Using GS1 standards to trace surgical and dental instruments

Challenge
There are around 40,000 surgical instruments at Tokyo Medical and Dental University Hospital. Keeping track of these by visual inspection presented problems from both a workload and risk management perspective. Indeed the hospital had experienced recurring issues in managing the instruments, including the loss of important devices such as dental handpieces.

Approach
The hospital has acquired its own GS1 Company Prefix and directly marked a GS1 DataMatrix encoding GS1 Global Individual Asset Identifier (GIAI) on all 40,000 surgical instruments, including dental equipment such as handpieces. This has made it possible to track and trace items.

Introduction
Tokyo Medical and Dental University Hospital has achieved in-hospital traceability of all surgical instruments by scanning GS1 DataMatrix barcode encoded with the GS1 Global Individual Asset Identifier (GIAI) on single-use medical devices (SUDs) management in the hospital, including through the implementation of RFID to support digital transformation.

Using GS1 barcodes on surgical instruments
In Japan, the revised Pharmaceutical and Medical Devices Act came into effect on December 1, 2022, mandating GS1 barcode marking on the packaging of pharmaceuticals and medical devices to ensure traceability. However, the law does not currently include marking on medical devices themselves or direct marking.

At Tokyo Medical and Dental University Hospital, staff manage approximately 40,000 surgical instruments. Traceability for those instruments had relied on visual inspection by staff and paper records. This caused problems from both a workload and risk management perspective, considering the complicated processes involved in the use of instruments - including inspection, cleaning, assembly, sterilisation, storage, and distribution.

With the implementation of GS1 DataMatrix directly marked on surgical instruments, the sterilisation process has become more efficient and accurate. When instruments are returned from a theatre after a surgery, the GS1 DataMatrix on the instruments is scanned and automatically verified against the preparation list displayed on the PC screen. If the wrong instrument is then scanned before the procedure, the subsequent steps in the process cannot be performed.

Hideo Kubota, director of the hospital’s central supply department, has addressed this by obtaining a GS1 Company Prefix and directly marking all surgical instruments with a GS1 DataMatrix barcode encoded with the GS1 Global Individual Asset Identifier (GIAI).

The hospital uses the barcodes to link instruments, staff, and facilities. During the cleaning and sterilisation steps, barcodes are affixed to the cleaning machines, sterilisation machines, and to the case of the assembled set. Barcode scans are used to establish links between the instruments that need to be cleaned or sterilised and the machine. Before surgery, the nurse also scans the barcode on the set, along with the barcode on the surgical request form, which contains encoded patient information data. Additionally, the staff ID barcode is scanned before these processes to record who is responsible for the work.

Patient safety has been increased through improved traceability, and the system has streamlined and standardised the workload of the staff, leading to increased efficiency.

GS1 barcodes on dental handpieces
Building on the success achieved in the medical hospital, GS1 standards have also been implemented in the dental hospital.

The hospital directly marked a GS1 DataMatrix encoding GIAI on every handpiece for individual identification management. Additionally, unique GS1 Healthcare Reference Book 2023-2024
codes were assigned to each dentist to whom handpieces are distributed. During the supply process, a handy terminal is used to scan the barcode on the handpiece label, along with the dentist ID barcode, linking them together. Similarly, after surgery, the directly marked GS1 DataMatrix is scanned to record the device’s collection during the sterilisation process.

This implementation of GS1 standards in the dental field, specifically utilising GLAI, was likely the first of its kind in Japan. This comprehensive tracking system has allowed for the recording of the distributing details for any device, including when, to whom, where, and what was distributed. Before GS1 implementation, eight of the 741 dental handpieces had been lost over a period of 18 months. The number of lost handpieces fell to zero within the first 18 months of operation of the new system. During this period there were 24 instances in which the handpieces were misplaced. However, the system could track their users and narrow down the search locations, and so all were soon found. The barcode scanning process has also streamlined routine tasks such as checking inventory counts, significantly reducing the time required.

Currently, the system is operational only in the outpatient department, but there are plans to expand its implementation to the entire dental department.

“Hospitals need to know where and how much of each disposable item is in stock, when and by whom it was used, and the GS1 standards are an effective identifier for the purpose”.

Hideo Kubota
Director of Central Supply Department, Tokyo Medical and Dental University Hospital

RFID utilisation and the data flow

To further advance digital transformation and improve the efficiency of total SUDs management, the hospital is now also using RFID technology. RFID tags are attached to SUDs at the hospital, so reducing the workload of management staff. After being used in surgeries, empty SUDs packages are discarded in a designated waste bin equipped with an RFID scanner.

The SUDs information is then sent to the hospital’s logistics system, and consumption data is registered by cross-checking with master data. When the inventory quantity falls below a predetermined threshold, an automatic order is placed with the manufacturer. Additionally, SUDs usage data is integrated with surgical data, and the frequency of SUDs usage is stored for reference. Required information can be extracted from this data and uploaded to the cloud for sharing with manufacturers.

By incorporating RFID technology and utilising cloud-based data analysis, the hospital is optimising its total SUDs management, improving inventory control, and fostering collaboration with manufacturers for continuous improvement and innovation of product developments.

Conclusion

By implementing GS1 standards, the hospital has reduced staff workload and enhanced patient safety. GS1 standards have ensured traceability for each instrument, including information on which instruments were used, when, and by whom. The time required for setting up surgical instruments has been reduced by 86%, and errors have been eliminated. The visualisation of each instrument’s usage status has been accomplished and reduced the number of unnecessary instrument setups by 12%.

About the author

Hideo Kubota
Director of Central Supply Department, Tokyo Medical and Dental University Hospital

Hideo Kubota is leading the implementation of the GS1 standards as a Director of Central Supply Department at Tokyo Medical and Dental University Hospital. He has more than 15 years’ experience in the field of medical material management and has established traceability systems for surgical instruments and SUDs in cooperation with many solution providers. Outside of the hospital, he is actively involved in writing articles and giving lectures related to the utilisation of GS1 standards and is also a board member of the Japanese Society of Medical Instrumentation.

About the organisation

Tokyo Medical and Dental University Hospital

Tokyo Medical and Dental University Hospital is a national university hospital located in Tokyo and is well-known as one of the most advanced hospitals in Japan. It consists of medical and dental hospitals, with a total of 818 beds. There were 7,784 medical surgeries and 961 dental surgeries performed at the hospital in the 2022 financial year. www.tmd.ac.jp/medhospital/english