCESSFUL
Non-matching EPC, matching Query target (A)
SQ pass epc 96 s1 011 64 12 33F 0 s1 00 A
 SQ result: 1
 EPC result: 111122223333444455556666
 SQ SUCCESSFUL
Give flag time to toggle, due to matching Query
Read pass - epc 11111111
Non-matching EPC, non-matching Query target (A)
SQ fail epc 96 s1 011 64 12 33F 0 s1 00 B
 SQ result: 0
 SQ SUCCESSFUL

Send SELECT with 0 length mask and Action 000 to send Sx INV to A
Do not send correct query to avoid flipping flag back to B by ACKing it
SQ fail epc 96 s0 000 32 0 0 0 s0 00 B
SQ result: 0
SQ SUCCESSFUL
SQ fail epc 96 s1 000 32 0 0 0 s1 00 B
SQ result: 0
SQ SUCCESSFUL
SQ fail epc 96 s2 000 32 0 0 0 s2 00 B
SQ result: 0
SQ SUCCESSFUL
SQ fail epc 96 s3 000 32 0 0 0 s3 00 B
SQ result: 0
SQ SUCCESSFUL

SQ_E_S1_5
#
Matching EPC, matching Query target (A->B)
SQ pass epc 96 s1 100 46 24 48888C 0 s1 00 B
SQ result: 1
EPC result: 111122223333444455556666
SQ SUCCESSFUL
Matching EPC, non-matching Query target (A->B)
SQ fail epc 96 s1 100 46 24 48888C 0 s1 00 A
SQ result: 0
SQ SUCCESSFUL
Non-matching EPC, matching Query target (B->A)
SQ pass epc 96 s1 100 46 24 48888F 0 s1 00 A
SQ result: 1
EPC result: 111122223333444455556666
SQ SUCCESSFUL
Non-matching EPC, non-matching Query Sel (A->A)
SQ fail epc 96 s1 100 46 24 48888F 0 s1 11 A
SQ result: 0
SQ SUCCESSFUL

SQ_E_S1_6
#
Matching EPC, matching Query target (A->B)
SQ pass epc 96 s1 101 42 48 448888ccccd11 0 s1 00 B
SQ result: 1
EPC result: 111122223333444455556666
SQ SUCCESSFUL
Matching EPC, non-matching Query target (B->B)
SQ fail epc 96 s1 101 42 48 448888ccccd11 0 s1 00 A
SQ result: 0
SQ SUCCESSFUL
Non-matching EPC, matching Query target (B)
SQ pass epc 96 s1 101 42 48 448888ccccd1F 0 s1 00 B
 SQ result: 1
 EPC result: 111122223333444455556666
 SQ SUCCESSFUL

Non-matching EPC, non-matching Query Session (B)
SQ fail epc 96 s1 101 42 48 448888ccccd1F 0 s3 00 B
 SQ result: 0
 SQ SUCCESSFUL

Send SELECT with 0 length mask and Action 000 to send Sx INV to A
Do not send correct query to avoid flipping flag back to B by ACKing it
SQ fail epc 96 s0 000 32 0 0 0 s0 00 B
 SQ result: 0
 SQ SUCCESSFUL
SQ fail epc 96 s1 000 32 0 0 0 s1 00 B
 SQ result: 0
 SQ SUCCESSFUL
SQ fail epc 96 s2 000 32 0 0 0 s2 00 B
 SQ result: 0
 SQ SUCCESSFUL
SQ fail epc 96 s3 000 32 0 0 0 s3 00 B
 SQ result: 0
 SQ SUCCESSFUL

SQ_E_S1_7
#
Matching EPC, matching Query target (A)
SQ pass epc 96 s1 110 38 64 4448888ccccd11115 0 s1 00 A
 SQ result: 1
 EPC result: 111122223333444455556666
 SQ SUCCESSFUL

Non-matching EPC, matching Query target (B->A)
SQ fail epc 96 s1 110 38 64 4448888ccccd1111F 0 s1 00 B
 SQ result: 0
 SQ SUCCESSFUL

Non-matching EPC, matching Query target (A->A)
SQ fail epc 96 s1 110 38 64 4448888ccccd1111F 0 s1 00 B
 SQ result: 0
 SQ SUCCESSFUL
SQ_E_S1_8

Matching EPC, matching Query target (A)
SQ pass epc 96 s1 111 32 96 111122223333444455556666 0 s1 00 A
 SQ result: 1
 EPC result: 111122223333444455556666
 SQ SUCCESSFUL

Matching EPC, non-matching Query target (A)
SQ fail epc 96 s1 111 32 96 111122223333444455556666 0 s1 00 B
 SQ result: 0
 SQ SUCCESSFUL

Non-matching EPC, non-matching Query target (A->B)
SQ pass epc 96 s1 111 32 96 111122223333444455556666F 0 s1 00 B
 SQ result: 1
 EPC result: 111122223333444455556666
 SQ SUCCESSFUL

Non-matching EPC, matching Query Sel (B->A)
SQ fail epc 96 s1 111 32 96 111122223333444455556666F 0 s1 11 A
 SQ result: 0
 SQ SUCCESSFUL

Unlock epc
UnLock pass epc 11111111
 UnLock result: 1
 UnLock SUCCESSFUL

Send SELECT with 0 length mask and Action 000 to send Sx INV to A
Do not send correct query to avoid flipping flag back to B by ACKing it
SQ fail epc 96 s0 000 32 0 0 0 s0 00 B
 SQ result: 0
 SQ SUCCESSFUL
SQ fail epc 96 s1 000 32 0 0 0 s1 00 B
 SQ result: 0
 SQ SUCCESSFUL
SQ fail epc 96 s2 000 32 0 0 0 s2 00 B
 SQ result: 0
 SQ SUCCESSFUL
SQ fail epc 96 s3 000 32 0 0 0 s3 00 B
 SQ result: 0
 SQ SUCCESSFUL
Matching EPC, matching Query target (A->A)
SQ pass epc 96 s2 000 32 96 111122223333444455556666 0 s2 00 A
 EPC result: 111122223333444455556666
 SQ SUCCESSFUL
Matching EPC, non-matching Query Sel (A->A)
SQ fail epc 96 s2 000 32 96 111122223333444455556666 0 s2 11 A
 SQ result: 0
 SQ SUCCESSFUL
Non-matching EPC, matching Query target (A->B)
SQ pass epc 96 s2 000 32 96 111122223333444455556666F 0 s2 00 B
 EPC result: 111122223333444455556666
 SQ SUCCESSFUL
Non-matching EPC, matching Query target (B->B)
SQ fail epc 96 s2 000 32 96 111122223333444455556666F 0 s2 00 A
 SQ result: 0
 SQ SUCCESSFUL
SQ_E_S2_2
#
Tag is in B from previous test (persistent session)
Matching EPC, matching Query target (B->A)
SQ pass epc 96 s2 001 32 95 111122223333444455556666 0 s2 00 A
 EPC result: 111122223333444455556666
 SQ SUCCESSFUL
Matching EPC, non-matching Query target (A->A)
SQ fail epc 96 s2 001 32 95 111122223333444455556666 0 s2 00 B
 SQ result: 0
 SQ SUCCESSFUL
Non-matching EPC, matching Query target (A)
SQ pass epc 96 s2 001 32 95 111122223333444455556666F 0 s2 00 A
 EPC result: 111122223333444455556666
 SQ SUCCESSFUL
Non-matching EPC, non-matching Query Sel (A)
SQ fail epc 96 s2 001 32 95 111122223333444455556666F 0 s2 11 A
 SQ result: 0
 SQ SUCCESSFUL

SQ_E_S2_3
#
Matching EPC, matching Query target (A)
SQ pass epc 96 s2 010 44 48 122223333444 0 s2 00 A
 SQ result: 1
 EPC result: 1111222233344455556666
 SQ SUCCESSFUL
Matching EPC, non-matching Query target (A)
SQ fail epc 96 s2 010 44 48 122223333444 0 s2 00 B
 SQ result: 0
 SQ SUCCESSFUL
Non-matching EPC, matching Query target (A->B)
SQ pass epc 96 s2 010 44 48 12222333344F 0 s2 00 B
 SQ result: 1
 EPC result: 1111222233344455556666
 SQ SUCCESSFUL
Non-matching EPC, non-matching Query session (B->B)
SQ fail epc 96 s2 010 44 48 12222333344F 0 s1 00 B
 SQ result: 0
 SQ SUCCESSFUL

SQ_E_S2_4

Tag is in B from previous test (persistent session)
Matching EPC, matching Query target (B->A)
SQ pass epc 96 s2 011 56 30 22333344 0 s2 00 A
 SQ result: 1
 EPC result: 1111222233344455556666
 SQ SUCCESSFUL
Matching EPC, non-matching Query session (A->B)
SQ fail epc 96 s2 011 56 30 22333344 0 s0 00 B
 SQ result: 0
 SQ SUCCESSFUL
Non-matching EPC, matching Query target (B)
SQ pass epc 96 s2 011 56 30 2233334F 0 s2 00 B
 SQ result: 1
 EPC result: 1111222233344455556666
 SQ SUCCESSFUL
Non-matching EPC, non-matching Query target (B)
SQ fail epc 96 s2 011 56 30 2233334F 0 s2 00 A
 SQ result: 0
 SQ SUCCESSFUL

SQ_E_S2_5

Tag is in B from previous test (persistent session)
Matching EPC, matching Query target (B->B)
SQ pass epc 96 s2 100 67 20 999A2 0 s2 00 B
SQ result: 1
EPC result: 111122223333444455556666
SQ SUCCESSFUL

Matching EPC, non-matching Query target (B->B)
SQ fail epc 96 s2 100 67 20 999A2 0 s2 00 A
SQ result: 0
SQ SUCCESSFUL

Non-matching EPC, matching Query target (B->A)
SQ pass epc 96 s2 100 67 20 999AF 0 s2 00 A
SQ result: 1
EPC result: 111122223333444455556666
SQ SUCCESSFUL

Non-matching EPC, non-matching Query Sel (A->A)
SQ fail epc 96 s2 100 67 20 999AF 0 s2 11 A
SQ result: 0
SQ SUCCESSFUL

SQ_E_S2_6

Matching EPC, matching Query target (A->B)
SQ pass epc 96 s2 101 75 6 98 0 s2 00 B
SQ result: 1
EPC result: 111122223333444455556666
SQ SUCCESSFUL

Matching EPC, non-matching Query target (B->B)
SQ fail epc 96 s2 101 75 6 98 0 s2 00 A
SQ result: 0
SQ SUCCESSFUL

Non-matching EPC, matching Query target (B)
SQ pass epc 96 s2 101 75 6 9F 0 s2 00 B
SQ result: 1
EPC result: 111122223333444455556666
SQ SUCCESSFUL

Non-matching EPC, non-matching Query session (B)
SQ fail epc 96 s2 101 75 6 9F 0 s3 00 B
SQ result: 0
SQ SUCCESSFUL

SQ_E_S2_7

Tag is in B from previous test (persistent session)
Matching EPC, matching Query target (B)
SQ pass epc 96 s2 110 83 3 2 0 s2 00 B
SQ result: 1
EPC result: 111122223333444455556666

Report No.: EMC94348B Rev. 2

Date: 2017-12-08
SQ SUCCESSFUL
Matching EPC, non-matching Query Session (B)
SQ fail epc 96 s2 110 83 3 2 0 s1 00 B
 SQ result: 0
 SQ SUCCESSFUL
Non-matching EPC, matching Query target (B->A)
SQ pass epc 96 s2 110 83 3 F 0 s2 00 A
 SQ result: 1
 EPC result: 111122223333444455556666
 SQ SUCCESSFUL
Non-matching EPC, non-matching Query target (A->A)
SQ fail epc 96 s2 110 83 3 F 0 s2 00 B
 SQ result: 0
 SQ SUCCESSFUL

SQ_E_S2_8
#
Matching EPC, matching Query target (A)
SQ pass epc 96 s2 111 126 1 8 0 s2 00 A
 SQ result: 1
 EPC result: 111122223333444455556666
 SQ SUCCESSFUL
Matching EPC, non-matching Query target (A)
SQ fail epc 96 s2 111 126 1 8 0 s2 00 B
 SQ result: 0
 SQ SUCCESSFUL
Non-matching EPC, matching Query target (A->B)
SQ pass epc 96 s2 111 126 1 0 0 s2 00 B
 SQ result: 1
 EPC result: 111122223333444455556666
 SQ SUCCESSFUL
Non-matching EPC, non-matching Query Sel (B->A)
SQ fail epc 96 s2 111 126 1 0 0 s2 11 A
 SQ result: 0
 SQ SUCCESSFUL

Lock epc
Lock pass epc 11111111
 Lock result: 1
 Lock SUCCESSFUL

Send SELECT with 0 length mask and Action 000 to send Sx INV to A
Do not send correct query to avoid flipping flag back to B by ACKing it
SQ fail epc 96 s0 000 32 0 0 0 s0 00 B
 SQ result: 0
SQ SUCCESSFUL
SQ fail epc 96 s1 000 32 0 0 0 s1 00 B
SQ result: 0
SQ SUCCESSFUL
SQ fail epc 96 s2 000 32 0 0 0 s2 00 B
SQ result: 0
SQ SUCCESSFUL
SQ fail epc 96 s3 000 32 0 0 0 s3 00 B
SQ result: 0
SQ SUCCESSFUL

###

SQ_E_S3_1
#
Matching EPC, matching Query target (A->A)
SQ pass epc 96 s3 000 124 1 0 0 s3 00 A
SQ result: 1
EPC result: 111122223333444455556666
SQ SUCCESSFUL

Matching EPC, non-matching Query Sel (A->A)
SQ fail epc 96 s3 000 124 1 0 0 s3 11 B
SQ result: 0
SQ SUCCESSFUL

Non-matching EPC, matching Query target (A->B)
SQ pass epc 96 s3 000 124 1 F 0 s3 00 B
SQ result: 1
EPC result: 111122223333444455556666
SQ SUCCESSFUL

Non-matching EPC, non-matching Query target (B->B)
SQ fail epc 96 s3 000 124 1 F 0 s3 00 A
SQ result: 0
SQ SUCCESSFUL

SQ_E_S3_2
#
Tag is in B from previous test (persistent session)
Matching EPC, matching Query target (B->A)
SQ pass epc 96 s3 001 102 3 4 0 s3 00 A
SQ result: 1
EPC result: 111122223333444455556666
SQ SUCCESSFUL

Matching EPC, non-matching Query target (A->A)
SQ fail epc 96 s3 001 102 3 4 0 s3 00 B

Report No.: EMC94348B Rev. 2

Date: 2017-12-08

Page 93 of 114
SQ result: 0
SQ SUCCESSFUL
Non-matching EPC, matching Query target (A)
SQ pass epc 96 s3 001 102 3 4 0 s3 00 A
 SQ result: 1
 EPC result: 11112222333444455556666
 SQ SUCCESSFUL
Non-matching EPC, non-matching Query Sel (A)
SQ fail epc 96 s3 001 102 3 4 0 s3 11 B
 SQ result: 0
 SQ SUCCESSFUL

SQ_E_S3_3
#
Matching EPC, matching Query target (A)
SQ pass epc 96 s3 010 87 6 20 0 s3 00 A
 SQ result: 1
 EPC result: 11112222333444455556666
 SQ SUCCESSFUL
Matching EPC, non-matching Query target (A)
SQ fail epc 96 s3 010 87 6 20 0 s3 00 B
 SQ result: 0
 SQ SUCCESSFUL
Non-matching EPC, non-matching Query session (A>B)
SQ pass epc 96 s3 010 87 6 2F 0 s3 00 B
 SQ result: 1
 EPC result: 11112222333444455556666
 SQ SUCCESSFUL
Non-matching EPC, non-matching Query session (B>B)
SQ fail epc 96 s3 010 87 6 2F 0 s1 00 B
 SQ result: 0
 SQ SUCCESSFUL

SQ_E_S3_4
#
Tag is in B from previous test (persistent session)
Matching EPC, matching Query target (B->A)
SQ pass epc 96 s3 011 59 12 119 0 s3 00 A
 SQ result: 1
 EPC result: 11112222333444455556666
 SQ SUCCESSFUL
Matching EPC, non-matching Query session (A->B)
SQ fail epc 96 s3 011 59 12 119 0 s2 00 B
 SQ result: 0
 SQ SUCCESSFUL

Report No.: EMC94348B Rev. 2

Date: 2017-12-08

Page 94 of 114
Non-matching EPC, matching Query target (B)
SQ pass epc 96 s3 011 59 12 11F 0 s3 00 B
 SQ result: 1
 EPC result: 111122223333444455556666
 SQ SUCCESSFUL

Non-matching EPC, non-matching Query target (B)
SQ fail epc 96 s3 011 59 12 11F 0 s3 00 A
 SQ result: 0
 SQ SUCCESSFUL

SQ_E_S3_5
#
Tag is in B from previous test (persistent session)
Matching EPC, matching Query target (B->B)
SQ pass epc 96 s3 100 45 24 244446 0 s3 00 B
 SQ result: 1
 EPC result: 111122223333444455556666
 SQ SUCCESSFUL

Matching EPC, non-matching Query target (B->B)
SQ fail epc 96 s3 100 45 24 244446 0 s3 00 A
 SQ result: 0
 SQ SUCCESSFUL

Non-matching EPC, matching Query target (B->A)
SQ pass epc 96 s3 100 45 24 24444F 0 s3 00 A
 SQ result: 1
 EPC result: 111122223333444455556666
 SQ SUCCESSFUL

Non-matching EPC, non-matching Query Sel (A->A)
SQ fail epc 96 s3 100 45 24 24444F 0 s3 11 A
 SQ result: 0
 SQ SUCCESSFUL

SQ_E_S3_6
#
Matching EPC, matching Query target (A->B)
SQ pass epc 96 s3 101 41 48 2244446666688 0 s3 00 B
 SQ result: 1
 EPC result: 111122223333444455556666
 SQ SUCCESSFUL

Matching EPC, non-matching Query session (B->B)
SQ fail epc 96 s3 101 41 48 2244446666688 0 s0 00 B
 SQ result: 0
 SQ SUCCESSFUL

Non-matching EPC, matching Query target (B)
SQ pass epc 96 s3 101 41 48 2244446666688F 0 s3 00 B

Report No.: EMC94348B Rev. 2

Date: 2017-12-08 Page 95 of 114
SQ result: 1
EPC result: 111122223333444455556666
SQ SUCCESSFUL
Non-matching EPC, non-matching Query target (B)
SQ fail epc 96 s3 101 41 48 224444666668F 0 s3 00 A
 SQ result: 0
 SQ SUCCESSFUL

SQ_E_S3_7
#
Tag is in B from previous test (persistent session)
Matching EPC, matching Query target (B)
SQ pass epc 96 s3 110 36 64 1112222333344445 0 s3 00 B
 SQ result: 1
 EPC result: 111122223333444455556666
 SQ SUCCESSFUL
Matching EPC, non-matching Query session (B)
SQ fail epc 96 s3 110 36 64 1112222333344445 0 s1 00 B
 SQ result: 0
 SQ SUCCESSFUL
Non-matching EPC, matching Query target (B->A)
SQ pass epc 96 s3 110 36 64 1112222333344445F 0 s3 00 A
 SQ result: 1
 EPC result: 111122223333444455556666
 SQ SUCCESSFUL
Non-matching EPC, matching Query target (A)
SQ pass epc 96 s3 111 32 96 111122223333444455556666 0 s3 00 A
 SQ result: 1
 EPC result: 111122223333444455556666
 SQ SUCCESSFUL
Matching EPC, matching Query target (A)
SQ fail epc 96 s3 111 32 96 111122223333444455556666 0 s3 00 B
 SQ result: 0
 SQ SUCCESSFUL
Non-matching EPC, matching Query target (A->B)
SQ pass epc 96 s3 111 32 96 111122223333444455556666F 0 s3 00 B
 SQ result: 1
 EPC result: 111122223333444455556666

Report No.: EMC94348B Rev. 2

Date: 2017-12-08
SQ SUCCESSFUL
Non-matching EPC, non-matching Query Sel (B->A)
SQ fail epc 96 s3 111 32 96 111122223333444455556666F 0 s3 11 B
 SQ result: 0
 SQ SUCCESSFUL

Unlock epc
UnLock pass epc 11111111
 UnLock result: 1
 UnLock SUCCESSFUL

Send SELECT with 0 length mask and Action 000 to send Sx INV to A
Do not send correct query to avoid flipping flag back to B by ACKing it
SQ fail epc 96 s0 000 32 0 0 0 s0 00 B
 SQ result: 0
 SQ SUCCESSFUL
SQ fail epc 96 s1 000 32 0 0 0 s1 00 B
 SQ result: 0
 SQ SUCCESSFUL
SQ fail epc 96 s2 000 32 0 0 0 s2 00 B
 SQ result: 0
 SQ SUCCESSFUL
SQ fail epc 96 s3 000 32 0 0 0 s3 00 B
 SQ result: 0
 SQ SUCCESSFUL

SQ_E_SL_1
Matching EPC, matching Query Sel (~SL->SL)
SQ pass epc 96 sl 000 126 2 8 1 s0 11 A
 SQ result: 1
 EPC result:
 SQ SUCCESSFUL
Matching EPC, non-matching Query target (SL)
SQ fail epc 96 sl 000 126 2 8 1 s0 11 B
 SQ result: 0
 SQ SUCCESSFUL
Non-matching EPC, matching Query Sel (SL->~SL)
SQ pass epc 96 sl 000 126 2 F 1 s0 10 A
 SQ result: 1
 EPC result: 111122223333444455556666
 SQ SUCCESSFUL
Non-matching EPC, non-matching Query Sel (~SL->~SL)
SQ fail epc 96 sl 000 126 2 F 1 s0 11 A
 SQ result: 0
 SQ SUCCESSFUL

SQ_E_SL_2
#
Matching EPC, matching Query Sel (~SL->SL)
SQ pass epc 96 sl 001 63 64 1999a2222aaab333 1 s0 11 A
 SQ result: 1
 EPC result: 63
 SQ SUCCESSFUL
Matching EPC, non-matching Query Sel (SL)
SQ fail epc 96 sl 001 63 64 1999a2222aaab333 1 s0 10 A
 SQ result: 0
 SQ SUCCESSFUL
Non-matching EPC, matching Query Sel (SL)
SQ pass epc 96 sl 001 63 64 1999a2222aaab33F 1 s0 11 A
 SQ result: 1
 EPC result: 111122223333444455556666
 SQ SUCCESSFUL
Non-matching EPC, non-matching Query target (SL)
SQ fail epc 96 sl 001 63 64 1999a2222aaab33F 1 s0 11 B
 SQ result: 0
 SQ SUCCESSFUL

SQ_E_SL_3
#
Tag has SL from previous test (SL flag has persistence)
Matching EPC, matching Query Sel (SL)
SQ pass epc 96 sl 010 127 1 0 1 s0 11 A
 SQ result: 1
 EPC result: 111122223333444455556666
 SQ SUCCESSFUL
Matching EPC, non-matching Query Target (SL)
SQ fail epc 96 sl 010 127 1 0 1 s0 11 B
 SQ result: 0
 SQ SUCCESSFUL
Non-matching EPC, matching Query Sel (SL->~SL)
SQ pass epc 96 sl 010 127 1 F 1 s0 10 A
 SQ result: 1
 EPC result: 111122223333444455556666
 SQ SUCCESSFUL
Non-matching EPC, non-matching Query Sel (~SL->~SL)
SQ fail epc 96 sl 010 127 1 F 1 s0 11 A
SQ result: 0
SQ SUCCESSFUL

SQ_E_SL_4
#
Matching EPC, matching Query Sel (~SL->SL)
SQ pass epc 96 sl 011 63 8 19 1 s0 11 A
SQ result: 1
EPC result: 99a2222aaab3334c
SQ SUCCESSFUL
Matching EPC, non-matching Query target (SL->~SL)
SQ fail epc 96 sl 011 63 8 19 1 s0 10 B
SQ result: 0
SQ SUCCESSFUL
Non-matching EPC, matching Query Sel (~SL)
SQ pass epc 96 sl 011 63 8 1F 1 s0 10 A
SQ result: 1
EPC result: 111122223334445556666
SQ SUCCESSFUL
Non-matching EPC, non-matching Query Sel (~SL)
SQ fail epc 96 sl 011 63 8 1F 1 s0 11 A
SQ result: 0
SQ SUCCESSFUL

SQ_E_SL_5
#
Matching EPC, matching Query Sel (~SL->~SL)
SQ pass epc 96 sl 100 58 12 88C 1 s0 10 A
SQ result: 1
EPC result: ccd11115555999a2
SQ SUCCESSFUL
Matching EPC, non-matching Query Sel (~SL->~SL)
SQ fail epc 96 sl 100 58 12 88C 1 s0 11 A
SQ result: 0
SQ SUCCESSFUL
Non-matching EPC, matching Query Sel (~SL->SL)
SQ pass epc 96 sl 100 58 12 88F 1 s0 11 A
SQ result: 1
EPC result: 111122223334445556666
SQ SUCCESSFUL
Non-matching EPC, non-matching Query target (SL->SL)
SQ fail epc 96 sl 100 58 12 88F 1 s0 11 B
SQ result: 0
SQ SUCCESSFUL
SQ_E_SL_6
#
Tag has SL from previous test (SL flag has persistence)
Matching EPC, matching Query SL (SL->~SL)
SQ pass epc 96 sl 101 81 16 8888 1 s0 10 A
 SQ result: 1
 EPC result: aaaaccccd
 SQ SUCCESSFUL
Matching EPC, non-matching Query target (~SL->~SL)
SQ fail epc 96 sl 101 81 16 8888 1 s0 10 B
 SQ result: 0
 SQ SUCCESSFUL
Non-matching EPC, matching Query Sel (~SL)
SQ pass epc 96 sl 101 81 16 888F 1 s0 10 A
 SQ result: 1
 EPC result: 111122223333444455556666
 SQ SUCCESSFUL
Non-matching EPC, non-matching Query Sel (~SL)
SQ fail epc 96 sl 101 81 16 8888 1 s0 11 A
 SQ result: 0
 SQ SUCCESSFUL

SQ_E_SL_7
#
Matching EPC, matching Query Sel (~SL)
SQ pass epc 96 sl 110 32 5 10 1 s0 10 A
 SQ result: 1
 EPC result: 222444466668888aaaaccccb
 SQ SUCCESSFUL
Matching EPC, non-matching Query Sel (~SL)
SQ fail epc 96 sl 110 32 5 10 1 s0 11 A
 SQ result: 0
 SQ SUCCESSFUL
Non-matching EPC, matching Query Sel (~SL->SL)
SQ pass epc 96 sl 110 32 5 1F 1 s0 11 A
 SQ result: 1
 EPC result: 111122223333444455556666
 SQ SUCCESSFUL
Non-matching EPC, non-matching Query target (SL->SL)
SQ fail epc 96 sl 110 32 5 1F 1 s0 11 B
 SQ result: 0
 SQ SUCCESSFUL

SQ_E_SL_8
#
Tag has SL from previous test (SL flag has persistence)
Matching EPC, matching Query Sel (SL)
SQ pass epc 96 sl 111 124 3 6 1 s0 11 A
 SQ result: 1
 EPC result: 63
 SQ SUCCESSFUL

Matching EPC, non-matching Query target (SL)
SQ fail epc 96 sl 111 124 3 6 1 s0 11 B
 SQ result: 0
 SQ SUCCESSFUL

Non-matching EPC, matching Query Sel (SL->~SL)
SQ pass epc 96 sl 111 124 3 F 1 s0 10 A
 SQ result: 1
 EPC result: 111122223333444455556666
 SQ SUCCESSFUL

Non-matching EPC, non-matching Query Sel (~SL->SL)
SQ fail epc 96 sl 111 124 3 F 1 s0 10 A
 SQ result: 0
 SQ SUCCESSFUL

Send SELECT with 0 length mask and Action 011 to send SL to ~SL
Do not send correct query to avoid flipping S0 INV flag to B by ACKing it
SQ fail epc 96 sl 011 32 0 0 0 s0 10 B
 SQ result: 0
 SQ SUCCESSFUL

###
Lock epc
Lock pass epc 11111111
 Lock result: 1
 Lock SUCCESSFUL

SQ_E_SL_9
Matching EPC, matching Query Sel (~SL->SL)
SQ pass epc 96 sl 000 32 96 111122223333444455556666 1 s0 11 A
 SQ result: 1
 EPC result:
 SQ SUCCESSFUL

Matching EPC, non-matching Query target (SL)
SQ fail epc 96 sl 000 32 96 111122223333444455556666 1 s0 11 B
 SQ result: 0
 SQ SUCCESSFUL
Non-matching EPC, matching Query Sel (SL->~SL)
SQ pass epc 96 sl 000 32 96 111122223333444455556666F 1 s0 10 A
 SQ result: 1
 EPC result: 111122223333444455556666
 SQ SUCCESSFUL

Non-matching EPC, non-matching Query Sel (~SL->~SL)
SQ fail epc 96 sl 000 32 96 111122223333444455556666F 1 s0 11 A
 SQ result: 0
 SQ SUCCESSFUL

SQ_E_SL_10

Matching EPC, matching Query Sel (~SL->SL)
SQ pass epc 96 sl 001 32 95 111122223333444455556666 1 s0 11 A
 SQ result: 1
 EPC result: 63
 SQ SUCCESSFUL

Matching EPC, non-matching Query Sel (SL)
SQ fail epc 96 sl 001 32 95 111122223333444455556666 1 s0 10 A
 SQ result: 0
 SQ SUCCESSFUL

Non-matching EPC, matching Query Sel (SL)
SQ pass epc 96 sl 001 32 95 111122223333444455556666 1 s0 11 A
 SQ result: 1
 EPC result: 111122223333444455556666
 SQ SUCCESSFUL

Non-matching EPC, non-matching Query target (SL)
SQ fail epc 96 sl 001 32 95 111122223333444455556666F 1 s0 11 B
 SQ result: 0
 SQ SUCCESSFUL

SQ_E_SL_11

Tag has SL from previous test (SL flag has persistence)
Matching EPC, matching Query Sel (SL)
SQ pass epc 96 sl 010 44 48 122223333444 1 s0 11 A
 SQ result: 1
 EPC result: 4555566668
 SQ SUCCESSFUL

Matching EPC, non-matching Query target (SL)
SQ fail epc 96 sl 010 44 48 122223333444 1 s0 11 B
 SQ result: 0
 SQ SUCCESSFUL

Non-matching EPC, matching Query Sel (SL->~SL)
SQ pass epc 96 sl 010 44 48 122223333444F 1 s0 10 A
SQ result: 1
EPC result: 111122223333444455556666
SQ SUCCESSFUL

Non-matching EPC, non-matching Query Sel (~SL->~SL)
SQ fail epc 96 sl 010 44 48 12222333344F 1 s0 11 A
 SQ result: 0
 SQ SUCCESSFUL

SQ_E_SL_12
#
Matching EPC, matching Query Sel (~SL->SL)
SQ pass epc 96 sl 011 56 30 22333344 1 s0 11 A
 SQ result: 1
 EPC result: 1115555999ac
 SQ SUCCESSFUL
Matching EPC, non-matching Query Sel (SL->~SL)
SQ fail epc 96 sl 011 56 30 22333344 1 s0 11 A
 SQ result: 0
 SQ SUCCESSFUL
Non-matching EPC, matching Query Sel (~SL)
SQ pass epc 96 sl 011 56 30 2233334F 1 s0 10 A
 SQ result: 1
 EPC result: 111122223333444455556666
 SQ SUCCESSFUL
Non-matching EPC, non-matching Query target (~SL)
SQ fail epc 96 sl 011 56 30 2233334F 1 s0 10 B
 SQ result: 0
 SQ SUCCESSFUL

SQ_E_SL_13
#
Matching EPC, matching Query Sel (~SL->~SL)
SQ pass epc 96 sl 100 67 20 999A2 1 s0 10 A
 SQ result: 1
 EPC result: 222aaab3335a
 SQ SUCCESSFUL
Matching EPC, non-matching Query target (~SL->~SL)
SQ fail epc 96 sl 100 67 20 999AF 1 s0 11 A
 SQ result: 0
 SQ SUCCESSFUL
Non-matching EPC, matching Query Sel (~SL->SL)
SQ pass epc 96 sl 100 67 20 999A2 1 s0 11 A
 SQ result: 1
 EPC result: 111122223333444455556666
 SQ SUCCESSFUL
Non-matching EPC, non-matching Query Sel (SL->SL)
SQ fail epc 96 sl 100 67 20 999AF 1 s0 10 A
 SQ result: 0
 SQ SUCCESSFUL

SQ_E_SL_14
#
Tag has SL from previous test (SL flag has persistence)
Matching EPC, matching Query Sel (SL->~SL)
SQ pass epc 96 sl 101 75 6 9A 1 s0 10 A
 SQ result: 1
 EPC result: 8888aaaacccc
 SQ SUCCESSFUL
Matching EPC, non-matching Query Sel (~SL->~SL)
SQ fail epc 96 sl 101 75 6 9A 1 s0 11 A
 SQ result: 0
 SQ SUCCESSFUL
Non-matching EPC, matching Query Sel (~SL)
SQ pass epc 96 sl 101 75 6 9F 1 s0 10 A
 SQ result: 1
 EPC result: 111122223333444455556666
 SQ SUCCESSFUL
Non-matching EPC, non-matching Query target (~SL)
SQ fail epc 96 sl 101 75 6 9F 1 s0 10 B
 SQ result: 0
 SQ SUCCESSFUL

SQ_E_SL_15
#
Matching EPC, matching Query Sel (~SL)
SQ pass epc 96 sl 110 95 13 2AAA 1 s0 10 A
 SQ result: 1
 EPC result: 566663
 SQ SUCCESSFUL
Matching EPC, non-matching Query target (~SL)
SQ fail epc 96 sl 110 95 13 2AAA 1 s0 10 B
 SQ result: 0
 SQ SUCCESSFUL
Non-matching EPC, matching Query Sel (~SL->SL)
SQ pass epc 96 sl 110 95 13 2AA0 1 s0 11 A
 SQ result: 1
 EPC result: 111122223333444455556666
 SQ SUCCESSFUL
Non-matching EPC, non-matching Query Sel (SL->SL)
SQ fail epc 96 sl 110 95 13 2AA0 1 s0 10 A
SQ result: 0
SQ SUCCESSFUL

SQ_E_SL_16
#
Tag has SL from previous test (SL flag has persistence)
Matching EPC, matching Query Sel (SL)
SQ pass epc 96 sl 111 126 1 8 1 s0 11 A
 SQ result: 1
 EPC result: 63
 SQ SUCCESSFUL
Matching EPC, non-matching Query Sel (SL)
SQ fail epc 96 sl 111 126 1 8 1 s0 10 A
 SQ result: 0
 SQ SUCCESSFUL
Non-matching EPC, matching Query Sel (SL->~SL)
SQ pass epc 96 sl 111 126 1 0 1 s0 10 A
 SQ result: 1
 EPC result: 111122223333444455556666
 SQ SUCCESSFUL
Non-matching EPC, non-matching Query target (~SL->SL)
SQ fail epc 96 sl 111 126 1 0 1 s0 11 B
 SQ result: 0
 SQ SUCCESSFUL

Unlock epc
UnLock pass epc 11111111
 UnLock result: 1
 UnLock SUCCESSFUL

Send SELECT with 0 length mask and Action 011 to send SL to ~SL
Do not send correct query to avoid flipping S0 INV flag to B by ACKing it
SQ fail epc 96 sl 011 32 0 0 0 s0 10 B
 SQ result: 0
 SQ SUCCESSFUL

###
######### Write zero access password
Write pass 00000000 apass
 Write result: 1
 Write SUCCESSFUL
disconnect
 Disconnected.
Script completed without failures

SQ_TID_TEST

Created by Impinj, and modified by MET Laboratories, for use in EPCglobal sanctioned Gen2 RFID interoperability testing
Permission granted for free use only for EPCglobal sponsored interoperability testing activities

EPCglobal Inc., its members, officers, directors, employees, or agents shall not be liable for any
injury, loss, damages, financial or otherwise, arising from, related to, or caused by the use of this
document. Use of said document does not guarantee compliance with applicable state and/or federal laws.
User is responsible for the interpretation of and compliance with applicable pedigree laws. The use of
said document shall constitute your express consent to the foregoing disclaimer.

##
##########
Connect to reader in FCC mode and set Tx power 29.0 30 dBm
connect 169.254.10.1 FCC 201
 Connected to reader 169.254.10.1, type: FCC, mode: 201
power 20
 Power set to 20

Confirm that the TID is E280B0A1
Read pass E280B0A1 tid
 Read data: E280B0A1
 Read SUCCESSFUL
Set the AP to a non-zero value
Write pass 1111111111 apass
 Write result: 1
 Write SUCCESSFUL

Send SELECT with 0 length mask and Action 000 to send Sx INV to A
Do not send correct query to avoid flipping flag back to B by ACKing it
SQ fail tid 96 s0 000 0 0 0 0 s0 00 B
 SQ result: 0
 SQ SUCCESSFUL
SQ fail tid 96 s1 000 0 0 0 0 s1 00 B
 SQ result: 0
 SQ SUCCESSFUL
SQ fail tid 96 s2 000 0 0 0 0 s2 00 B
 SQ result: 0
 SQ SUCCESSFUL
SQ fail tid 96 s3 000 0 0 0 0 s3 00 B
 SQ result: 0
 SQ SUCCESSFUL
SQ fail tid 96 s1 100 0 0 0 0 s3 00 B
 SQ result: 0
 SQ SUCCESSFUL

SQ_T_S0_1
#
Matching TID, matching Query target (A->A)
SQ pass tid 96 s0 000 0 16 E280 0 s0 00 A
 SQ result: 1
 EPC result: 111122223333444455556666
 SQ SUCCESSFUL
Matching TID, non-matching Query Sel (A->A)
SQ fail tid 96 s0 000 0 16 E280 0 s0 11 B
 SQ result: 0
 SQ SUCCESSFUL
Non-matching TID, matching Query target (A->B)
SQ pass tid 96 s0 000 0 16 E20F 0 s0 00 B
 SQ result: 1
 EPC result: 111122223333444455556666
 SQ SUCCESSFUL
Non-matching TID, non-matching Query target (A->B)
SQ fail tid 96 s0 000 0 16 E20F 0 s0 00 A
 SQ result: 0
 SQ SUCCESSFUL

SQ_T_S0_2
#
Matching TID, matching Query target (A->A)
SQ pass tid 96 s0 001 0 32 E280B0A1 0 s0 00 A
 SQ result: 1
 EPC result: 111122223333444455556666
 SQ SUCCESSFUL
Matching TID, non-matching Query target (A->A)
SQ fail tid 96 s0 001 0 32 E280B0A1 0 s0 00 B
SQ result: 0
SQ SUCCESSFUL
Non-matching TID, matching Query target (A)
SQ pass tid 96 s0 001 0 32 E280104F 0 s0 00 A
SQ result: 1
EPC result: 111122233344455556666
SQ SUCCESSFUL
Non-matching TID, non-matching Query Sel (A)
SQ fail tid 96 s0 001 0 32 E280104F 0 s0 11 B
SQ result: 0
SQ SUCCESSFUL

Lock the TID
Lock pass tid 11111111
Lock result: 1
Lock SUCCESSFUL

SQ_T_S1_1
#
Matching TID, matching Query target (A)
SQ pass tid 96 s1 010 0 16 E280 0 s1 00 A
SQ result: 1
EPC result: 111122233344455556666
SQ SUCCESSFUL
Matching TID, non-matching Query target (A)
SQ fail tid 96 s1 010 0 16 E280 0 s1 00 B
SQ result: 0
SQ SUCCESSFUL
Non-matching TID, matching Query target (A->B)
SQ pass tid 96 s1 010 0 16 E20F 0 s1 00 B
SQ result: 1
EPC result: 111122233344455556666
SQ SUCCESSFUL
Non-matching TID, non-matching Query session (B->B)
SQ fail tid 96 s1 010 0 16 E20F 0 s1 00 A
SQ result: 0
SQ SUCCESSFUL

Send SELECT with 0 length mask and Action 000 to send S1 INV to A
Do not send correct query to avoid flipping S0 INV flag to B by ACKing it
SQ fail tid 96 s1 000 0 0 0 0 s1 00 B

Report No.: EMC94348B Rev. 2
Date: 2017-12-08
SQ result: 0
SQ SUCCESSFUL

SQ_T_S1_2
#
Matching TID, matching Query target (A->B)
SQ pass tid 96 s1 011 0 32 E280B0A1 0 s1 00 B
 SQ result: 1
 EPC result: 111122223333444455556666
 SQ SUCCESSFUL
Give the flag time to toggle with the next command
#Read pass - tid
Matching TID, non-matching Query session (B->A)
SQ fail tid 96 s1 011 0 32 E280B0A1 0 s1 00 B
 SQ result: 0
 SQ SUCCESSFUL
Non-matching TID, matching Query target (A)
SQ pass tid 96 s1 011 0 32 E280104F 0 s1 00 A
 SQ result: 1
 EPC result: 111122223333444455556666
 SQ SUCCESSFUL
Give the flag time to toggle with the next command
#Read pass - tid
Non-matching TID, non-matching Query target (A)
SQ fail tid 96 s1 011 0 32 E280104F 0 s1 00 B
 SQ result: 0
 SQ SUCCESSFUL

If TID capable of being unlocked:
#Unlock pass tid 11111111

Send SELECT with 0 length mask and Action 000 to send S1 INV to A
Do not send correct query to avoid flipping S0 INV flag to B by ACKing it
SQ fail tid 96 s1 000 0 0 0 s1 00 B
 SQ result: 0
 SQ SUCCESSFUL

SQ_T_S2_1
#
Matching TID, matching Query target (A->B)
SQ pass tid 96 s2 100 0 16 E280 0 s2 00 B
 SQ result: 1
EPC result: 111122223333444455556666
SQ SUCCESSFUL
Matching TID, non-matching Query target (B->B)
SQ fail tid 96 s2 100 0 16 E280 0 s2 00 A
 SQ result: 0
 SQ SUCCESSFUL
Non-matching TID, matching Query target (B->A)
SQ pass tid 96 s2 100 0 16 E20F 0 s2 00 A
 SQ result: 1
 EPC result: 111122223333444455556666
 SQ SUCCESSFUL
Non-matching TID, non-matching Query target (A->A)
SQ fail tid 96 s2 100 0 16 E20F 0 s2 00 B
 SQ result: 0
 SQ SUCCESSFUL

SQ_T_S2_2
#
Matching TID, matching Query target (A->B)
SQ pass tid 96 s2 101 0 32 E280B0A1 0 s2 00 B
 SQ result: 1
 EPC result: 111122223333444455556666
 SQ SUCCESSFUL
Matching TID, non-matching Query Session (B->B)
SQ fail tid 96 s2 101 0 32 E280B0A1 0 s0 00 B
 SQ result: 0
 SQ SUCCESSFUL
Non-matching TID, matching Query target (B)
SQ pass tid 96 s2 101 0 32 E280104F 0 s2 00 B
 SQ result: 1
 EPC result: 111122223333444455556666
 SQ SUCCESSFUL
Non-matching TID, non-matching Query target (B)
SQ fail tid 96 s2 101 0 32 E280104F 0 s2 00 A
 SQ result: 0
 SQ SUCCESSFUL

Lock the TID
Lock pass tid 11111111
 Lock result: 1
 Lock SUCCESSFUL

Send SELECT with 0 length mask and Action 000 to send S2 INV to A
Do not send correct query to avoid flipping S0 INV flag to B by ACKing it
SQ fail tid 96 s2 000 0 0 0 0 s2 00 B
SQ_T_S3_1
#
Matching TID, matching Query target (A)
SQ pass tid 96 s3 110 0 16 E280 0 s3 00 A
 SQ result: 1
 EPC result: 111122223333444455556666
 SQ SUCCESSFUL
Matching TID, non-matching Query target (A)
SQ fail tid 96 s3 110 0 16 E280 0 s3 00 B
 SQ result: 0
 SQ SUCCESSFUL
Non-matching TID, matching Query target (B->A)
SQ pass tid 96 s3 110 0 16 E20F 0 s3 00 A
 SQ result: 1
 EPC result: 111122223333444455556666
 SQ SUCCESSFUL
Non-matching TID, non-matching Query Sel (A->A)
SQ fail tid 96 s3 110 0 16 E20F 0 s3 11 A
 SQ result: 0
 SQ SUCCESSFUL

SQ_T_S3_2
#
Matching TID, matching Query target (A)
SQ pass tid 96 s3 111 0 32 E280B0A1 0 s3 00 A
 SQ result: 1
 EPC result: 111122223333444455556666
 SQ SUCCESSFUL
Matching TID, non-matching Query target (A)
SQ fail tid 96 s3 111 0 32 E280B0A1 0 s3 00 B
 SQ result: 0
 SQ SUCCESSFUL
Non-matching TID, matching Query target (A->B)
SQ pass tid 96 s3 111 0 32 E280104F 0 s3 00 B
 SQ result: 1
 EPC result: 111122223333444455556666
 SQ SUCCESSFUL
Non-matching TID, non-matching Query Sel (B->A)
SQ fail tid 96 s3 111 0 32 E280104F 0 s3 11 A
 SQ result: 0
 SQ SUCCESSFUL
SQ result: 0
SQ SUCCESSFUL

If TID capable of being unlocked:
#Unlock pass tid 11111111

Send SELECT with 0 length mask and Action 000 to send S3 INV to A
Do not send correct query to avoid flipping S0 INV flag to B by ACKing it
SQ fail tid 96 s3 000 0 0 0 s3 00 B
 SQ result: 0
 SQ SUCCESSFUL

SQ_T_SL_1
#
Matching TID, matching Query Sel (~SL->SL)
SQ pass tid 96 sl 000 0 16 E280 0 s0 11 A
 SQ result: 1
 EPC result: 1111222333444455556666
 SQ SUCCESSFUL
Matching TID, non-matching Query Sel (SL->SL)
SQ fail tid 96 sl 000 0 16 E280 0 s0 10 A
 SQ result: 0
 SQ SUCCESSFUL
Non-matching TID, matching Query Sel (~SL->~SL)
SQ pass tid 96 sl 000 0 16 E20F 0 s0 10 A
 SQ result: 1
 EPC result: 1111222333444455556666
 SQ SUCCESSFUL
Non-matching TID, non-matching Query target (~SL->~SL)
SQ fail tid 96 sl 000 0 16 E20F 0 s0 10 B
 SQ result: 0
 SQ SUCCESSFUL

SQ_T_SL_2
#
Matching TID, matching Query Sel (~SL->SL)
SQ pass tid 96 sl 001 0 32 E280B0A1 0 s0 11 A
 SQ result: 1
 EPC result: 1111222333444455556666
 SQ SUCCESSFUL
Matching TID, non-matching Query target (SL)
SQ fail tid 96 sl 001 0 32 E280B0A1 0 s0 11 B
SQ result: 0
SQ SUCCESSFUL
Non-matching TID, matching Query Sel (SL)
SQ pass tid 96 sl 001 0 32 E280104F 0 s0 11 A
 SQ result: 1
 EPC result: 111122223333444455556666
 SQ SUCCESSFUL
Non-matching TID, non-matching Query Sel (SL)
SQ fail tid 96 sl 001 0 32 E280104F 0 s0 10 A
 SQ result: 0
 SQ SUCCESSFUL

Send SELECT with 0 length mask and Action 011 to send SL to ~SL
Do not send correct query to avoid flipping S0 INV flag to B by ACKing it
SQ fail tid 96 sl 011 0 0 0 0 s0 10 B
 SQ result: 0
 SQ SUCCESSFUL

disconnect
Disconnected.
Script completed without failures

4. MEASUREMENT UNCERTAINTY.

The following uncertainty values have been calculated and compared to the specified limits as in the document “Measurement Uncertainties RFID RF Tester. Version 1.0”.

The measurement uncertainty of the test equipment is defined by the sampling frequency, and using the formula:

\[s = \frac{1}{\text{Sampling Frequency [Hz]}} \]

The default sampling frequency being 4 MHz, the measurement uncertainty is +/- 0.25µS.
5. Photographs

Photograph 1 – EM Microelectronic EM | Echo RFID Tag